[1]H. Hu, J.Q. Gan, Sensors and data fusion algorithms in mobile robotics University of Essex, Colchester CO4 3SQ, United Kingdom, 10 January 2005.
[2]P. Pong, S. Challa, Empirical analysis of generalized uncertainty measures with Dempster-Shafer fusion, in: 10th Int. Conf. on Information Fusion, Quebec, Que, 9-12 July, 2007.
[3]B. Barshan, B. Ayrulu, S.W. Utete, Neural network-based target differentiation using sonar for robotics applications, IEEE Transactions on Robotics and Automation, 16(4) (2000) 435-442.
[4]K.J. Kyriakopoulos, A. Curran, Ultrasonic navigation for a wheeled non-holonomic vehicle, Journal of Intelligent and Robotic Systems, 12(3) (1995) 239-258.
[5]G. Oriolo, G. Ulivi, M. Vendittelli, Real-time map building and navigation for autonomous robots in unknown environments, IEEE Transactions on Systems, Man and Cybernetics-Part B: (Cybernetics), 28(3) (1998) 316-333.
[6]S. Watanabe, M. Yoneyama, An ultrasonic visual sensor for three-dimensional object recognition using neural networks, IEEE Transactions on Robotics and Automation, 8(2) (1992) 240-249.
[7]M.H. Horng, Performance evaluation of multiple classifications of the ultrasonic supraspinatus images by using ML, RBFNN and SVM classifiers, Expert Systems with Applications, 37 (2010) 4146-4155.
[8]Y. Han, H. Hahn, Localization and classification of target surfaces using two pairs of ultrasonic sensors, Robotics and Autonomous Systems, 33 (2000) 31-41.
[9]X. Li, X. Huang, M. Wang, Robot map building from sonar sensors and DSmT, Information & Security (I&S), 20 (2006) 104-121.
[10]B. Ayrulu, B. Barshan, Reliability measure assignment to sonar for robust target differentiation, Pattern Recognition, 35 (2002) 1403-1419.
[11]Y. Han, M. Han, H. Cha, M. Hong, H. Hahn, Tracking of a moving object using ultrasonic sensors based on a virtual ultrasonic image, Robotics and Autonomous Systems, 36 (2009) 11-19.
[12]M. Khodabandeh, M. Analoui, A. Mohammad- Shahri, Target differentiation using sonar data for robot applications; neural network approach, in: International Conference on Control, Automation and Systems, COEX, Seoul, KOREA, October 17-20, 2007, pp. 1958-1961.
[13]G. Shafer, A mathematical theory of evidence, Princeton Univ. Press, Princeton, NJ, 1976.
[14]A.L. Jousselme, C. Liu, D. Grenier, E. Bosse, IEEE Transaction on Systems, Man and Cybernetics-Part A: Systems and Humans, 36(5) (2006) 890-903.
[15]J.P. Yang, H.Z. Huang, Y. Liu, Y.F. Li, Quantification classification algorithm of multiple sources of evidence, International Journal of Information Technology & Decision Making, 14(5) (2015) 1017-1034.
[16]J. Dezert, J.M. Tacnet, M. Batton-Hubert, F. Smarandache, Multi-criteria decision making based on DSmT-AHP, in: Advances and Applications of DSmT for Information Fusion (collected works), American Research Press (ARP), 2015.
[17]N. Abbas, Y. Chibani, A. Martin, F. Smarandache, The effective use of the DSmT for multi-class classification in: Advances and Applications of DSmT for Information Fusion (collected works), American Research Press (ARP), 2015, pp. 359.
[18]F. Smarandache, J. Dezert, Advances and applications of DSmT for information fusion, (collected works), vol. 4, American Research Press, 2015.
[19] J. Dezert, Foundation for a new theory of plausible and paradoxical reasoning, Information Security Journal, 9 (2002) 13-57.
[20] F. Smarandache, J. Dezert, Advances and applications of DSmT for information fusion, (collected works), vol. 1, American Research Press, 2004.
[21] F. Smarandache, J. Dezert, Advances and applications of DSmT for information fusion, (collected works), vol. 2, American Research Press, 2006.
[22] F. Smarandache, J. Dezert, Advances and applications of DSmT for information fusion, (collected works), vol. 3, American Research Press, 2009.
[23] J. Dezert, A. Tchamova, F. Smarandache, P. Konstantinova, Target type tracking with PCR5 and Dempster’s rules: a comparative analysis, in: 9th International Conference on Information Fusion, Florence, Italy, 10-13 July 2006.
[24] X. Huang, X. Li, M. Wang, J. Dezert, A fusion machine based on DSmT and PCR5 for robot’s map reconstruction, International Journal of Information Acquisition, 3(3) (2006) 201-211.
[25] R.V.L. Hartley, Transmission of information, Bell Systems & Technology Journal, 7(535-563) (1928).
[26] C.E. Shannon, A mathematical theory of communication, Bell Systems & Technology Journal, 27 (1948) 379-423 and 623-656.
[27] G.J. Klir, M.J. Wierman, Uncertainty-based information 2nd ed. series, Studies in Fuzziness and Soft Computing 15, Physica–Verlag, Heidelberg, Germany, 1999.
[28] G.J. Klir, B. Yuan, Fuzzy sets and fuzzy logic: theory and applications, Prentice–Hall, Upper Saddle River, NJ, 1995.
[29] R.R. Yager, Entropy and specificity in a mathematical theory of evidence, International Journal of General Systems, 9(4) (1983) 249-260.
[30] G.J. Klir, A. Ramer, Uncertainty in Dempster–Shafer theory: a critical re-examination, International Journal of General Systems, 18(2) (1990) 155-166.
[31] T. George, N.R. Pal, Quantification of conflict in Dempster–Shafer framework: a new approach, International Journal of General Systems, 24(4) (1996) 407-423.
[32] N.R. Pal, J.C. Bezdek, R. Hemasinha, Uncertainty measures for evidential reasoning I: a review, International Journal of Approximate Reasoning, 7(3/4) (1992) 165-183.
[33] N.R. Pal, J.C. Bezdek, R. Hemasinha, Uncertainty measures for evidential reasoning II: a new measure of total uncertainty, International Journal of Approximate Reasoning, 8(1) (1993) 1-16.
[34] J.A. Herencia, M.T. Lamata, A generalization of entropy using Dempster–Shafer theory, International Journal of General Systems, 29(5) (2000) 719-735.
[35] A. Ramer, J. Hiller, Total uncertainty revisited, International Journal of General Systems, 26(3) (1997) 223-237.
[36] Y. Maeda, H.T. Nguyen, H. Ichihashi, Maximum entropy algorithms for uncertainty measures, International Journal of Uncertainty, Fuzziness & Knowledge Based Systems, 1(1) (1993) 69-93.
[37] D. Harmanec, G.J. Klir, Measuring total uncertainty in Dempster–Shafer theory, International Journal of General Systems, 22(4) (1994) 405-419.
[38] D. Harmanec, Uncertainty in Dempster–Shafer theory, State University of New York, New York, NY, 1996.
[39] A. Bronevich, G.J. Klir, Measures of uncertainty for imprecise probabilities: an axiomatic approach, International Journal of Approximate Reasoning, 51 (2010) 365-390.
[40] G.J. Klir, H.W. Lewis, Remarks on measuring ambiguity in the evidence theory, IEEE Transaction on Systems, Man and Cybernetics-Part A: Systems and Humans, 38(4) (2008) 995-999.
[41] M. Vatsa, R. Singh, A. Noore, M.M. Houck, Quality-augmented fusion of level-2 and level-3 fingerprint information using DSm theory, International Journal of Approximate Reasoning, 50 (2008) 51-61.
[42] M. Vatsa, R. Singh, A. Noore, Unification of evidence-theoretic fusion algorithms; a case study in level-2 and level-3 fingerprint features, IEEE Transaction on Systems, Man and Cybernetics-Part A: Systems and Humans, 39(1) (2009) 47-56.
[43] M. Khodabandeh, A. Mohammad-Shahri, Two generalizations of aggregated uncertainty measure for evaluation of Dezert-Smarandache theory, International Journal Information Technology & Decision Making (IJITDM), 11(1) (2012) 119-142.
[44] M. Khodabandeh, A. Mohammad-Shahri, Uncertainty evaluation for an ultrasonic data fusion based target differentiation problem using Generalized Aggregated Uncertainty measure 2, Measurement, 59 (2015) 139-144.
[45] B. Ayrulu, B. Barshan, Identification of target primitives with multiple decision-making sonars using evidential reasoning, International Journal of Robotic Research, 17(6) (1998) 598-623.