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Adaptive Control of a Spin-Stabilized Spacecraft Using two Reaction Wheels and a 
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ABSTRACT: In impulsive orbital maneuvers, a large disturbance torque is generated by the thrust 
vector misalignment from the center of mass (C.M). The purpose of this paper is to reject the mentioned 
disturbance and stabilize the spacecraft attitude, based on the combination of a one degree of freedom 
(1DoF) gimbaled-thruster, two reaction wheels (RWs) and spin-stabilization. In this paper, the 
disturbances are assumed to be unknown and reaction control systems (RCS) are not employed. The 
nonlinear two-body dynamics of the proposed system is formulated and validated by the Simmechanics 
model. The closed-loop controller includes a full state feedback controller based on the gimbal actuator, 
a self-tuning controller (STC) based on the two RWs and a least squares based disturbance estimator. The 
simulation results are given by which the applicability of the proposed method is illustrated.
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1- Introduction
In an impulsive orbital maneuver a large thrust force in a short 
time is used to generate a velocity increment Dv. Thrust vector 
offset from the C.M, always exists (see [1]) that generates 
a large disturbance torque, by which the attitude instability 
may be occurred; it is clear that it results in a thrust vector 
deviation from the desired inertial direction. As a result, a 
high capacity attitude control system is needed to compensate 
the mentioned large exogenous disturbances.
The attitude control systems for thrusting maneuver are 
classified as: 1) spin-stabilization 2) based on RCSs, and 
3) a combination of a RCS and thrust vector control (TVC) 
(see [2]), and 4) the combination of TVC scheme and spin-
stabilization ([3]).
Spin-stabilization as a simple and low cost method, is used 
in orbital maneuvers of small satellites and spacecraft [4, 
5]. The thrusters used for spin and despin are simpler than a 
RCS’s thrusters.
Some properties of this method are: 1) For an only spin-
stabilized spacecraft, only the spin about the axis of maximum 
moment of inertia is stable. 2) In some spacecraft nutational 
or coning instability has been observed thus, for nutation 
control a RCS should be employed (see [6-8]). 3) Nutation 
may result in resonance in spacecraft flexible parts [9-11]. 4) 
Without an active control system (such as RCSs) spin-axis 
stabilization (with respect to the desired inertial direction), 
cannot be achieved ([12-15]).
RCSs are very useful to attenuate disturbances and perform 

attitude control. They have disadvantages and requirements 
which are: 1) they increase the complexity, mass and cost of 
a spacecraft. 2) Because of using liquid propellants in RCSs, 
fuel sloshing is presented; in this condition attitude control 
of spacecraft is very difficult. There are several researches 
([16-19]) on the slosh dynamics and their control. In [16, 
20-22] it is shown that many external torques are needed for 
control of the rocket engine with fuel sloshing. 3) since they 
are inherently nonlinear actuators, a complex control logic 
is needed to transform the attitude control command into the 
RCSs command [23]. Although a combination of a RCS and 
TVC is a good choice for large spacecraft and upper stage 
vehicles (see [1,16,24-26]), they are not suitable to be used in 
a small spacecraft.
TVC method is based on directing the thrust vector through 
the C.M of spacecraft. This powerful technique with 
extremely advantages can work with a servo actuator without 
fuel consumption. The active control torque generated by this 
method can easily overcome to the disturbance created by the 
thrust vector misalignment [27]. When the disturbance level 
is so larger than the attitude control capacity, a fixed thrust 
system is not efficient and applicable (Apollo, Cassini [28], 
[29] and launchers). gimbaled-TVC is more simpler than the 
other TVC methods such as moving plate (see [30]) which are 
accompanied by a highly nonlinear behavior. It is also used 
in a solar-sail spacecraft [31]. Recently, the company SpaceX 
is providing the terminal guidance and landing capability 
of Falcon-9 rocket with a new technology of TVC system. 
The gimbaled-thruster enable us to preserve weight, simplify 
attitude control system and reduce the requirements of the 
C.M positioning accuracy ([2], [3], [26]). In general, when the 
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liquid propellant rockets are used, the dynamical interaction 
between the movable nozzle and body is very small (see 
[1, 16, 20, 21]). But for a small spacecraft equipped with a 
solid rocket motor (SRM), the mentioned interaction makes a 
nonlinear two-body dynamics [3, 26].
Since momentum exchange devices (such as RWs and control 
moment gyro (CMG)) do not require any fuel consumption, 
they are very attractive for use in attitude control. They only 
transfer the momentum, but they cannot reject the external 
disturbance alone. Although a RW reaction torque is very 
smaller than the disturbance level, a large gyroscopic torque 
can be generated by the interaction between its angular 
momentum and the spacecraft spin rate.
In research [26] the nonlinear dynamics for an upper stage 
launcher equipped with a two-axis gimbaled-thruster is 
derived and a nonlinear control law based on a gimbal 
actuator and eight RCSs is designed. There was no challenge 
in control problem, because the mentioned system is over-
actuated with several actuators. But the problem studied here 
is concerned with the control of an under-actuated spacecraft 
with only one control input.
In this paper in addition to the disturbance rejection, it is so 
desirable to align the thrust vector direction with the inertial 
z-direction (ZI). In previous works these performances are 
achieved by using some thrusters (e.g., RCSs) which are not 
efficient for a small spacecraft. The goal of this paper is thrust 
vector stabilization and full disturbance rejection with a new 
structure of control system. The proposed structure includes a 
1DoF gimbaled-thruster, two RWs and spin-stabilization. The 
goal is to show the advantages of this system in comparison 
with the other methods. In order to reject the exogenous 
disturbances, the RWs gyroscopic torques along with a least 
squares-based self-tuning controller (STC) is utilized. The 
object is to design a least squares-based estimator ([32, 33]) 
to guarantee the convergence of the estimated disturbances.
The remainder of the paper is organized as follows; in section 
2 dynamics modeling is given. In section 3 the structure 
of the closed-loop control system is proposed including 
full state feedback controller for the gimbal actuator, feed-
forward controller for RWs, and the least squares disturbance 
estimator. Finally, simulation results are drawn in section 4.

2- Dynamic Modeling

2- 1- Nonlinear dynamic modeling 
In this section, the dynamics equation of the spacecraft 
(shown in Figure 1) is derived. It is assumed that the thruster 
(SRM) has a constant thrust of FT.

The free body diagram of the body and the nozzle are indicated 
in Figure 2. The nozzle (whole of the SRM) can rotate on axis 
xs (xn) using a 1DoF gimbal actuator at the pivot o. Subscripts 

s, n, o and T denote the body, the nozzle, gimbal pivot and 
the point of acting the thrust force, respectively. xsyszs and 
xnynzn are the body and the nozzle fixed frame respectively, 
which are placed in their C.Ms. Gs and Gn are the body and 
the nozzle C.M locations. ts∈R3(tn) and ws∈R3(wn) express 
the body (nozzle) external torque and the angular velocity, 
respectively. M0∈R3 and F0∈R3 are the interaction torques 
and forces at the pivot o, rso∈R3 is the vector from Gs to point 
o. rno∈R3 and rnT∈R3 are the relative vector from Gn to o and 
T, respectively. In Figure 3, b denotes the relative rotation of 
xnynzn with respect to xsyszs.

Euler momentum equations of the body and the nozzle are 
given in their coordinate frames as

where, the superscript s and n describe a vector in xsyszs and 
xnynzn, respectively; for simplicity the superscript s is not 
shown. Is and In

n  are the moment of inertia of the body and the 
nozzle, respectively,                               and           
denote the RWs angular momentum and axial torques,
where, 
The following rotation matrix is used to transform Eq.(2) to s 
frame

Fig. 1. A spin-stabilized spacecraft equipped with two RWs 
and a 1DoF gimbaled-thruster.

(a)

(b)

Fig. 2. Free body diagram of the body (a) and nozzle (b) with a 
1DoF gimbal actuator at the pivot o and two RWs at the Gs.

Fig. 3. Gimbal rotation b at the pivot o.
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After multiplying both sides of Eq.(2) by   and using the 
transformations given in Eq.(5)

Eq.(2) is reformed to Eq.(6) as

The summation of Eq.(6) and Eq.(1) yields

where,

       and        are the relative angular velocity and acceleration 
of the nozzle with respect to the body, respectively,

In Eq.(7) F0 should be replaced with the other known variables 
thus, the Newton’s law for the both body and nozzle along 
with their C.M accelerations are given

where, ms and mn denote the body and the nozzle mass, 
respectively. The solution of the above equations yields

where,                                               By substituting F0 in Eq.(7),   
        as the body angular acceleration will be

For a vector                           , the operator          is defined by

2- 2- Spacecraft kinematics
The results of this section enable us to calculate the velocity 
increment vector Dv and thrust vector deviation from the 
inertial frame. The time derivative of the Euler angles that 
give the body attitude with respect to the inertial coordinate 
XIYIZI is obtained as

where

A desired velocity change Dvd and burning time Tb define an 
orbital transfer mission. The actual velocity change Dvz along 
the ZI is achieved as

where,                                                                           is the 
thrust vector deviation from ZI and amax is obtained as

Since dFT(t) is always nonzero in practice, and then Dvz<Dvd  
can be easily concluded.

2- 3- Linearization of the nonlinear model
In this section, based on some assumptions, the nonlinear 
model ((11) and (12)) will be linearized. Some assumptions 
on the parameters are chosen as

where, zs and zn denote the distance of the pivot from the 
C.Ms of the body and the nozzle. xs and ys denote the C.M 
offsets of the body, respectively. Is2 and In2 are the transverse 
moments of inertia of the body and nozzle, respectively. Is1 
and In1 denote the moment of inertia about the axes zs and zn.      

is the initial spin-rate about the spacecraft longitudinal axis.
As noticed earlier the disturbance generated by thrust vector 
misalignments is the most important input to the spacecraft 
dynamics. in this work such as [22] and [26], disturbances 
are assumed to be constant (a constant C.M offset). From the 
dynamics (11), the disturbance created by the C.M offsets xs 

and ys  will be

Usually for a spin-stabilized spacecraft the angular momentum 
about the longitudinal axis (due to spin-rate) is enough large for 
which the spin rate can be considered nearly constant or having

Since the control object is not to stabilize the spacecraft 
revolute rotation; therefor, angle Y can be an arbitrary value 
with                            . The state vector that should be controlled 
is                                                       .
Now by considering a small variation for the partial states 
(X) and using Eqs. (15) and (16), the state space model is 
obtained here
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where,

, and

is the control input and     includes the constant 
disturbances, the RWs axial torques as well as their gyroscopic 
torques (               and                ).

3- Closed-Loop Control System Design
In this section, at first a full state feedback controller based on 
control input u is introduced to stabilize the partial states X 
and then based on the two RWs, a feed-forward controller is 
designed to reject the disturbances in two axes. Next the least 
squares estimator is formulated to estimate the disturbances.

3- 1- TVC based full state feedback controller
When the disturbances are not presented, a full state feedback 
controller must be able to stabilize the following system 

Then the following controller can guarantee the stability of 
the above system if the pair (A, B) be controllable
u(t)=-KX(t),
By using a proper gain K,                        will be stable. Then, 
for a positive symmetric matrix Q>0 there is a unique 
positive symmetric matrix P such that Lyapunov equation 
is satisfied in Eq.(19).

Since the system is single-input, Co must be full rank. As can 
be seen, generally |Co|≠0 is concluded.

The conditions by which (A, B) is not controllable are:
1)             ,                          2)                            , 

3)                                      , 4)

3- 2- RW based feed-forward controller
At what follows, we show that the RWs gyroscopic torques 
is able to reject the constant disturbances      and       . At first 

under the stabilizing control law (18), the closed-loop system 
will be 

Consider the following Lyapunov function candidate

The time derivative of V(t) along Eq.(19) and Eq.(17) will be

It can be easily concluded that

We show that by using the RWs gyroscopic torque the two terms 
of                                                  and
converge to zero. By employing the control law 

and              as             will be concluded
where, tRm denotes maximum reaction torque of the RWs,

and                             are the 
angular momentum tracking errors and g is the positive gain. 
By defining the Lyapunov functions                 and
, and using Eq.(3), the convergence of the         and         can 
be easily concluded.

3- 3- Least squares based disturbance estimator
In this section, a least squares based STC ([34]-Ch8) is 
designed to estimate the disturbances then the estimated 
disturbances are fed-forward to the RWs controller. We use 
the least squares method with a constant forgetting factor. This 
estimate potentially has the advantage of averaging out the 
effects of measurement noises.
Since the disturbance	 and   	 (dut to xs and ys) are 
unknown we reformed Eq.(11) to

where,                                  is calculated with xs=ys=0 . Then we 
multiply both sides of Eq.(23) by C to obtain the following form

where,		         , and vector 		   contains 

unknown parameters to be estimated.
The above model cannot be directly used for estimation, 
because	       appears in the above equation (note that numerically 
differentiating  is usually undesirable because of noise 
considerations).
To eliminate      in the above equation, let us filter (multiply) 
both sides of the above equation by       	  (the impulse 
response is                                    ). Then, convolving both 
sides of Eq.(24) by          yields 

Using partial integration, the above equation can be rewritten 
as linear parametrization form
		  with 
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where,

and                                        is the signal matrix.
Now we can use the following standard formulas for 
parameter update law,

where, G is the estimator gain matrix, s is constant forgetting 
factor and et is tracking error. G(0) can be chosen to be diagonal, 
for simplicity. Since Wf  is scalar therefore, according to above 
equation G(t) will be always diagonal as

At the following we show that for a constant forgetting factor  
s,                as             and                   for each                .
The gain update law for gx is

At first it is rewritten as

The solution of the above ode is

It is easy to see that               as           . The mentioned result 
can be also achieved for gy(t), similarly.
The convergence of the estimated disturbances to the true 
disturbances depends on the excitation of the signals. The 
following lemma ([34]-Ch8), guarantees the parameters error 
convergence

where, gmin(.) denotes the smallest eigenvalue, then the, estimated 
disturbances asymptotically converge to the actual values.

4- Numerical Simulations
In this section, to show the applicability of the proposed method as 
well as its controller ability, a numerical simulation is carried out. 
The spacecraft and controller parameters are given at the following.

The maximum acceleration and thrust force will be amax=2m/s2 and 
FT=(mn+ms) amax=316N, respectively.      and       are equivalent to 
C.M offsets of ys=1.32cm and xs=2cm, respectively. Assume that 
X(0)=0 to emphasize the disturbance effect on the performances.
Note that the nonlinear plant is used but with the linear 
controller. In Figure 4 the Simmechanics model of spacecraft is 
presented by which the mathematical model will be validated.
In addition to the other properties,          and        are also 
studied where, they stand for the maximum and mean values 
of thrust vector devotion, respectively.
Spacecraft body attitude(j,q) and thrust vector deviation (dFT) 
are shown in Figure 5. It is seen that dFT is fully eliminated with 
the maximum overshoot of dFT,m=7.120 and the average value 
of                 .By passing the time the spin-axis stabilization 
is performed while the disturbances are fully rejected by 
the gyroscopic effect of the RWs. The transverse angular 
velocity (ωsx and ωsy) stabilization and the velocity change 
components (vx, vy and vz) are drawn in Figure 6. An accurate 
velocity change vz=99.90m/s is achieved in comparison with 
Dvd=100m/s, that shows the effectiveness of the proposed 
method. The gimbal angle b, its rate ḃ and control input, 

are shown in Figure 7. The maximum deflection 
of gimbal angle is -2.5deg. As can be seen in Figure 8 the 
RWs are activated by their maximum reaction torques 
(tRm=0.1Nm) to reject the disturbances fast. The maximum 
axial torque of the RWs (tRm=0.1Nm) is so smaller than 
the disturbance torques level, but their gyroscopic torques
(                                     and                                       ) 
can easily reject the disturbances. Least squares estimation 
errors and estimated disturbances are given in Figure 9 where the 
disturbances are completely estimated in less than 5s. In Figure 
10 the histories of spin rate ωsz and its small variation is drawn.
In Figure 11 and Figure 12 the DCM (directional cosine 
matrix) error, error of angular and linear velocity between 
the Simmechanics and dynamics model are given. These 
results validate the accuracy of the spacecraft dynamics 
mathematical modeling.
The important observations of this section are:
1. Disturbance rejection along with spin-axis and thrust vector 
stabilization is performed without attitude control systems 
that need to propellant (such as RCSs); RCSs are able to 
reject the disturbances, but the propellant is being consumed 
until the end of burning.
2. Regarding to the small RWs axial torques, the gyroscopic 
torque originated by the interaction between the RWs angular 
momentum and spin rate, can easily reject the exogenous 
disturbance.
3. For an only spin-stabilized spacecraft or a spacecraft with 
only gimbaled-TVC, thrust vector stabilization is not possible 
in presence of exogenous disturbances.
4. A RW is a momentum exchange device, in order to reject the 
external disturbance torques, the TVC must be also employed.
5. In the proposed method the velocity increments are enough 
accurate for an impulsive orbital maneuver.
6. The proposed method can stabilize the initial attitude (due to an 
undesired orientation) while rejecting the exogenous disturbance.
7. Least-squares based self-tuning controller can be implemented 
by which fast disturbance estimation can be achieved.
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Fig. 4. Simmechanics model of the nonlinear plant with a 2DoF gimbal actuator and two RWs

Fig. 5.Attitude (j,q) and thrust vector deviation (dFT)

Fig. 6. The body angular velocity (ωsx and ωsy) and velocity change components (Dv).

Fig. 7. Gimbal angle and its rate (b, b
.
), and control input u
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Fig. 8. The RWs angular momentum and their axial reaction torques

Fig. 9. Least squares estimation errors and estimated disturbances

Fig. 10. Actual spin rate of spacecraft (ωsz) Fig. 11. DCM error between Simmechanics and dynamics 
model

Fig. 12. Error of angular and linear velocity between the Simmechanics and dynamics model
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5- Conclusion
According to the advantages of the gimbaled-TVC, RWs 
and spin-stabilization, a new thrusting maneuver system is 
introduced where the attitude stabilization and disturbance 
rejection are achieved without RCSs. Using the interaction 
of the RWs angular momentum (as the momentum exchange 
devices) and spin-rate, a new mechanism is designed for 
rejecting of external disturbances. It is shown that the 
underactuated spacecraft with only one active control part 
is controllable. For disturbance rejection, a feed-forward 
control law is proposed based on the RWs gyroscopic 
torque where the RWs are activated by their maximum axial 
torques. Simulation results show that in spite of exogenous 
disturbances caused by the C.M offsets, all state variables 
converge to zero. Disturbances are fully rejected in the 
proposed method. Using the least squares based self-tuning 
controller the disturbances are estimated in less than 5s 
(burning time is 50s). The results show the usefulness of the 
proposed method in practice. The proposed method can be 
a good choice for space vehicles with long term missions as 
well as to use in upper stage vehicles.
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