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ABSTRACT: In this paper, target differentiation based on the pattern of data which are obtained by a 
set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these 
data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory 
(DST) and Dezert–Smarandache theory (DSmT) to make a final decision. The Generalized Aggregated 
Uncertainty measure named GAU1, as an extension to the Aggregated Uncertainty (AU), is used to 
evaluate DSmT. Then the GAU1 and AU as the uncertainty measures are applied to the obtained results 
of the decision makers to evaluate DSmT and DST accordingly. The introduced configuration for 
decision making has enough flexibility and robustness to use as a distributed sensor network.
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1- Introduction
Detection of standard landmarks or some objects that  are 
similar to pre-known targets helps  solve the problems of 
map building and localization by an autonomous mobile 
robot. Algorithms to be applied for localizing the pose of 
target surfaces are different depending on their types. That 
is, the type of target surface should be classified before the 
localization process. 
Different sensors provide different kinds of information 
which should be fused together in order to obtain a complete 
picture of the real world. More specifically, multi-sensor 
data fusion aims to overcome the limitations of individual 
sensors and produce an accurate, robust and reliable estimate 
of the world state based on multi-sensory information [1]. 
Information often contains uncertainties which are usually 
related to physical constraints, detection algorithms, and the 
transmitting channel of the sensors [2].
Sonar is a very useful and cost-effective mode of sensing for 
mobile robots [3]. The multi-ultrasonic sensor based mobile 
robot has been widely discussed by many researchers [3-11]. 
Two main issues, map building, and autonomous navigations 
are discussed in most of papers and theses. The feature based 
map building methods [4, 5] attempt to model the geometric 
features of the environment according to the sensor responses. 
In [8], measurement scheme is proposed which uses only 
two sets of ultrasonic sensors to determine the location and 
the type of target surface. This study concentrates on target 
differentiation based on the pattern of data which are obtained 
by a set of two ultrasonic sensors, including two transmitters 
and two corresponding receivers.
Neural networks have been employed efficiently as pattern 
classifiers in numerous applications [3, 6, 7]. Homg proposed 

an effort to apply the several multi-class classifiers that 
are the maximum likelihood classifier, the radial basis 
function neural network, the fuzzy support vector machine 
and the error correcting output codes method to classify the 
ultrasonic supraspinatus images [9]. Neural networks have 
been used to process amplitude and TOF information of a 
set of ultrasonic sensors in order to reliably handle the target 
classification problem [3]. Similarly, echo signal amplitude, 
TOF information and the differences of these data are used 
based on neural networks to do classification task [12]. A 
similar task is performed in using target classification by 
employing TOF information of the sensors. After acquiring 
the data of sensors, the classification of different targets by 
using neural networks would be done for outcomes of each 
sensor. Afterward, the results are fused together to make a 
final decision. This configuration for target classification 
with sensor fusion has sufficient flexibility and robustness to 
be used as distributed sensor networks.
The evidence theory, also known as Dempster–Shafer theory 
[13], is one of the most popular frameworks to deal with 
uncertain information. This theory is often presented as a 
generalization of probability theory, where the additivity 
axiom is excluded. The evidence theory allows each subset of 
the universe to have a non-null confidence and not only the 
singletons as in the probability theory [14]. In the evidence 
theory, the singletons as in the probability theory have non-
null confidence. The theory has some limitations in high 
conflict problems. In [15], alternative combination rules have 
been proposed to resolve the appeared conflicts of evidence.
The Dezert–Smarandache Theory (DSmT) is a theory of 
plausible and paradoxical reasoning proposed by Dezert and 
Smarandache in recent years [16-19]. It can be considered as 
an extension of the classical Dempster–Shafer theory (DST) 
[13] but with fundamental differences. DSmT allows formally 
combining any types of independent sources of information 
represented in terms of belief functions, while it is mainly 
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focused on the fusion of uncertain, highly conflicting and 
imprecise sources of evidence. There are some successful 
applications of DSmT in target type tracking [20] and robot 
map building [9,21]. Also, a DSmT–AHP based multi-criteria 
decision making is proposed in [22]. Some other applications 
of DSmT in classification problem are reported such as [23]. 
The new advances and applications of DSmT for information 
fusion are collected in [24]. 
As uncertain information often exists on all levels of fusion 
process [2], it is important to have an uncertainty evaluation 
after sensor fusion for a better decision making. Moreover, 
when sensor measurements are used in a sensor fusion 
framework to fuse the data, uncertainty analysis within this 
framework would be a useful tool to help final decision-
making if an appropriate way exists to measure all kinds of 
uncertainties. In 1928 and 1948, Hartley [25] and Shannon 
[26], respectively established the field of information 
theory and developed information entropy as a measure of 
redundancy. Hartley measure and Shannon entropy have 
been used in the possibilities and probabilities frameworks, 
respectively. Based on these approaches, information or 
preferably uncertainty-based information can be quantified 
by different general measures commonly called measures of 
uncertainty [27].
Several theories have been developed to deal with uncertainty 
such as probability theory, fuzzy sets theory, possibility theory, 
evidence theory, and rough sets theory. Instead of opponents, 
they should rather be seen as complementary, each of them 
being designed for dealing with different types of uncertainty. 
Three main types of uncertainty have been identified by Klir 
and Yuan [28]: fuzziness, conflict, and non-specificity, the 
latter two are unified under the term ambiguity. 
Different measures of ambiguity often called measures of 
total uncertainty have been proposed [29-35]. Among them, 
Maeda et al. [36] followed by Harmanec and Klir [37] 
proposed a measure of aggregated uncertainty named AU. 
This measure is defined in the framework of the evidential 
theory that aggregates the non-specificity and conflict. It has 
been proved that this measure satisfies the five requirements 
defined by Klir and Harmanec [37,38]. Bronevich and Klir , 
within a broad range of theories of imprecise probabilities, 
have formalized the notion of a total aggregated measure 
of uncertainty and various dis-aggregations into measures 
of non-specificity and conflict [39]. As another uncertainty 
measure, Jousselme et al. [14] introduced a new measure of 
aggregated uncertainty, named AM for Ambiguity Measure 
that aims at eliminating the shortcomings of AU such as 
computing complexity. By AM, an alternative for measuring 
ambiguity in Dempster–Shafer theory is offered. But actually, 
their proposed measure, AM, is not, in a general sense, sub-
additive. Klir and Lewis [40] showed this by a specific 
counterexample which clearly demonstrates that their 
assumption in the last step of the proof is incorrect and that 
AM indeed violates sub-additivity.
In spite of efficiency of AU measure, this uncertainty 
measure and its associated algorithm for computing,  
presented by Harmanec [38] are devoted for DST framework 
and cannot be applied to DSmT. Vatsa et al. used DSmT to 
fuse fingerprint information [41] and consequently, based 
on the pignistic probability (BetP) and likelihood ratio test, 
a decision is made to accept or reject [42]. They proposed a 
contextual unification framework to dynamically select the 

most appropriate evidence-theoretic fusion algorithm for a 
given scenario. 
Two generalized AU measures named GAU1 and GAU2 
have been introduced by the authors [43]. It is proved that the 
new measures have enough efficiency to evaluate the DSmT 
based results. 
In order to evaluate the new measure GAU1 in a target 
classification problem, an experimental setup based on 
ultrasonic sensors is configured. Neural networks are used 
as data level in the first level of fusion. Neural networks 
are trained by acquired data of the set of ultrasonic sensors 
and then outputs are used by the decision maker based on 
a thresholding and statistical algorithm to perform the 
differentiation task. Finally, the obtained results of the 
DSmT based decision maker are evaluated by the uncertainty 
measure GAU1. The other uncertainty measure, i.e. GAU2 
has been previously examined by the authors for the target 
differentiation problem in [44].
This paper is organized as in the following: the sensor fusion 
frameworks, DST and DSmT  considered in uncertainty 
analysis are reviewed in section 2. Section 3 is devoted to a 
discussion of the AU measure which is the most important 
uncertainty measure for DST framework presented till now. 
Moreover, the Generalized AU measure, GAU1, for DSmT is 
represented in this section. In section 4, experimental studies 
are carried out on uncertainty measurement for a target 
classification problem. Finally, some concluding remarks are 
presented in section 5.

2- Evidential Reasoning Frameworks

2- 1- Dempster–Shafer Theory
In this theory, Θ={θ1,θ2,…,θn}, assumed to be the frame of 
discernment of the fusion problem under consideration 
having n exhaustive and exclusive elementary hypotheses θi 
[13]. This corresponds to Shafer’s model of the problem.
The DST framework power set 2Θ is defined as the set of 
all composite propositions built from elements of Θ with ∪ 
operator such that: 

1- ∅,θ1,θ2,…,θn∈2Θ

2- if  A,B∈2Θ then  A∪B∈2Θ

3- No other elements belong to2Θ, except those obtained 
by using rules 1 or 2.

In Shafer’s model, a basic belief assignment (bba) 
m(.):2Θ−>[0,1] associated to a given body of evidence 
A is defined by:

Shafer defines the belief and plausibility functions of A⊆Θ as

where     denotes the complement of the proposition A in Θ. 
Dempster’s rule of combination is defined by:
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m(.) is a proper basic belief assignment if and only if the 
denominator in equation (4) is non-zero. The degree of 
conflict between two sources is defined by [13]:

2- 2- Dezert–Smarandache Theory
Dezert–Smarandache Theory is a theory of plausible and 
paradoxical reasoning [17-19,24]. The development of 
DSmT arises from the necessity to overcome the inherent 
limitations of Dempster–Shafer Theory (DST) [13] which 
are closely related to the acceptance of Shafer’s model for 
the fusion problem under consideration. The foundation of 
DSmT is based on the definition of the Dedekind’s lattice 
DΘ also called hyper-power set of the frame Θ in the sequel. 
In the DSmT framework, Θ is firstly considered as only a 
set {θ1,θ2,…,θn} of n exhaustive elements in closed world 
assumption without introducing other constraints, such as 
exclusivity or non-existential constraints. This corresponds 
to the free DSm model on which  the classic DSm rule of 
combination is based. DSmT starts with the notion of free 
DSm model, denoted M f(Θ). 
Depending on the intrinsic nature of the elements of the 
fusion problem under consideration, it can, however,, happen 
that the free model does not fit the reality. These integrity 
constraints are then explicitly and formally introduced into 
the free DSm model  M f(Θ) in order to adapt it properly to fit 
as close as possible with the reality and permit to construct a 
hybrid DSm model  M(Θ) on which the combination will be 
efficiently performed. DSmT has been presented to manage 
as efficiently and precisely as possible imprecise, uncertain 
and potentially high conflicting sources of evidence while 
keeping in mind the possible dynamicity of the information 
fusion problematic.
The Dedekind’s lattice also called in the DSmT framework hyper-
power set DΘ is defined as the set of all composite propositions 
built from elements of Θ with ∪ and ∩ operators such that:

1- ∅,θ1,θ2,…,θn∈DΘ

2- if  A,B∈DΘ then A∪B∈DΘ ,A∩B∈DΘ

3- No other elements belong to DΘ, except those obtained 
by using rules 1 or 2.

From a general frame Θ, a map m(.):DΘ−>[0,1] associated to 
a given body of evidence is defined as:

The quantity m(A) is called the generalized basic belief 
assignment/mass (gbba) of A. The generalized belief and 
plausibility functions are defined in almost the same manner as 
within the DST [13], i.e.

These definitions are compatible with the definitions of 
classical belief functions in the DST framework when DΘ 

reduces to 2Θ for fusion problems where Shafer’s model 
M0(Θ) holds.When the free DSm model M f(Θ) holds for the 
fusion problem under consideration, the classic DSm rule 
of combination mMf(Θ)=m(.)=[m1⊕m2](.) of two independent 
sources of evidences over the same frame with belief 
functions Bel1(.), Bel2(.) associated with gbba m1(.), m2(.)
corresponds to the conjunctive consensus of the sources. It is 
given by [17-19, 24]:

Since DΘ is closed under ∪ and ∩ set operators, this new rule 
of combination guarantees that m(.) is a proper generalized 
belief assignment, i.e. m(.):DΘ−>[0,1].

3- Uncertainty Measurement
Measuring uncertainty or information means assigning a 
number or a value from some ordinal scale to a given model 
of an epistemic state. Two types of classical evidential based 
uncertainties, non-specificity and conflict are often measured 
as part of the fusion techniques such as DST fusion [38]. 
One of the most appropriate uncertainty measures which are 
developed in DST frameworks is the Aggregate Uncertainty 
(AU) measure. Algorithm for computing AU was originated 
by Harmanec [38]. The algorithm is applied to DST 
framework while it cannot be used for DSmT directly. To 
cover the problem, two Generalized Aggregate Uncertainty 
measures  named GAU1 and GAU2 have been developed to 
measure uncertainty in DSmT framework [43]. In the next 
section, the GAU1 measure is reviewed in brief.
As already mentioned, DSmT overcomes the limitation of DST 
in the Shafer’s model. In the DST, the frame of discernment 
of the fusion problem under consideration assumed to have 
exhaustive and exclusive elementary hypotheses but in 
DSmT these conditions are violated. For example, in a three-
dimensional frame of discernment i.e. Θ={θ1,θ2,θ3}, similar 
to the classification problem  mentioned in section 4, power 
set of DST will be:
2Θ={∅,θ1,θ2,θ3,θ1∪θ2,θ1∪θ3,θ2∪θ3,θ1∪θ2,θ3}
and in DSmT the associated set which is called hyper power 
set will be:
DΘ={∅,θ1,θ2,θ3,θ1∪θ2,θ1∪θ3,θ2∪θ3,θ1∪θ2∪θ3,θ1∩θ2,θ1∩θ3,θ2

∩θ3,θ1∩θ2∩θ3,θ1∩(θ2∪θ3),θ2∩(θ1∪θ3),θ3∩(θ1∪θ2),θ1∪(θ2∩θ3

),θ2∪(θ1∩θ3),θ3∪(θ1∩θ2),(θ1∩θ2)∪(θ1∩θ3)∪(θ2∩θ3)}.
Figure 1 shows Shafer’s model and free DSmT model for the 
three-dimensional framework.
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Fig. 1. Three-dimensional framework;
(a) Shafer’s model, (b) Free DSm model
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3- 1- Generalized Aggregated Uncertainty Measure 1
Here, the idea of generalizing Aggregated Uncertainty 
measure in GAU1 to evaluate DSmT is explained for a 
2-D problem for simplicity. In the DST framework and the 
algorithm of computing AU measure for a 2-D problem, 
such as frame of discernment Θ={A,B}, there are two 
distinct sets. The power used in DST is {∅,A,B,A∪B} 
and hyper-power set in DSmT is {∅,A,B,A∪B,A∩B}. In 
order to have generalized AU measure, one can apply the 
AU computing algorithm to DSmT by disjointing free DSm 
model to separated sets as shown in Figure 2. Extending the 
frame of discernment Θ={A,B} in the computing algorithm 
to an extended frame ΘE={AE=A−B,BE=B−A,A∩B} is the 
idea of the generalization. Index E is used as abbreviation 
of “Exclusive” and A_E,B_E are exclusive event A and 
exclusive event B without any community. Also one may 
define: 

and therefore:

The set 2ΘE is used for the new power set which is obtained by 
extension of the frame of discernment Θ to ΘE  considering 
events without any community. 
Definition 3.1. The measure of the Generalized Aggregated 
Uncertainty contained in Bel, denoted as GAU1(Bel), is 
defined by

where the max{.} is taken over all {pθE}θE∈ΘE such that 
pθE∈[0,1] for all θE∈ΘE, ∑θE∈ΘE 

pθE=1 and for all A⊆ΘE, 
Bel(A)≤∑x∈A px [43].
In this manner, the main problem of fusion still stays 2-D 
whereas three separated events are created such as a Shafer’s 
model with 3 events.

It must be mentioned that the refinement which is used in the 
presented GAU1 does not  work for any frame of discernment. 
Clear frontiers in frames are necessary to use GAU1 as an 
uncertainty measure.

4- Experimental Study: Ultrasonic Sensor For Target 
Classification

4- 1- Experiment Setup
Ultrasonic sensors have been widely used to recognize the 
working environment for a mobile robot. However, because 
of their intrinsic problems, such as the specular reflection, 
the wide beam angle, and the slow propagation velocity, an 
excessive number of sensors are required to be integrated to 
achieve the various sensing goals.
In the commonly used TOF systems, an echo is produced 
when the transmitted pulse encounters an object. A range 
valuer= ct0 ⁄ 2 is measured when the echo amplitude first 
exceeds a preset threshold level τ back at the receiver at time 
t0. Here, t0 is the TOF and c is the speed of sound in air. Speed 
of sound in the air at room temperature is c=343 m/s.
In the experimental setup, as shown in Figure 3, two identical 
acoustic transmitter/receiver pairs A and B with center-to-
center separation d are employed to improve the angular 
resolution. Each pair detects echo signals reflected from 
targets within its own sensitivity region. Both of the sensors 
can detect targets located within the joint sensitivity region 
which are shown in Figure 4. 

The common targets are considered  to exist in a real 
environment of mobile robot applications such as Plane, 
Cylinder, and Corner with 90° angle. The targets are shown 
in Figure 5. These artificial targets are similar to walls 
and corners at home as an indoor environment or natural 
targets, such as trees in an outdoor environment. The 
experiment is performed in an indoor environment. Detailed 
physical reflection models of these targets primitives with 
corresponding echo signal models are provided [45].
Two pairs of the SRF04 ultrasonic ranger  are used. The SRF04 
provides an echo pulse proportional to distance. Considering 
the measured pulse width in µSec and the relation of sound 
speed with the range, it is clear that; 1µSec/58=1cm. The 
center-to-center separation of the transducers used in the 
experiments is d=35cm. The entire sensing unit is mounted on 
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Fig. 2. Disjointing of two-dimensional framework of 
free DSm model to excluded sets

Fig. 3. Ultrasonic sensor setup

Fig. 4. Experiment setup and 20 different positions of targets
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a small stepper motor with the 1.8° step size which its motion 
is controlled by a microcontroller system. Echo signals of 
acquired data from the sensors are processed to calculate the 
distance of targets.

The targets employed in this study are cylinders with diameter 
20 cm, a planar target, and a 90° corner. As shown in Figure 4, 
TOF data are collected at 20 sensor locations which are located 
at 5 different angles from φ=−30° to φ=+30° in 15° increments, 
and from r=0.5m to r=2m in 0.5m increments separately. To 
disaffect the distances of targets in target classification, the 
data are normalized regarding distance. Figure 6 indicates the 
normalized data of ultrasonic sensors for these 20 positions. 
In this manner, one may classify the targets regardless of the 
mentioned positions. Consequently, the dependency to the 
distance in target classification will be ignored.

4- 2- Neural Network based Target Classifier
The normalized distances of targets in the 20 positions are 
used to train neural networks. The network employed has one 
hidden, one input, and one output layer. Although there are 
many ways of choosing input signals to train the network, this 
study uses TOF signals of each sensor pair as input signals. 
The hidden layer comprises 50 neurons and hyperbolic tangent 
as nonlinear functions and linear functions at the output layer 
with 1 neuron. The output neuron provides a value which 
after applying a thresholding and statistical algorithm can be 
interpreted as the target type. The number of hidden layers 
was determined by a process known as enlarging, which 
starts with a relatively small number of neurons and increases 
the size of the hidden layer until learning occurs. 
For each sensor, one set of data is collected for each target 
location for each target primitive, resulting in 60 (=4 
ranges×5 angles×3 target types) sets of data. Data of all 
targets in 2 ranges (1m, 2m) and all 5 angles are used to train. 
The network is trained with these 30 sets of data using the 
back-propagation algorithm in multi-layer perceptron (MLP) 
network with a learning constant equal to 0.9, momentum 
constant equal to 0.5, and a sigmoid-type nonlinearity. In 
order to test the networks, each target primitive is placed in 
turn in each of the 20 locations shown in Figure 4. One set 
of measurements is  collected for each combination of target 
type and angle and ranges 0.5m, 1.5m for each sensor again 
resulting in 30 sets of experimentally obtained data. The 
neural network estimates the target type from this data by 
considering a simple algorithm with appropriate thresholds 
and a frequency based statistical algorithm to distinguish the 
targets from probability values. 
Table 1 gives the percentages of correct target type classification 
that are considered as the basic belief assignment of each sensor 
of the three targets for the case that the target object is “Plane”. 
Accordingly, each sensor by using the trained neural network 
and the thresholding and statistical algorithm represents a 
quantity to differentiate the targets.

Fig. 5. Three target types; Plane, Cylinder, Corner

Fig. 6. Normalized data of ultrasonic sensors in 20 positions 
(4 ranges and 5 angles)

Table 1. Outputs of neural network based classifier as basic 
belief assignment; Target type: “Plane”

2Θ Sensor1 Sensor2
P 0.7333 0.5333
Cy 0 0.1333
Co 0 0.0667

P∪Cy 0.1333 0.1333
P∪Co 0.0667 0
Cy∪Co 0.0667 0.0667

Θ 0 0.0667
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Table 2 represents results of a case that the target object is 
“Corner”. In these tables, “P” is used to represent “Plane”, 
“Cy” is for “Cylinder” and “Co” is for “Corner” and “Θ” 
is devoted to representing total ignorance i.e.Θ=P∪Cy∪Co.

4- 3- Sensor Fusion with Uncertainty Measurement
In this section, the mentioned sensor fusion algorithms, DST 
and DSmT, are applied to the results that are obtained by 
the neural network based classifier in order to differentiate 
the target types. After fusing the results of two sensors, an 
uncertainty measurement has been carried out according to 
AU measure for DST and GAU1 for DSmT.

4- 3- 1- Decision-Making System
Figure 7 shows a block diagram of the decision-making system. 
After gathering the TOF data of a target by ultrasonic sensors, 
some computations are performed by an arithmetic unit to 
present normalized distances for classifier unit. In this study, 
a neural network based classifier is used and the target type is 
the output of each classifier unit. The results of the classifiers 
are fused together in a sensor fusion unit and its final results are 
evaluated by an uncertainty measurement unit.
By this configuration, it is possible to extend the sensory 
system while there is no need to modify or train the neural 
networks again. In other words, if a neural network is trained 
by sufficiently rich data, it also can be used for classification 
of additional sensory systems. Rich data can be collected when 
the target objects are placed in several different angles and 
distances from the sensors setup. As shown in Figure 7, there 
could be several paths, including sensors, arithmetic units, 
and neural network based classifiers blocks before the fusion 
process. Because of this configuration, in the case of any failure 
in a path, there would be no problem in total decision making. 
It means that this configuration for target classification with 
sensor fusion has flexibility and robustness to some extent.

4- 3- 2- DST as Decision Maker and AU Measure
Table 1 shows the results of neural network based classifier 
for the “Plane” target. By applying DST according to equation 
(4), the following results are represented as final decision:

As it is clear, in a supposed Shafer’s model, by applying DST 
more certain decisions have been obtained in comparison to 
the results of individual sensors. According to  Table 2, when 
the target is “Corner” and DST is applied, final decision is: 
mDST(Co)=1.
Now, for uncertainty measurement in DST fusion, the AU 
measure, and its computing algorithm is applied. Firstly, the 
uncertainty involved in the decision results of Sensors1&2 
are computed by AU measure.

4- 3- 3- DSmT as decision maker and GAU1 measure
In this section, DSm model is supposed for the previously 
mentioned study and DSmT fusion rule is applied to the results 
of sensors. For uncertainty measurement, the GAU1 is used for 
DSmT results. There are clear frontiers in the experiment used 
to target differentiation by ultrasonic sensors. Thus, GAU1 is 
applicable to evaluate uncertainty involved in DSmT results.
As already stated, when DSmT is used rather than DST, hyper-
power set and free DSm model should be considered instead 
of power set and Shafer’s model respectively. As a result, the 
number of events to be decided is more than a number of 
events in DST. These results show the capability of DSmT to 
overcome continuous problems. Also, more exactly decisions 
can be made by DSmT, particularly in conflict problems. 
Table 4 illustrates the results of ultrasonic sensor fusion by 
DSmT according to equation (9) when the target is “Plane”. 

Fig. 7. Block diagram of the decision-making system
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Θ =

DST DST

DST DST

DST DST

DST

m P m P Cy
m Cy m P Co
m Co m Cy Co

m

2Θ Sensor1 Sensor2
P 0 0
Cy 0.1333 0
Co 0.8 1

P∪Cy 0.0667 0

Table 2. Outputs of neural network based classifier as basic 
belief assignment; Target type: “Corner”

Results Sensor1 Sensor2 Sensor1+Sensor2 DST

Target: 
Plane 1.1035 1.2730 2.3765 0.6680

Target: 
Corner 0.7210 0 0.7210 0

Table 3. Uncertainty measurement for sensor 1&2 and DST 
results using AU measure
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These results show that the decisions are distributed to a 
larger set of sub-events. To measure uncertainty in DSmT 
results, the GAU1 measure is utilized. In a three-dimensional 
problem in GAU1, there are seven distinct sub-events as:
θ 1=P E,θ 2=Cy E,θ 3=Co E,θ 4=(P∩Cy) E,θ 5=(P∩Co) E, 
θ6=(Cy∩Co)E, θ7=P∩Cy∩Co where “E” is used to show 
exclusivity. For example PE means exclusive P.
DSmT fusion showed its capabilities in continuous problems 
as well as problems with non-exclusive events rather than 
DST. Basically, DST has not enough efficiency to deal with 
problems with such models. On the other hand, advantages 
of using DSmT fusion should be studied in uncertainty point 
of view as well. To investigate the uncertainty improvement 
in the results of DSmT fusion, uncertainties in the results 
of each sensor have to be considered. The uncertainties 
in sensors1&2 are computed in section 4.3.2 by using AU 
measure. However, to have a meaningful comparison, these 
computations should be repeated by considering the DSm 
model and GAU1 measure.
As it is clear, DSmT fusion reduces the amount of uncertainty 
in final decisions. Uncertainty in DSmT fusion results is less 
than the sum of uncertainties in Sensors1&2 and even less 
than the uncertainty of each sensor.
For the further study, it is supposed in the second experiment 
that the target is “Corner”. Table 5 demonstrates the DSmT 
fusion results for “Corner” target. These results are more 
cautious results in comparison to the DST results that are 
presented in Table 2. Therefore, the final decisions are 
suitable in continuous problems and problems with non-
exclusive propositions.

For “Corner” target such as “Plane” target, uncertainty in 
DSmT fusion results are less than the sum of uncertainties in 
Sensors1&2 and even less than the uncertainty of each sensor. 

Therefore,  it can be concluded that DSmT has improved the 
results in uncertainty point of view.
It should be noted that the comparison in the uncertainty 
value between AU and GAU1 measures is not correct, 
because of the different models and frameworks which are 
used in their fusion theorems. As the hyper-power set has 
higher dimension than power set, measured uncertainty in 
GAU1 is more than AU when the final decision of different 
sensors are similar for an unknown target. However, in the 
case of conflict measurements, DSmT must be used instead 
of DST. Also, these experiments demonstrate that DSmT 
presents a smooth decision, especially in continuous models. 
Since AU is presented for DST and cannot be applied to the 
DSmT results, GAU1 is applicable as uncertainty measure 
for DSmT fusion results. Moreover, this study shows the 
efficiency of DSmT to improve the final results in uncertainty 
point of view.

5- Conclusions
This study  focused on the uncertainty evaluation problem in 
decision-making systems. An experimental setup of ultrasonic 
sensors is established in this research to evaluate sensor 
fusion theories and their associated uncertainty measures. 
Total decision maker system is composed of parallel paths 
with some blocks such as sensors, arithmetic units, classifiers, 

DΘ mDSmT

P 0.6444
Cy 0.0267
Co 0.0089

P∪Cy 0.0267
P∪Co 0.0044

Cy∪Co 0.0089
P∩Cy 0.0978
P∩Co 0.0489

Cy∩Co 0
P∩(Cy∪Co) 0.0844
Cy∩(P∪Co) 0.0089
Co∩(P∪Cy) 0.0089
P∪(Cy∩Co) 0.0089
Cy∪(P∩Co) 0.0178
Co∪(P∩Cy) 0.0044
P∩Cy∩Co 0

(P∩Cy)∪(P∩Co)∪(Cy∩Co) 0
Θ 0

Table 4. Decisions made by DSmT-based fusion;
 Target type: “Plane”

DΘ mDSmT

P 0
Cy 0
Co 0.8

P∪Cy 0
P∪Co 0

Cy∪Co 0
P∩Cy 0
P∩Co 0

Cy∩Co 0.1333
P∩(Cy∪Co) 0
Cy∩(P∪Co) 0
Co∩(P∪Cy) 0.0667
P∪(Cy∩Co) 0
Cy∪(P∩Co) 0
Co∪(P∩Cy) 0
P∩Cy∩Co 0

(P∩Cy)∪(P∩Co)∪(Cy∩Co) 0
Θ 0

Table 5. Decisions made by DSmT-based fusion; Target 
type: “Corner”

Results Sensor1 Sensor2 Sensor1+Sensor2 DSmT
Target: 
Plane 2.64 2.7335 5.3735 2.3933

Target: 
Corner 2.7028 1.9056 4.6084 1.9056

Table 6. Uncertainty measurement for sensor 1&2 and DSmT 
results using GAU1 measure
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sensor fusion and uncertainty measurement blocks. This 
configuration for target classification with sensor fusion 
has sufficient flexibility and robustness to use as distributed 
sensor network. A common neural network based classifier is 
used for each sensor path to get the classification results of 
the sensors.
DST and DSmT as efficient evidential reasoning theorems 
have been used in sensor fusion block. To evaluate the 
performance of DST in uncertainty point of view, the AU 
measure has been employed. Uncertainty evaluation of the 
fusion results  obtained by DST illustrates that uncertainty 
involved in the final results are less than or equal to the sum 
of uncertainties in the sensors. However, DST has inherent 
limitations which are closely related to the acceptance of 
Shafer’s model for the fusion problem under consideration. 
DSmT and its associated uncertainty measure, GAU1, 
are applied to the results of sensors. The final decision in 
the presented configuration has uncertainty less than each 
sensor’s measurement. In the fusion processes, based on 
the frameworks of discernment more accurate results are 
made in final decisions by DSmT rather than DST. DSmT 
produces more precise and smoother decisions because of 
the free model which is applied. This makes the DSmT more 
applicable for continuous problems. 
According to the presented results, the following conclusions 
may be drawn; DST and DSmT as decision makers are applied 
for target classification and they have presented appropriate 
results, especially the experiment shows the capability of 
DSmT for continuous models. GAU1 as an uncertainty 
measure for DSmT particularly in conflict problems is 
applied to evaluate DSmT results. A parallel configuration to 
have a practical sensor network is employed.
GAU1 is a suitable uncertainty measure for DSmT but its 
application is limited to the problems with the frame of 
discernment with the clear frontier. This deficiency could 
be considered as a future work. As a suggestion, GAU1 can 
be approximately applied to the problems with continuous 
borders. 
The following suggestions might be considered as further 
studies;

• Employing other classification methods instead of using 
the neural networks, thresholding, and statistical algorithm 
to make decisions about sensory data 
• Utilizing ultrasonic echo signal amplitudes as acquired 
data in addition to TOF data
• Looking for an uncertainty measure with less complexity 
than AU and GAU1 in computation, which satisfies the 
requirements of uncertainty measures
• Developing an uncertainty interval using the lower 
limit (i.e. GAU1(Bel)) and the upper limit by defining a 
plausibility function based uncertainty measure to help 
the final decision making according to the size of the 
uncertainty interval.
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