[1] Zames, G.; “Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms and Approximate Inverses,” IEEE Transaction on Automatic Control, Vol. 26, No. 2, pp. 301–320, 1981.
[2] Helton, J. W.; “Orbit Structure of the Mobius Transformation Semi-Group Action on H-Infinity (Broadband Matching),” Adv. in Math. Suppl. Stud., Vol. 3, pp. 129–197, 1978.
[3] Bakule, L.; Rehák, B. and Papík, M.; “Decentralized Image-Infinity Control of Complex Systems with Delayed Feedback,” Automatica, Vol. 67, No. 3, pp. 127–131, 2016.
[4] Rojas, C. R.; Oomen, T.; Hjalmarsson, H. and Wahlberg, B.; “Analyzing Iterations In Identification With Application To Nonparametric H∞-Norm Estimation,” Automatica, Vol. 48, No. 11, pp. 2776– 2790, 2012.
[5] Yang, C. D. and Taic, H. C.; “Synthesis of μ Controllers Using Statistical Iterations,” Asian Journal of Control, Vol. 4, No. 3, pp. 331–310, 2002.
[6] Taher, S. A.; Akbari, S.; Abdolalipour, A. and Hematti, R.; “Robust Decentralized Controller Design for UPFC Using μ–Synthesis,” Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 8, pp. 2149–2161, 2010.
[7] Zinober, A. S. I.; “Deterministic Control of Uncertain Systems,” IEE Control Engineering Series, 1991.
[8] Khalil, H. K.; “Nonlinear Systems,” Prentice Hall, NewJercy, 3rd Edition, 2002.
[9] Zhou, Q.; Yao, D.; Wang, J. and Wu, C.; “Robust Control of Uncertain Semi-Markovian Jump Systems Using Sliding Mode Control Method Original,” Applied Mathematics and Computation, Vol. 286, pp. 72–87, 2016.
[10] Barambones, O. and Alkorta, P.; “Vector Control for Induction Motor Drives Based on Adaptive Variable Structure Control Algorithm,” Asian Journal of Control, Vol. 12, No. 5, pp. 640–649, 2010.
[11] Ling, R.; Wu, M.; Dong, Y. and Chai, Y.; “High Order Sliding-Mode Control for Uncertain Nonlinear Systems with Relative Degree Three,” Communications in Nonlinear Science and Numerical Simulation, Vol. 17, No. 8, pp. 3406–3416, 2012.
[12] Nasiri, R. and Radan, A.; “Adaptive Ole- Placement Control of 4-Leg Voltage-Source Inverters for Standalone Photovoltaic Systems,” Renewable Energy, Vol. 36, No. 7, pp. 2032–2042, 2011.
[13] Yang, Q.; Xue, Y.; Yang, S. X. and Yang, W.; “An Auto-Tuning Method for Dominant-Pole Placement Using Implicit Model Reference Adaptive Control Technique,” Journal of Process Control, Vol. 22, No. 3, pp. 519–526, 2012.
[14] Madady, A.; “ A Self-Tuning Iterative Learning Controller for Time Variant Systems,” Asian Journal of Control, Vol. 10, No. 6, pp. 666–677, 2008.
[15] Ahmed, M. S.; “Neural Net Based MRAC for a Class of Nonlinear Plants,” Neural Networks, Vol. 13, No. 1, pp. 111–124, 2000.
[16] Guo, J.; Tao, G. and Liu, Y.; “A Multivariable MRAC Scheme with Application to a Nonlinear Aircraft Model,” Automatica, Vol. 47, No. 4, pp. 804–812, 2011.
[17] Mohideen, K. A.; Saravanakumar, G.; Valarmathi, K.; Devaraj, D. and Radhakrishnan, T. K.; “Real-Coded Genetic Algorithm for System Identification and Tuning of a Modified Model Reference Adaptive Controller for a Hybrid Tank System,” Applied Mathematical Modeling, Vol. 37, No. 6, pp. 3829–384, 2013.
[18] Rugh, W. J. and Shamma, J. S.; “Research on Gain Scheduling,” Automatica, Vol. 36, No. 10, pp. 1401–1425, 2000.
[19] Wu, F.; Packard, A. and Balas, G.; “Systematic Gain-Scheduling Control Design: A Missile Autopilot Example,” Asian Journal of Control, Vol. 4, No. 3, pp. 341–34, 2002.
[20] Horowitz, I.; Smay, J. and Shapiro, A.; “A Synthesis Theory for Self-Oscillating Adaptive Systems (SOAS) Original Research Article,” Automatica, Vol. 10, No. 4, pp. 381–392, 1974.
[21] Olivier, J. C.; Loron, L.; Auger, F. and Le- Claire, J. C.; “Improved Linear Model of Self Oscillating Systems Such as Relay Feedback Current Controllers,” Control Engineering Practice, Vol. 18, No. 8, pp. 927–935, 2010.
[22] Vargas, J. F. and Ledwich, G.; “Variable Structure Control for Power Systems Stabilization,” International Journal of Electrical Power and Energy Systems, Vol. 32, No. 2, pp. 101–107, 2010.
[23] Sumar, R.; Coelho, A. and Goedtel, A.; “Multivariable System Stabilization via Discrete Variable Structure Control,” Control Engineering Practice, Vol. 40, No. 4, pp. 71–80, 2015.
[24] Landau, I. D.; “Combining Model Reference Adaptive Controllers and Stochastic Self-Tuning Regulators,” Automatica, Vol. 18, No. 1, pp. 77–84, 1982.
[25] Landau, I. D. and Karimi, A.; “A Unified Approach to Model Estimation and Controller Reduction (Duality and Coherence),” European Journal of Control, Vol. 8, No. 6, pp. 561–572, 2002.
[26] Kasabov, N.; “DENFIS: Dynamic Evolving Neural Fuzzy Inference System and its Application for Time Series Prediction,” IEEE Transaction on Fuzzy Systems, Vol. 10, No. 2, pp. 144–154, 2002.
[27] Angelov, P. and Filev, D.; “An Approach to Online Identification of Takagi Sugeno Fuzzy Models,” IEEE Transaction on Systems, Man and Cybernetics Part B, Vol. 34, No. 1, pp. 484–498, 2004.
[28] Angelov, P. and Zhou, X.; “Evolving Fuzzy Systems from Data Streams in Real-Time,” International Symposium on Evolving Fuzzy Systems, pp. 29–35, 2006.
[29] Angelov, P.; Filev, D. and Kasabov, N.; “Evolving Intelligent Systems: Methodology and Applications,” John Wiley and Sons, Chapter 2, pp. 21–50, 2010.
[30] Lughofer, E. D.; “FLEXFIS: A Robust Incremental Learning Approach for Evolving Takagi–Sugeno Fuzzy Models,” IEEE Transaction Fuzzy Systems, Vol. 16, No. 6, pp. 1393–1410, 2008.
[31] Kalhor, A.; Araabi, B. N. and Lucas, C.; “Online Extraction of Main Linear Trends for Nonlinear Time Varying Processes,” Information Sciences, Vol. 220, pp. 22–33, 2013.
[32] Kalhor, A., Iranmanesh, H. and Abdollahzade, M.; “Online Modeling of Real-World Time Series through Evolving AR Models,” IEEE International Conference on Fuzzy systems, FUZIEEE, 2012.
[33] Kalhor, A.; Araabi, B. N. and Lucas, C.; “A New Systematic Design for Habitually Linear Evolving TS Fuzzy Model,” Journal of Expert Systems with Applications, Vol. 39, No. 2, pp. 1725–1736, 2012.
[34] Jang, R.; “ANFIS: Adaptive Network-Based Fuzzy Inference System,” IEEE Transaction on Systems, Man and Cybernetics, Vol. 23, No. 3, pp. 665–685, 1993.
[35] Nelles, O.; “Nonlinear System Identification,” Springer, New York, pp. 365–366, 2001.
[36] Kalhor, A.; Araabi, B. N. and Lucas, C.; “Reducing the Number of Local Linear Models in Neuro–Fuzzy Modeling: A Split and Merge Clustering Approach,” Applied Soft Computing, Vol. 11, No. 8, pp. 5582–5589, 2011.
[37] Robinson, J. C.; “An Introduction to Ordinary Differential Equations,” Cambridge University Press, Cambridge, UK, 2004.
[38] SIemon, G. R. and Straughen, A.; “Electric Machines, Addison,” Wesley, Reading, MA, 1980.