[1] Laroui M, Nour B, Moungla H, Cherif MA, Afifi H, Guizani M. Edge and fog computing for IoT: A survey on current research activities & future directions. Computer Communications. 2021; 180:210-231.
[2] ITU Telecommunication Development Bureau, ICT facts and figures, 2017.
[3] Bellavista P, Berrocal J, Corradi A, Das SK, Foschini L, Zanni A. A survey on fog computing for the Internet of Things. Pervasive and Mobile Computing. 2019; 52:71-99.
[4] Mansouri N, Mohammad Hasani Zade B, Javidi MM. Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory. Computers & Industrial Engineering. 2019; 130:597-633.
[5] Pradhan A, Bisoy SK, Das A. A survey on PSO-based meta-heuristic scheduling mechanism in cloud computing environment. Journal of King Saud University – Computer and Information Sciences. 2022; 34:4888-4901.
[6] Alworafi, MA, Mallappa, S. A collaboration of deadline and budget constraints for task scheduling in cloud computing. Cluster Computing. 2019;1-11.
[7] Sangaiah AK, Hosseinabadi AR, Shareh MB, Bozorgi Rad SY, Zolfagharian A, Chilamkurti N. IoT resource allocation and optimization based on heuristic algorithm. Sensors. 2020; 20(2):1-26.
[8] Topcuoglu H, Hariri S, Wu M-Y. Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans Parallel Distributed Systems. 2002; 13(3):260-274.
[9] Pirozmand P, Rahmani Hosseinabadi AA, Farrokhzad M, Sadeghilalimi M, Mirkamali S, Slowik A. Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing. Neural Computing and Applications. 2021; .
[10] Madni SHH, Abd Latiff MS, Ali J. Hybrid gradient descent cuckoo search (HGDCS) algorithm for resource scheduling in IaaS cloud computing environment. Cluster Computing. 2019; 22:301-334.
[11] Dehghani M, Montazeri Z, Dehghani A, Malik OP, Morales-Menendez R, Dhiman G, Nouri N, Ehsanifar A, Guerrero JM, Ramirez-Mendoza RA. Binary spring search algorithm for solving various optimization problems. Applied Sciences. 2021; 11(3):1286.
[12] Dehghani M, Montazeri Z, Trojovská E, Trojovský P. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowledge-Based Systems. 2023; 259:110011.
[13] Cuarón A, Helgen K, Reid F, Pino J, González-Maya J, narica N. The IUCN red list of threatened species 2016: e. T41683A45216060.
[14] Manikandan N, Divya P, Janani S. BWFSO: Hybrid Black-widow and Fish swarm optimization Algorithm for resource allocation and task scheduling in cloud computing. Materials Today: Proceedings. 2022; 62:4903-4908.
[15] Hassan M, Al-Awady AA, Ali A, Munawar Iqbal M, Akram M, Khan J, Abu-Odeh AA. An efficient dynamic decision-based task optimization and scheduling approach for microservice-based cost management in mobile cloud computing applications. Pervasive and Mobile Computing 2023; 92:101785.
[16] Sanaj MS, Prathap PMJ. Nature-inspired chaotic squirrel search algorithm (CSSA) for multi-objective task scheduling in an IAAS cloud computing atmosphere. Engineering Science and Technology, an International Journal. 2020; 23:891-902.
[17] Velliangiri S, Karthikeyan P, Xavier VMA, Baswaraj D. Hybrid electro search with genetic algorithm for task scheduling in cloud computing. Ain Shams Engineering Journal. 2021; 12:631-639.
[18] Mangalampalli S, Karri GR, Kose U. Multi-objective trust-aware task scheduling algorithm in cloud computing using whale optimization. Journal of King Saud University – Computer and Information Sciences. 2023; 35:791-809.
[19] Han M, Du Z, Yuen KF, Zhu H, Li Y, Yuan Q. Walrus optimizer: A novel nature-inspired metaheuristic algorithm. Expert Systems with Applications. 2024; 239:122413.
[20] Mirjalili SA, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software. 2017; 114:163-191.
[21] Mirjalili SA, Lewis A. The whale optimization algorithm. Advances in Engineering Software. 2016; 95:51-67.
[22] Trojovska E, Dehghani M, Trojovsky P. Zebra optimization algorithm: A new bio-inspired optimization algorithm for Solving Optimization Algorithm. IEEE Access. 2022; 10:49445-49473.
[23] Saremi S, Mirjalili S, Lewis A. Grasshopper optimization algorithm: Theory and application. Advances in engineering software, 2017; 105:30-47.
[24] Dhiman G, Kaur A, STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Engineering Applications of Artificial Intelligence, 2019; 82:148-174.
[25] Mohammadi-Balani A, Nayeri MD, Azar A, Taghizadeh-Yazdi M. Golden eagle optimizer: A nature-inspired metaheuristic algorithm. Computers & Industrial Engineering, 2021; 152:107050.
[26] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer.Advances in Engineering Software, 2014; 69:46-61.
[27] Trojovskỳ P, Dehghani M. Subtraction-average-based optimizer: A new swarm-inspired metaheuristic algorithm for solving optimization problems. Biomimetics, 2023; 8(2):149.
[28] Seyyedabbasi A, Kiani F. Sand cat swarm optimization: A nature-inspired algorithm to solve global optimization problems. Engineering with Computers, 2023; 39(4):2627- 2651.