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Evolving models have found applications in many real world systems. In this paper, potentials of the 
Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are 
introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model 
whose parameters as well as dynamic orders of input and output signals can change through the time. 
Then, the potential of ELMs in modeling nonlinear time-varying SISO systems is explained. Next, the 
potential of the ELMs in tracking control of a minimum phase nonlinear time-varying SISO system is 
introduced. To this end, two tracking control strategies are proposed, respectively for (a) when the ELM 
is known perfectly and (b) when the ELM model has uncertainties but dynamic orders of the input and 
output signals are fixed. The methodology and superiority of the proposed tracking control systems are 
shown via some illustrative examples: speed control in a DC motor and link position control in a flexible 
joint robot. 
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1- INTRODUCTION
A. MOTIVATION AND RELATED WORKS

Nonlinearity and structural variability cause 
significant challenges in control design, particularly 
when the system is not affine or there are uncertainties. 
Robust control and adaptive control methods have 
been introduced and developed for such systems. 
Whereas robust control guarantees the stability 
and performance of the system under bounded 
uncertainties, adaptive control satisfies the required 
performance and stability by posing adaptation rules 
for the controller with regard to the new condition of 
the system.

Among known robust control strategies, 
H-infinity, μ-synthesis and sliding mode are more 
popular and applicable. Considering unstructured 
uncertainty in a control system, H-infinity based 
methods are used to minimize the closed loop impact 
of perturbation [1,2] and in recent years, new aspects 
of the H-infinity are studied [3,4]. μ-synthesis based 
methods unlike H-infinity are used to design robust 
control against certain structured uncertainties 
[5,6]. Sliding mode control is a variable structure 
control method providing a systematic approach to 
the problem of maintaining stability in the face of 
modeling uncertainty [7,8]. This approach has been 
also used and developed in many nonlinear control 
systems [9-11].

A wide range of methods have been introduced in 
the literature of adaptive control systems. Adaptive 
pole placement, different self-tuning regulators 
and iterative learning control are straightforward 
techniques using direct or indirect approaches to 
provide stability and performance in the system [12-
14]. However, they are suggested principally for linear 
systems. Model Reference Adaptive Controllers 
often suggest direct solutions for adaptive control 
of continuous time systems based on a reference 
model. Regarding the  structure of the system, the 
reference model can be chosen linear or nonlinear 
as well [15-17]. Gain scheduling based methods 
offer a set of control strategies corresponding to 
different operating regimes of the system prepared 
as a table [18,19]. Such methods are also developed 
for nonlinear and also time-varying systems. Also, 
for nonlinear systems, adaptive control systems such 
as self-oscillating adaptive systems [20,21], variable 
structure system [22,23] and duality controllers 
[24,25], have been proposed.

On the other hand, during last decade, evolving 

fuzzy and neuro-fuzzy models have been developed 
in modeling nonlinearity and time-varying structures. 
In an evolving model, the structure can evolve through 
the time based on observing samples of input and 
output signals. The structure of a nonlinear evolving 
model often can be described as an interpolated of 
locally linear models constructed from simple if-then 
fuzzy rules. There are two particularly influential 
works in this area of research [26,27]. Kasabov 
proposes an adaptive online learning algorithm as 
a dynamic evolving neural–fuzzy inference system 
(DENFIS). In this algorithm, fuzzy inference rules 
are created by using maximum distance clustering, 
which is utilized in partitioning of input space. 
Angelov and Filev introduce an online identification 
approach for the Takagi Sugeno (TS) model, where 
evolving clustering method along with a concept 
of potential is used to define the antecedent parts 
of the rules. This approach has been modified in 
[28] and [29]. In [30], to evolve a specific form 
of TS Fuzzy Model, Lughofer suggests to use a 
modified version of vector quantization for new rule 
generation. Although evolving nonlinear systems 
have been developed successfully in simulation, 
approximation, classification and prediction, they are 
not straightforward basis for analyzing and designing 
control systems, In recent years, by the author and 
its cooperators, there is a tendency toward using and 
developing Evolving Linear Models (ELMs) [31,32]. 
An ELM can adapt and follow the variations of the 
nonlinear and time-varying system with agility [33]. 
Moreover, it seems ELMs can fulfill facilities in 
control, analyze and design due to their linear forms.

B. OUR CONTRIBUTIONS
In this paper, some potentials of ELMs in tracking 

control of nonlinear variable structure systems are 
introduced. It is shown that if nonlinear models could 
be represented as ELMs, two significant challenges in 
tracking control systems will be solved. At first, the 
nonlinear systems do not have essentially an affine 
structure with regard to the input signal. This avoids  
using some given classic solutions like feedback 
linearization or sliding mode control [8] by which a 
stable differential equation of error is satisfied. ELM 
represents the system in an affine form which allows 
one to design a tracking control system easily for 
nonlinear non-affine systems. Also, when the dynamic 
order of a nonlinear system changes, computing its 
impulse effects is not straightforward and this causes 
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that one cannot solve the tracking control problem 
even when a general solution like lyapunov method 
is existed. Using ELMs allows the input signal to be 
computed in order that the tracking control system in 
switching time remains stable. Also, it is proved that 
using ELMs allows us to use Sliding Mode Control 
(SMC) for when the system has some inherent 
uncertainties or the linearization of the nonlinear 
system causes some bounded uncertainties.

The rest of the paper is organized as follows: in 
section II, ELMs are introduced, then in section III 
the potential of ELM in modeling nonlinear models is 
explained and in section IV, the potential of ELM in 
tracking control systems are explained. In section V, 
the conclusion remarks are given.

2- EVOLVING LINEAR MODELS
An evolving linear model (ELM), in continuous 

time domain, is defined as a linear differential 
equation between input signal u(t) ϵ R and output 
signal y(t) ϵ R of a SISO system:

(1)

where nt and mt, respectively denote dynamic orders 
of output and input signals which are bounded to nmax 
and mmax. Also, ai(t) ϵ R , bj(t) ϵ R denote respectively 
linear parameters for ith and jth derivatives of y(t) and 
u(t), and c(t) ϵ R denotes the bias parameter. In this 
paper, x[l](t) denotes the lth derivative of the signal 
x(t). As it is seen in (1), linear parameters as well as 
dynamic orders of exogenous input and output can 
change through the time.
Assumption 1: In an ELM, the dynamic orders of 
input and output signals can change only at finite 
instants named as evolving instants (EIs). The set 
of EIs for the introduced ELM in (1) is defined as 
follows:

(2)

In another representation, an ELM can be 
supposed as a model which switches at each instancet 
to a new LTI model whose parameters and dynamic 
orders are fixed.

(3)

Fig. 1 shows a diagram representing ELM model 
as switching LTI models.

The above representation shows that ELMs 
is more capable of modeling nonlinearity than 
dynamic local linear models, such as ANFIS in [34], 
LOLIMOT in [35] and TS-SAMC in [36]. This is 
because, in such models the number of Local Linear 
Models (LLMs) is restricted and the output is defined 
as an interpolation of LLMs but in an ELM at each 
working point there is an independent LLM and the 
number of LLMs is not restricted; moreover, unlike 
most of the locally linear neuro-fuzzy models, in an 
ELM the dynamic order of the input or output can 
change at EIs.

3- POTENTIAL OF ELM IN MODELING 
NONLINEAR MODELS
A. TIME-VARYING NONLINEAR MODEL 
WITH TIME-VARYING DYNAMIC ORDER

Consider following input-output representation 
of a time-varying nonlinear model:

(4)

where F(nt,mt) denotes a time-varying nonlinear 
function of the input and output signals and their 
derivatives; nt and mt, respectively denote dynamic 
orders of the output and input signals at time t and 
their possible maximum values are nmax and mmax. 
Actually, the structure of a nonlinear dynamic model 

Fig. 1. An evolving linear model is represented as 
switching LTI models
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may change through the time due to internal physical 
variations, erosions, delays and environmental 
factors.
Assumption 2: For the function F(nt,mt)–similar to 
the considered assumption for ELMs–the dynamic 
order of the input and output signal: nt and mt can 
change just at finite instancets, i.e. EIs. Consider that 
the set A={σ1,σ2,…,σF} denotes EIs for the F(nt,mt)).
Assumption 3: The function F(nt,mt)) and its variables 
are continuously differentiable except at its EIs.

C. POTENTIAL OF ELM IN MODELING 
CONTROL SYSTEMS

Consider T as sampling period of the input and 
output of the system. Considering variation variables: 
δy[i](t)=y[i](t)‑y[i](t‑T), δu[j](t)=u[j](t)‑u[j](t‑T) and δt=T, 
the Jacobian of the given nonlinear dynamic function 
in (4), for ∀tϵ(R‑A), can be stated as follows:

(5)

where γ(t,T) denotes all high order terms in Taylor 
series; one can suppose that if for at least one 
coefficient of the input variations was not zero, γ(t,T) is 
negligible for small enough sampling period T. Here, 
we assume γ(t,T) and its derivatives are restricted. The 
above model in (5) can be also rewritten as follows:

(6)

Here, the Jacobian of the nonlinear model at EIs: 
σh, h=1,2,…,F is defined as the same Jacobian for 
{t|t→σh

+}. Accordingly, we can define the Jacobian for 
all over the time. Considering ai(t)=(∂F(nt,mt) / (∂uj(t)), 
bj(t)=(∂F(nt,mt)) / (∂uj(t)), c(t)=r(t) and respecting to 
(1), the considered nonlinear function in (4) can be 

stated as an ELM:

(7)

Definition 1: Corresponding to each time-varying 
nonlinear SISO system represented in (4), if 
Assumption 2 and Assumption 3 are satisfied, an 
ELM can be defined as (6) and (7).

4- POTENTIAL OF ELM IN TRACKING 
CONTROL SYSTEMS

In this section, for tracking control system of an 
ELM, two different control strategies are proposed, 
respectively for two different states: (a) the ELM is 
known perfectly and (b) the ELM is known but with 
some uncertainties. In the first state, it is assumed that 
the dynamic order can change through the time but 
in the second state, for the sake of simplicity, it is 
assumed the dynamic orders for the input and output 
signals are fixed through the time.

A. CONTROL STRATEGY FOR A KNOWN 
ELM

In this section, it is supposed that the ELM in 
(7) is perfectly known and there is no uncertainty in 
the model. Considering some assumptions and using 
a control strategy, it is aimed that the output of the 
system asymptotically converges to the reference 
signal.
Assumption 4: For the ELM in (7), ∀t:∃ jϵ{0,1,…
,mmax}|bj(t)≠0.
Assumption 5: The zero dynamic in (7)

( ) [ ] ( ) ( )
0

0

m
j

j
j

b t u t tα
=

=∑  is stable for any bounded signal 
α(t).
Assumption 6: The reference signal, yr(t), is real, 
bounded and continuously differentiable for all t >0.
Theorem 1: Considering Assumptions 4-6 and 
applying the computed signal control from (8) to the 
system (4), the output y(t), will converge to yr(t)+π(t):

(8)
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where the roots of the characteristic function: snma

x+d1s
nmax‑1+d2s

nmax‑2+...+dnmax=0 are in the left part of 
the complex plane s=σ+jω and σt denotes the last 
evolving instant before t.

(9)

where δ(.) denotes the Dirak delta function.
Proof: Assume the following error differential 
equation:

(10)

We call the above differential equation Error 
Based Equation (EBE). Now, we compute the 
signal control which satisfies EBE. Regarding initial 
conditions for EBE at σt, by nmax‑nt times integral of 
the EBE, one can get the following equation:

(11)

As it is understood, the considered Dirac delta 
functions in EBE eliminate the effects of initial 
conditions from γ(t,T) and its derivatives. Now, by 
considering e[nt](t)=y[nt](t)‑yr

[nt](t) we have:

(12)

Putting the ELM in (7) in the left hand of the 
above equation, we get the following differential 

equation:

(13)

In fact, by computing the control signal from 
above equation the initially considered EBE will 
be satisfied. The response of the EBE is the sum of 
the response to initial condition and the response 
to the input signal. We can discount response to the 
initial condition because it decays through the time. 
However, we can compute the steady response by 
applying the Laplace Transform to the EBE:

(14)

Now by applying the inverse of the Laplace 
Transform, we get:

(15)

Accordingly, the e(t) will converge to π(t,T) or 
y(t) will converge to yr(t)+π(t,T).

Here, two important notes about the Theorem 1 
are stated:

1) If  T converges to zero, γ(t,T), its derivatives 
and accordingly π(t,T) converges to zero and y(t) will 
follow yr(t), asymptotically.

2) The signal control u(t) can be computed easily 
by solving the non-homogenous time-varying linear 
differential equation in (7) [37]. This differential 
equation must be solved separately for each interval 
in which the dynamic order mt is fixed; also, when mt 
changes, the given initial conditions are considered.

1) ILLUSTRATIVE EXAMPLE
 The Dynamics of a DC motor is stated as the 

following state model:

(16)

where x1 is the armature current, x2 is the motor speed , 
u is the field current and θ1 to θ5 are positive constants 
[8,38]. Assume the domain of operations will be 
restricted to regimes that the system is minimum 
phase. It is desired to design a controller based on 
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Theorem 1 such that the output y asymptotically 
tracks the reference signal yr(t)=2+0.5sin(2t). For this 
reason, three following cases are considered:
Case 1: T=0.001 seconds, θ1=θ2=θ4=θ5=1 and θ3=5 
for t≥0.
Case 2: T=0.1 seconds, θ1=θ2=θ4=θ5=1 and θ3=5 for 
t≥0.
Case 3: T=0.001 seconds:

- θ1=θ2=θ4=θ5=1 and θ3=5 : 0<t<5 (σ1=0)
- θ1=θ2=θ3=0 and θ4=θ5=1 : t≥5 (σ2=5)

Case 1
One can compute the following input-output 

differential equation (from (10)):
ÿ(t)=F(2,1)(ẏ,y,u̇,u)=(‑θ2θ5yu2+θ5θ3u)+[ẏu̇u‑1‑(θ4

+θ1)ẏ]+ [θ4 yu̇u‑1‑θ4θ1y]
Considering the sampling period T=0.001  

seconds, θ1=θ2=θ4=θ5=1 and θ3=5 the following 
evolving linear model will be computed:

(17)

where γ(t,T) denotes high order terms in the Taylor 
series.

We assume s2+4s+4=0 as the characteristic 
function of the error signal e(t)=yr(t)-y(t); then, the 
proposed signal control is computed by solving the 
following time-varying linear differential equation:

(18)

The initial conditions for output and input signals 
are chosen: u(0)=1, y(0)=1 and ẏ(0)=0.

Since the chosen T=0.001 is so small, it is 
expected γ(t,T) is insignificant. Fig. 2 shows the 
plots of the output signal y(t), input signal u(t) and 
the reference signal yr(t). As can be seen, the y(t) is 
almost asymptotically converged to the yr(t) .

Case 2
The simulation in Case1 is repeated for the Case 

2 where T=0.1; Fig. 3 shows the output signal y(t), 
input signal u(t) and the reference signal yr(t). As it 
is seen, since the effect of the γ(t,T) is considerable, 
there is a difference between y(t) and yr(t).

Case 3
In this case, we have an evolving instant at t=5. 

Actually, for 0≤t<5, the represented system in Case 
1 is used, where nt=2 and mt=1; however, for t≥5 
the armature current is considered fixed (x1=1) and 
dynamic order of input and output of the system 
changes to nt=1 and mt=0. The differential equation 
for the system can be computed as follows:

(19)

We have determined the control strategy for 0≤t<5 
in Case 1; here, we determine the control strategy for  
t≥5.

(20)

Fig. 2. The output signal y(t), the reference signal yr(t) and input signal u(t) when the sampling period T=0.001 second
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Fig. 3. The output signal y(t), the reference signal yr(t) and input signal u(t)  when the sampling period T=0.1 second

The required initial condition for the signal is 
chosen: y(5)=1. Signal e(t)=yr(t)-y(t), the proposed 
signal control is computed by solving following 
equation:

(21)

where by considering nmax=2, nt=1 and σt=5:

(22)

One can compute ė(5) by solving following 
equation and compute ė(t)|t=5.

ë‑4ė(t)‑4e(t)≈0, ė(0)=ẏ(0)‑ẏr(0)=‑1 , e(0)=y(0)-
yr(0)=‑1.

Fig. 4 shows the plot of the output signal y(t), 

Fig. 4 The output signal y(t), input signal u(t) and the reference signal yr(t) for the Case 3 when the sampling period 
T=0.001 second

input signal u(t) and the reference signal yr(t). As it is 
observed, the y(t) is asymptotically converged to the 
yr(t) even with evolving in the structure at t=5.

As seen in Fig. 4, in the plots of the input signal 
control and output control, there is an abrupt change 
at evolving instant but the output signal changes 
continuously through the time.

B. ROBUST CONTROL STRATEGY FOR AN 
ELM WITH SOME UNCERTAINTIES
Definition 1: For the ELM defined in (7), the 
partially known ELM is defined as follow:

(23)

where n0 and m0 denote the dynamic orders of the 
output and input signals and uncertainties are defined 
as follows:
∀t:|âi(t)‑ai(t)|<āi (i=0,1,2...,n0) ,|ĉ(t)‑c(t)|<c̄, |b̂j(t)-
bj(t)|<b̄j (j=1,2,...,m0‑1), β‑1≤bm0

(t)/b̂m0
(t)≤β, β≥1, 

|ai(t)|≤ãi, |bj(t)|≤b̃j, |c(t)|≤c̃.
Theorem 2: For the partially known ELM in 
Definition 1 and considering Assumptions 5 and 6, 
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the control signal computed from (24) guarantees that 
y(t) will converginge to yr(t), if there is δ≥0 such that 
the condition (26) is satisfied.

(24)

(25)

where ζ ϵ R+ and the roots of the characteristic function 
sn0‑1+d1s

n0‑2+d2s
n0‑3+...+dn0‑1

=0 are in the left part of the 
complex plane s=σ+jω.

(26) Proof: the proof is given in Appendix A.
Following results can be stated from Theorem 2:
- The suggested robust control strategy is similar 

to the sliding mode control because the error dynamic 
equation S(t) (sliding surface) too is utilized in the 
sliding mode. However, in sliding mode control, 
the affine of the input signal in output differential 
equation must be affine but here, this constraint is not 
necessary; however, here, some constraints about the 
bounds of the signal control and its derivatives are 
posed.

- One can identify the unknown parameters of the 
ELM recursively through some estimation methods, 
such as Least Square or Kalman filter. It is expected 
by converging the parameters to their original values, 
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the uncertainties vanish gradually. 
- If the uncertainties starts to vanish through the 

time, it is expected that after some while β→1, āi→0, 
b̄j→0 and c→0. In such state, it is seen that ζ→δ→0+ 
and consequently upper bound for the signal control 
and its derivatives can be chosen easily as follows:

(27)

1) ILLUSTRATIVE EXAMPLES
Example 1: In this example, the same example stated 
in section 4.1.1 (Case 1) is considered. The original 
ELM and its partially known ELM are introduced as 
follows:

The original ELM: ÿ(t)=a0(t)y(t)+a1(t)ẏ(t)+b0(t)
u(t)+b1(t)u̇(t)+c(t).

The Partially known ELM: ÿ(t)=â0(t)y(t)+â1(t)
ẏ(t)+b̂0(t)u(t)+b̂1(t)u̇(t)+ĉ(t).
where the parameters are known as follows:

a0(t)=‑u2+u̇u‑1‑1;  â0(t)=a0(t)+ε;  ā0=ε
a1(t)=u̇u‑1‑2;  â1(t)=a1(t)+ε;  ā1=ε
b0(t)=‑2yu+5‑(ẏ+y)u̇u‑2;  b̂0(t)=βb0(t)
b1(t)=(ẏ+y)u‑1;  b̂1(t)=b1(t)+ε;  b̄1=ε
c(t)= ÿ(t‑T)‑a0(t)y(t‑T)‑a1(t)y(t‑T)‑b0(t)u(t‑T)‑b1(t)

u̇(t‑T))+γ(t,T);  ĉ(t)=c(t)+ε;  S(t)=ė(t)+2e(t)
As it is explained in Theorem 2, the signal control 

is computed as follows:

(28)

The resulting output (input) signals and reference 
signal are shown in four cases in Fig. 5. In (a) the 
uncertainty of the ELM is assumed ε=‑0.2  and β=1.1. 
The control signal is computed for ζ=1. As it is seen 
in (a), the output signal converges to reference signal 
but in (c) when ζ=0 is chosen, the system is not robust 
against considered uncertainty. In (b), the uncertainty 
of the ELM is assumed more than (a): ε=0.5 and 
β=1.5. The control signal is computed for ζ=5. As it 
is seen in (c), the output signal converges to reference 
signal but in (d) when the uncertainty in ε becomes 
bigger, the system is not robust. Also, the plots of 
signal controls in (a) and (b) are shown in Fig. 5.

Example 2: In this example, a flexible joint robot 
is considered. The system dynamic is represented as 

follows:

(29)

where q1 and q2 denote respectively, link position and 
motor position and, u denotes the voltage motor. Fig. 
6 shows a scheme of the flexible joint robot.

Considering y=q1 the following input-output 
differential equation is obtained.

(30)

Now, we can compute its ELM as follows:

(31)

a0(t)=∂F (4,0)/∂y=MgL[‑I ‑1sin(y)y [2]+I ‑1cos(y)
ẏ2]‑J‑1I‑1k2MgLcos(y)

a1(t)=∂F(4,0)/∂ẏ=2I‑1MgLsin(y)ẏ
a2(t)=∂F(4,0)/∂y[2]=‑(kI‑1+k2J‑1+I‑1MgLcos(y))
a3(t)=∂F(4,0)/∂y[3]=0
b0(t)=∂F(4,0)/∂u=J‑1I‑1k
c(t)=yr

[4](t-T)‑∑3
i=1ai(t)y

[i](t‑T)‑b0(t)u(t‑T)+γ(t,T)
âi(t)=ai(t)+ε,  i=0,1,2,3
b̂0(t)=βb0(t)
For the considred case, we assume M=1, L=0.1, 

g=10, k=1, J=1, I=1. Now, the error eqution is 
considred as follows:

(32)

Respecting Theorem 2, the following differential 
equation of input signal is achieved.

(33)

For different modes, we simulate the system with 
suggested control strategy: Fig. 7 shows the .resulting 
simulation in different cases. In (a), the uncertainty of 
the ELM is assumed ε=‑0.2  and β=1.1. The control 
signal is computed for ζ=1. As it is seen in (a), the 
output signal converges to reference signal but in 
(c) (which is similar to (a)) when ζ=0 is chosen, the 
system is not robust against considered uncertainty. In 
(b), the uncertainty of the ELM is assumed more than 
(a): ε=0.5 and β=1.5. The control signal is computed 
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Fig. 5. The output signal y(t), input signal u(t) and reference signal yr(t) in (a) and (b) and y(t) and yr(t)  in (c) and 
(d) for Example 1

Fig. 6. A link driven by a low motor

for ζ=5. As it is seen in (c), the output signal converges 
to reference signal but in (d) (which is similar to (b)) 
when the uncertainty in ε become bigger, the system 
is not robust. The input signals shown in (a) and (b) 
are oscillating in some intervals. This is due to using 
sign function in the suggested signal control and the 
effect of the quantization noise. From the suggested 
solutions in sliding mode controllers, we know by 
using some smoothed variants of sign functions, 
such as bipolar sigmoid functions, more smoothed 
behavior in both output and control signals will be 
resulted, [8].
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Fig. 7. Output signal y(t), input signal u(t) and reference signal yr(t)  in (a) and (b) and y(t) and yr(t) in (c) and (d) 
for Example 2

5- CONCLUSION
In this paper, potentials of Evolving Linear 

Models (ELMs) in modeling and tracking control 
system of nonlinear time-varying SISO systems were 
introduced. We explained a nonlinear time varying 
system, which is continuously differentiable except 
some finite instants, can be presented as an ELM. 
Then, based on two theorems, two tracking control 
strategies were proposed, respectively for two 
different states: (1) when the parameters of the ELM 
is known perfectly and (2) when the parameters of 

the ELM have certain uncertainties but the dynamic 
orders of input and output signals are fixed. In both 
states, the system was assumed minimum phase and 
in the second state it was stated the upper bounds 
of the signal control must satisfy an inequality. The 
proposed control strategies are used in speed control 
of a DC motor and position control of a flexible robot 
link. The results show that ELMs are capable of being 
used in tracking control systems of those cases in 
which the nonlinearity, time-varying and uncertainty 
are existed. However, some other challenges of using 
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ELMs in control systems such as: tracking control 
systems for non minimum phase systems and multi 
input and multi output ELMs are focused in our 
future works.

APPENDIX A
Proof of Theorem 2: Consider the energy function 

as follows:
(A.1)

Its time derivative is computed as follows:
(A.2)

(A.3)

Putting the suggested control signal in y[n0](t), we 
will have:

(A.4)

(A.5)

(A.6)

(A.7)

Considering the given constraints in the theorem 
the following inequality is achieved.

(A.8)

(A.9)

where ēn0‑l
 (l=1,2,...,n0‑1) as upper bounds of e[n0‑l] (t) 

are defined later. Now, we can rewrite V̇(t) as follows:

(A.10)

For ζ>β∆, V̇(t)<0 and then S(t)→0 or y(t)→yr(t); 
however, we should consider that the signal control 
is affected by ζ too. It means we must check that for 
the chosen ζ if |u(t)|≤ūj. For purpose, we compute the 
supremum values for the error signal, output signal 
and their derivatives.

Assume there is ζ that the resulting signal control 
guarantee V̇(t)<0 or |S(t)|→0. Considering |S(t)||t=t0 

=S0 
and V̇(t)<0 for t<t0 : |S(t) |<S0.
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(A.11)

We can rewrite the above linear time invariant 
differential equation as following ordinal differential 
equation (ODE) form:

(A.12)

Solving the above ODE, we have:

(A.13)

We can show easily that:

(A.14)

Since the matrix Ae is negative definite (ND), we 
have:

(A.15)

We know for the ND matrix Ae, max(eig(Ae))→0, 
hence we have:

(A.16)

(A.17)

On the other hand, we can compute a supremum 
for |e[n0‑1](t)|:

(A.18)

Since all roots of the characteristic function are in 
the left part of the complex plane, from Ruth-Horvitz 
principle we know di>0. Thus, we have:

(A.19)

Since the reference signal is defined by designer, 
we can compute supremum values for it and its 
derivatives as follows:

(A.20)

Then, we can compute supremum values for the 
output signal and its derivatives as follows:
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(A.21)

Now, we can compute the supremum values for 
the input signal and its derivatives by solving the 
following linear time-varying differential equation:

(A.22)

(A.23)

A time-varying linear ODE representation for the 
above equation is stated as follows:

(A.24)

(A.25)

By solving the above equation through state 
transient matrix φAu

(t)(t,t0), we have:

(A.26)

(A.27)

For the signal z(t) considering|âi(t)|≤ãi(t), 
|b̂j(t)|≤b̃j(t), c(t)≤c̃, yr

[nt](t)≤ȳr,n0
(t) and e[n0‑l](t)≤ēn0‑1 we 

have:

(A.28)

Also, the ELM is the minimum phase, the matrix 
Au(t) is ND for t>t0. Accordingly, we have:

(A.29)

For b̂m0
(τ), we assume that |b̂m0

(τ)|≥b̌m
0

. Considering 
for all time τmax(|eig(Au(τ)|)≤σ̄ and σ̄≤0.

(A.30)

(A.31)
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(A.32)

(A.33)

Since we assume ζ≥β∆, there is δ≥0 that ζ=β∆+δ.

(A.34)

Considering:

(A.35)

(A.36)

The condition for the upper bounds of signal 
control and its derivatives is achieved as follows:

(A.37)
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