[1]J.S. Orr, Y.B. Shtessel, Lunar spacecraft powered descent control using higher-order sliding mode techniques, Journal of the Franklin Institute, 349(2) (2012) 476-492.
[2]R. Noll, Spacecraft Attitude Control During Thrusting Maneuvers, NASA SP-8059, (1971).
[3]H. Kouhi, M. Kabganian, M. Shahravi, F. Fani Saberi, Retrofiring control method via combination of a 1DoF gimbaled thrust vector control and spin-stabilization, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, (2016).
[4]J.A. Oldenburg, S.G. Tragesser, Minimizing the effects of transverse torques during thrusting for spin-stabilized spacecraft, Journal of Guidance, Control, and Dynamics, 25(3) (2002) 591-595.
[5]J.K. Thienel, F.L. Markley, Comparison of Angular Velocity Estimation Methods for Spinning Spacecraft, in: Advances in Astronautical Science,” AAS/AIAA Guidance, Navigation, and Control Conference, 2011.
[6]R. Meyer, Coning instability of spacecraft during periods of thrust, Journal of spacecraft and rockets, 33(6) (1996) 781-788.
[7]F.L. Janssens, J.C. Van Der Ha, Stability of spinning satellite under axial thrust and internal mass motion, Acta Astronautica, 94(1) (2014) 502-514.
[8]K.M. Martin, J.M. Longuski, Velocity Pointing Error Reduction for Spinning, Thrusting Spacecraft via Heuristic Thrust Profiles, Journal of spacecraft and rockets, 52(4) (2015) 1268-1272.
[9]G. Cloutier, Resonances of a two-DOF system on a spin-stabilized spacecraft, AIAA Journal, 14(1) (1976) 107-109.
[10]P. Meehan, S. Asokanthan, Control of chaotic motion in a spinning spacecraft with a circumferential nutational damper, Nonlinear Dynamics, 17(3) (1998) 269-284.
[11]G.J. Cloutier, Nutation damper instability on spin-stabilized spacecraft, AIAA Journal, 7(11) (1969) 2110-2115.
[12]P. Tsiotras, J.M. Longuski, Spin-axis stabilization of symmetric spacecraft with two control torques, Systems & Control Letters, 23(6) (1994) 395-402.
[13] D.W. Childs, Fuel-optimal direction-cosine attitude control for spin-stabilized axisymmetric spacecraft, Journal of spacecraft and rockets, 7(12) (1970) 1481- 1483.
[14]D.W. Childs, B.D. Tapley, W.T. Fowler, Suboptimal attitude control of a spin-stabilized axisymmetric spacecraft, Automatic Control, IEEE Transactions on, 14(6) (1969) 736-740.
[15]H. Gui, G. Vukovich, Robust adaptive spin-axis stabilization of a symmetric spacecraft using two bounded torques, Advances in Space Research, 56(11) (2015) 2495-2507.
[16]M. Reyhanoglu, J.R. Hervas, Nonlinear dynamics and control of space vehicles with multiple fuel slosh modes, Control Engineering Practice, 20(9) (2012) 912-918.
[17]B. Bandyopadhyay, P. Gandhi, S. Kurode, Sliding mode observer based sliding mode controller for slosh-free motion through PID scheme, Industrial Electronics, IEEE Transactions on, 56(9) (2009) 3432-3442.
[18]L.D. Peterson, E.F. Crawley, R.J. Hansman, Nonlinear fluid slosh coupled to the dynamics of a spacecraft, AIAA Journal, 27(9) (1989) 1230-1240.
[19]A. Shekhawat, C. Nichkawde, N. Ananthkrishnan, Modeling and stability analysis of coupled slosh-vehicle dynamics in planar atmospheric flight, in: Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006, pp. 2006-2427.
[20]J.R. Hervas, M. Reyhanoglu, Thrust-vector control of a three-axis stabilized upper-stage rocket with fuel slosh dynamics, Acta Astronautica, 98 (2014) 120-127.
[21]J. Rubio Hervas, M. Reyhanoglu, Thrust-vector control of a three-axis stabilized upper-stage rocket with fuel slosh dynamics, Acta Astronautica, 98 (2014) 120-127.
[22]W.A. Kishore, S. Dasgupta, G. Ray, S. Sen, Control allocation for an over-actuated Satellite Launch Vehicle, Aerospace Science and Technology, 28(1) (2013) 56-71.
[23]R.A. Hall, S. Hough, C. Orphee, K. Clements, Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters, in: AIAA Guidance, Navigation, and Control Conference, 2016, pp. 0087.
[24]F.-K. Yeh, Sliding-mode-based contour-following controller for guidance and autopilot systems of launch vehicles, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(2) (2013) 285-302.
[25]W.S. Widnall, The minimum-time thrust-vector control law in the Apollo lunar-module autopilot, Automatica, 6(5) (1970) 661-672.
[26]Z. Wang, Y. Jia, L. Jin, J. Duan, Thrust Vector Control of Upper Stage with a Gimbaled Thruster during Orbit Transfer, Acta Astronautica, (2016).
[27]L. Felicetti, M. Sabatini, A. Pisculli, P. Gasbarri, G.B. Palmerini, Adaptive Thrust Vector Control during On- Orbit Servicing, in: Proceedings of AIAA SPACE 2014 Conference and Exposition, paper AIAA-2014-4341, San Diego, 2014.
[28]F. Rizvi, R.M. Weitl, Characterizing Limit Cycles in the Cassini Thrust Vector Control System, Journal of Guidance, Control, and Dynamics, 36(5) (2013) 1490-1500.
[29] J.M.a.B. Reed, Implementation of the Orbital Maneuvering System Engine and Thrust Vector Control for the European Service Module, (2014).
[30] F. Kong, Y. Jin, H.D. Kim, Thrust vector control of supersonic nozzle flow using a moving plate, Journal of Mechanical Science and Technology, 30(3) (2016) 1209-1216.
[31] E. Sperber, B. Fu, F. Eke, Large Angle Reorientation of a Solar Sail Using Gimballed Mass Control, The Journal of the Astronautical Sciences, (2016) 1-21.
[32] M. Bayani, R. Kazemi, S. Azadiiii, Vehicle stabilization via a self-tuning optimal controller, Amirkabir International Journal of Modeling, Identification, Simulation & Control, 43(2) (2011) 33-41.
[33] H. Milanchian, J. Keighobadi, H. Nourmohammadi, Magnetic Calibration of Three-Axis Strapdown Magnetometers for Applications in Mems Attitude- Heading Reference Systems, Amirkabir International Journal of Modeling, Identification, Simulation & Control, 47(1) (2015) 55-65.
[34] J.-J.E. Slotine, W. Li, Applied nonlinear control, prentice-Hall Englewood Cliffs, NJ, 1991.