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ABSTRACT: During the scheduling process, it is important to respect the constraints given by the jobs 
and the cloud providers. In addition to maintaining a balance between Quality of Service (QoS), fairness, 
and efficiency of jobs, scheduling is challenging. This paper aims to propose an efficient algorithm 
for load-balanced task scheduling in the cloud. Our algorithm uses a new meta-heuristic algorithm 
called COA (Coati Optimization Algorithm) to solve the task scheduling problem. This method is called 
COTSA (Coati Optimization-based Task Scheduling Algorithm). Its main goal is to reduce execution 
costs, load balancing, resource consumption, and makepan. Additionally, experimental results indicate 
that COTSA contributes to reduced energy consumption and enhanced system scalability and fault 
tolerance under simulated conditions. These improvements suggest potential suitability for dynamic and 
large-scale cloud infrastructures, though performance may vary depending on workload characteristics 
and system configurations. It is compared with Walrus Optimizer (WO), Slap Swarm Algorithm 
(SSA), Whale Optimization Algorithm (WOA), Zebra Optimization Algorithms (ZOA), Grasshopper 
Optimization Algorithm (GOA), Sooty Tern Optimization Algorithm (STOA), Golden Eagle Optimizer 
(GEO), Grey Wolf Optimizer (GWO), Subtraction-Average-Based Optimizer (SABO), and Sand Cat 
Swarm Optimization (SCSO), which are popular meta-heuristics. Experimental results demonstrate 
that COTSA reduces makespan by approximately 9%, lowers execution cost by up to 40%, improves 
resource utilization by around 3%, and enhances load balance by up to 30%, energy consumption about 
36%, scalability near 17%, and fault tolerance about 16%, making it a robust and scalable solution for 
efficient cloud task scheduling.
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1- Introduction
IoT allows the exchange of data over a network between 

devices, things, and any digital assets without human 
interaction [1]. Cloud processing of data generated by end-
user devices in a short period of time is the main characteristic 
of IoT. In recent years, communication, interaction, and work 
have all undergone a revolution. Smartphones and cloud 
computing have led to this revolution. The smartphone has 
established itself as the preferred device for interacting with 
the Internet, with a 97% penetration rate [2]. The success of 
these devices has been largely attributed to the use of cloud 
environments [3].

Task scheduling in cloud computing is a critical yet 
complex problem due to its NP-hard nature and the diverse 
constraints imposed by both users and cloud service providers 
[4]. The dynamic and distributed nature of cloud environments 
makes it challenging to efficiently allocate resources while 
maintaining high performance. Among the most pressing 
challenges are minimizing makespan, reducing execution 

costs, optimizing resource utilization, and achieving balanced 
task distribution across virtual machines. These objectives 
often conflict with one another, and designing an algorithm 
that can simultaneously optimize them remains a significant 
difficulty. Moreover, scalability and fault tolerance have 
become essential due to the growing complexity and 
heterogeneity of modern cloud systems. Energy consumption 
is another concern, particularly in large-scale and resource-
constrained environments, where inefficiencies can lead to 
high operational costs and environmental impact. This paper 
aims to address the limitations of existing task scheduling 
algorithms by proposing a novel solution called COTSA 
(Coati Optimization-based Task Scheduling Algorithm). 
The goal is to develop a meta-heuristic algorithm that 
effectively allocates tasks to virtual machines in a way that 
minimizes execution cost and makespan, maximizes resource 
utilization, and ensures a high level of load balancing. 
Beyond these core objectives, COTSA is also designed to 
enhance energy efficiency, scalability, and fault tolerance—
qualities increasingly vital for real-time and large-scale 
cloud applications. The algorithm is inspired by the natural *Corresponding author’s email: najme.mansouri@gmail.com
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behavior of coatis, whose group hunting and predator-
avoidance strategies are modeled to strike a balance between 
exploration and exploitation in the search space.

The primary contribution of this paper is the development 
of a novel meta-heuristic algorithm named COTSA for 
effective task scheduling in cloud computing environments. 
COTSA is inspired by the natural foraging and survival 
behaviors of coatis, which are modeled to perform a balanced 
exploration and exploitation of the solution space. By 
adapting the Coati Optimization Algorithm (COA) to the 
cloud context, the proposed method provides an innovative 
mechanism to address the multi-objective nature of task 
scheduling problems. Another significant contribution lies 
in the design of a comprehensive objective function that 
considers not only traditional performance metrics such as 
makespan, execution cost, and resource utilization, but also 
incorporates energy consumption, load balancing, scalability, 
and fault tolerance. This multi-dimensional optimization 
approach ensures that the algorithm is aligned with both 
performance and sustainability goals, making it suitable for 
real-time and large-scale cloud applications. The paper also 
contributes by demonstrating the scalability and adaptability 
of COTSA under varying workload and infrastructure 
configurations. Two experimental scenarios are designed: one 
with a fixed number of tasks and varying virtual machines, 
and another with a fixed number of VMs and varying tasks. 
Across both scenarios, COTSA consistently outperforms 
existing algorithms in key metrics, indicating its robustness 
and generalizability in dynamic environments. The empirical 
findings are statistically validated using ANOVA and 
confidence interval analysis, underscoring the significance 
and reliability of the improvements. Finally, the paper offers 
insight into the computational complexity and runtime 
efficiency of the proposed method.

Figure 1 shows the organization of this study. In section 
2, we discuss cloud computing, task scheduling, and COA. 
Section 3 discusses existing papers on task scheduling in 
cloud environments. Section 4 describes COTSA. Section 5 
evaluates COTSA’s performance. In section 6, the conclusion 
is discussed. 

2- Background
2- 1- Cloud computing

In cloud computing, several types of requests are handled 
from the cloud, and clients are provided with a quick service. 
Globally, it is a model for computing and processing. High-
speed computations in the cloud can enhance the prediction 
process rapidly. Several concepts combined with cloud 
computing make it the most powerful technology and are 
used in several different business sectors and IT industries. 
Users get on-demand access to a wide range of computing 
resources, including CPUs, memory, servers, storage, and 
applications. Furthermore, these resources are usually 
assigned to clients at minimal cost. Whenever the number 
of requests increases at a particular time, then it becomes 
difficult to manage each request within the shortest possible 
reaction time. Cloud Service Providers (CSP) are responsible 
for allocating incoming tasks to appropriate Virtual Machines 
(VMs) so as not to overload them and keep the load balanced 
among them [5].

In Fig. 2, four main layers represent the architecture of 
cloud computing:
•	 Hardware Layer: Data centers, storage, and CPUs are all 

part of this foundation.
•	 Infrastructure Layer: In this layer, virtualized resources 

are provided, such as virtual machines from Amazon Web 
Services (AWS).

•	 Platform Layer: Google App Engine is a platform for 
developing and deploying applications.

•	 Application Layer: In this layer, Software as a Service 
(SaaS) applications like Gmail are included.

2- 2- Task scheduling
Scheduling tasks is one of the most prominent problems in 

many research studies, and its purpose is to map several tasks 
to the correct processor to optimize one or more objectives at 
an acceptable time [6]. Since scheduling has a large solution 
space, it is classified as an NP-hard problem, and finding the 
optimal solution takes time. It improves the quality of service 
by prioritizing given tasks during a specific period of time 
[7]. It also tends to satisfy some constraint conditions in 
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the problem and optimizes one or more objective functions. 
Creating schedules will allow tasks to be processed and 
allocated to processors. To meet all requirements of the 
system, we must schedule tasks so that we can maximize our 
limited resources. Cloud Computing Systems have recently 
been researched in detail [9]. They are widely used to process 
tasks very quickly and to meet the varied computing needs 
of a wide range of users. Task scheduling systems can divide 
tasks into smaller subtasks so they will run in parallel. There 
are almost always constraints and dependencies within these 
smaller subtasks, such that some subtasks must be run in 
order before others [10]. 

Figure 3 illustrates a task scheduling model. Tasks (often 
called cloudlets) are submitted to the cloud system by users. 
Workflows can be as simple as computations or as complex 
as workflows. Virtual machines, storage, and network 
bandwidth are identified by the cloud system. To determine 
the best allocation of tasks to resources, various algorithms 
are used. Task schedulers monitor the system for the specified 
triggers and execute actions when the conditions are met. With 
automation, repetitive tasks can be streamlined and performed 
consistently and efficiently. As soon as tasks are completed, 
users are notified of the results. In order to improve future 
scheduling decisions, feedback from the execution process is 
used. Cloud computing uses resources efficiently, minimizes 
costs, and provides users with the performance they expect.

2- 3- Coati Optimization Algorithm (COA)
The metaheuristic algorithm begins with a set of randomly 

feasible solutions. In a repetition-based process, candidate 
solutions are then updated and improved. The algorithm steps 

are completed before choosing a suitable candidate solution. 
The results of metaheuristic algorithms are not guaranteed to 
be the best global solutions. This optimization approach uses 
random search. Since these solutions are close to the original 
solutions, they can be accepted as quasi-optimal solutions 
[11]. Different metaheuristic algorithms produce different 
results when solving the same problem. For optimization 
problems, several algorithms have been developed.

In nature, coati behavior is mimicked by the Coati 
Optimization Algorithm (COA) [12]. The COA simulates two 
of the most important natural behaviors of coatis: attacking and 
hunting iguanas and escaping from predators. Exploration and 
exploitation are two phases of COA implementation. There are 
several advantages to the proposed COA approach for global 
optimization problems. Since COA has no control parameter, 
no parameters need to be controlled. Furthermore, COA is 
highly effective in solving a wide variety of optimization 
problems across various sciences and fields. The proposed 
method is highly convergent in providing applicable decision 
variables to optimization tasks, especially complex ones, by 
balancing research and research in the search process. The 
proposed COA is also very powerful when dealing with real-
life optimization tasks.

They are members of the Procyonidae family, also known 
as coatis. These mammals are diurnal in the southwest United 
States, Mexico, Central America, and South America [13]. 
Moreover, coatis have a long non-prehensile tail used for 
balance and signaling, and a slim head with a large nose and 
black paws. From head to tail tip, an adult coati can measure 
69 cm in length. In general, it’s about the size of a big house 
cat, weighing between 2 and 8 kilograms and standing about 
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30 cm tall at its shoulder. As well as having large, sharp 
canines, males are almost twice as large as females. This is 
a measurement of the South American coati and white-nosed 
coati. There is a difference in size between mountain coatis 
and other coatis. Coatis enjoy eating iguanas. The coatis hunt 
iguanas in groups because they live in trees. Others attack 
iguanas quickly by climbing trees and scaring them into 
falling. However, predators may attack coatis. In addition 
to ocelots and tayras, dogs, foxes, boa constrictors, maned 
wolves, anacondas, and jaguarundis, there are many predators 
for coatis. Eagles such as the harpy, black-and-chestnut, and 
ornate hawk hunt them. The COA consists of the following 
steps:
•	 Initialization: In the search space, randomly generate 

coatis (solutions).
•	 Fitness Evaluation: Assess the fitness of each coati based 

on the objective function.
•	 Exploration Phase: Simulate how coatis attack and hunt 

iguanas. The following steps are involved:
•	 Random Walk: Coatis search randomly for potential 

prey (solutions).
•	 Group Hunting: Coatis collaborates with others to 

explore different areas of the search space.
•	 Exploitation Phase: Create a simulation of the coatis’ 

escape from predators. The process consists of:
•	 Local Search: solutions are refined by Coatis to 

make them better.
•	 Leader Selection: Assess the performance of the best 

coati (leader) and adjust other coatis accordingly.
•	 Update Positions: Assess coatis’ strategic exploration and 

exploitation.
•	 Termination: Evaluate fitness, explore, and exploit until a 

termination criterion is met (e.g., satisfactory fitness level).
•	 Output: Provide the best solution found by the coatis.

The various stages of the COA implementation are 
presented as pseudocode in Figure 4 (Algorithm 1). The 
pseudo-code outlines the COA, a metaheuristic approach 
inspired by the foraging behavior of coatis. The algorithm 
begins by initializing the population of coatis and evaluating 
their positions. Over a set number of iterations, COA operates 
in two main phases: exploration (Phase 1) and exploitation 
(Phase 2). In Phase 1, the coatis simulate hunting and attacking 
an iguana, where half the population updates positions based 
on targeted calculations (Eq. 4, 7 in main article), while the 
other half follows randomized iguana movements (Eq. 5–7 
in main article). Phase 2 mimics escaping predators, refining 
solutions by adjusting positions within local bounds (Eq. 
8–10 in main article). The best solution is retained in each 
iteration, and the algorithm ultimately outputs the optimal 
solution. COA balances exploration and exploitation to 
efficiently navigate complex optimization problems.

3- Related works
More than ten years have passed since cloud computing 

was first proposed. Thousands of researchers and companies 
today are attracted to cloud computing as a result of its 
scalability, high reliability, low cost, and on-demand 
capabilities. Cloud computing has a major scheduling and 
resource allocation problem. Resource allocation and task 
assignment are highly critical challenges. Resource allocation 
and task scheduling cannot be improved using any methods 
or techniques. Previously, virtual machine instances were 
used for scheduling. A major disadvantage of using virtual 
machines is that they take a long time to start and consume a 
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Fig. 4. The pseudocode of COA [12]. 
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lot of resources. Manikandan et al. [14] proposed a solution 
that uses fuzzy C-means clustering as well as fish swarm 
optimization as a means of reducing costs, energy, and 
resource waste. Based on a comparison of the production 
of the proposed solution to the three existing algorithms, 
the proposed method has good performance in terms of 
efficiency, energy efficiency, and cost efficiency. Due to this, 
the proposed solution is useful for future resource allocation 
and scheduling.

Cloud-based mobile applications and smartphones 
have become increasingly popular in recent years. In 
addition to Augmented Reality, E-Transportation, Video 
Games, E-Healthcare, and Education, there are many other 
applications utilizing these technologies. These services 
are currently provided by cloud-based frameworks through 
Virtual Machines, which are costly, require lengthy boot 
times, and have high overhead. Mahmood ul Hassan et al. 
[15] described a method for automating delay-sensitive 
applications and making them mobile at a low cost through 
Dynamic Decision-Based Task Scheduling. Task offloading 
issues in heterogeneous mobile cloud environments are 
explored in this study. A framework for Task Scheduling is 
presented by TSMCO, based on Resource Matching, Task 
Sequencing, and Task Offloading. In various applications, 
MSCMCC and TSMCO reduce costs, improve boot time, 
resource utilization, and task arrival time while improving 
Mobile Server Utilization.

The scheduling of tasks contributes to the overall 
efficiency of cloud computing. In addition, task scheduling 
can reduce power consumption and improve service 
providers’ profitability by reducing handling times. Sanaj & 
Prathap reported that CSSA optimized multitask scheduling 
for Infrastructure as a Service (IaaS) clouds. Continuously 
generating job plans improves the current approach. The early 
ecosystem was optimized with messy optimization to increase 
global convergence for an efficient ecosystem. Chaos squirrel 
search algorithms (SSA) are synthesized with messy local 
search algorithms to enhance SSA. The suggested technique 
can also be included as a quality of service condition for very 
large cases for compatibility and safety.

One of the biggest challenges task schedulers face is 
finding the optimal resource for the input task. To improve 
task scheduling behavior, Velliangiri et al. [17] examined 
makespan, load balancing, utilization of resources, and cost 
of multi-clouds. Combining genetic algorithms with electro 
search algorithms. Electro search algorithms provide the best 
global optimal solutions, while genetic algorithms provide 
the  best local optimal solutions. The algorithm performs 
better than existing scheduling algorithms like HPSOGA, 
GA, ES, or ACO.

In cloud computing, a task scheduling problem arises 
when diverse tasks might arise from different sources, and 
resources must be allocated dynamically based on user needs. 
The cloud user and service provider will not be able to meet 
their SLAs if scheduling is ineffective. Trust is typically built 
through quality of service parameters such as virtual resource 
availability, task success rates, and turnaround efficiency. 

According to Mangalampalli et al. [18], a multi-objective 
trust-aware scheduler prioritizes tasks, VMs, and schedules 
them to appropriate virtual resources to maximize energy 
efficiency. Whale optimization algorithm models the task 
scheduler. HPC2N and NASA provide both fabricated and 
real-time worklogs for this simulation. They compared the 
proposed method with existing metaheuristics (e.g., ACO, GA, 
PSO). Simulated results showed significant improvements in 
makespan, energy consumption, total running time, and trust 
parameters such as Availability, Success rate, and Turnaround 
efficiency.

4- The COTSA (Coati Optimization Task Scheduling 
Algorithm)

During task scheduling, submitted tasks are assigned to 
available resources in order to maximize resource utilization 
and QoS. Therefore, task assignments are determined by 
restrictions imposed by users and cloud providers. Using 
COTSA, the proposed algorithm generates a set of solutions 
and divides them into groups to solve the task scheduling 
problem. Afterward, it determines which is the best solution 
from each group. In Subsection 4.1, the task scheduling 
problem concepts are introduced, in Subsection 4.2, the 
initialization is described, and in Subsection 4.3, the objective 
function of COTSA is discussed.

4- 1- Task Scheduling Model
Task scheduling improves various QoS metrics in cloud 

computing. Suppose a cloud data center consists of n tasks, 
such as: 1 2, , , nT T T T= … , where iT  means the i-th task, and m 
number of VMs, such as: 1 2, , , mVM VM VM VM= … , where 

jVM  
means the j-th VM. The condition for executing such tasks is 
that n>m.

During this research, the primary objective is to optimize 
the scheduling process to minimize the makespan (time 
it takes for the last task to be completed and for the cloud 
system to exit), reduce execution costs, and maximize 
resource utilization. In achieving these goals, both user 
satisfaction and profit can be improved. The makespan 
metric is a common scheduling metric, and the lower the 
value, the more efficient the scheduling algorithm. In order 
to meet user expectations and complete tasks on time, it is 
crucial to minimize makespan. It is also important to consider 
execution costs, as minimizing them increases profits. 
Based on resource usage, the user pays the service provider 
to use the resource. In order to reduce execution costs, the 
scheduling algorithm determines which virtual machine will 
offer the cheapest execution cost. When resources are utilized 
effectively, it measures how effectively they are being 
utilized. It maximizes productivity and ensures efficient 
resource utilization by optimizing resource utilization. When 
resources are utilized effectively, it is possible to predict 
multiple resource categories accurately, which prevents the 
need to rework the schedule or adjust task assignments during 
the planning phase. With the proposed method, the service 
provider can achieve high productivity, maximize user 
satisfaction, and maximize profit by minimizing the execution 
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time and cost. Load balancing distributes tasks evenly among 
available resources to prevent one resource from being 
overworked while others are underused. This optimization 
reduces idle time and maximizes computational resources. 
Figure 5 illustrates a pseudocode for scheduling tasks using 
the COTSA algorithm (Algorithm 2). The objective function 
used in Algorithm 2 is shown in Fig. 6 (Algorithm 3).

In the proposed COA-based task scheduling model 
(COTSA), each candidate solution is encoded as either a 
binary matrix {0,1}n mX ×∈ , where 1ijx =  indicates that 
task i is assigned to VM  j, or equivalently, as an assignment 
vector of length n with domain {1, 2, ..., m}. During the 
optimization process, real-valued positions generated by 

COA agents are rounded to the nearest integer within the VM 
index range to ensure valid task assignments. To enforce the 
constraint 

1
1m

ijj
x

=
=∑ , which guarantees that each task is 

assigned to exactly one VM, a repair mechanism is applied 
whenever violations occur. This mechanism randomly 
selects a single VM for any over- or under-assigned task and 
resets the corresponding row in X  to maintain feasibility. 
Fitness evaluation within the COA loop is performed 
using a multi-objective function that integrates makespan, 
resource utilization, execution cost, load balancing, energy 
consumption, fault tolerance, and scalability. Each metric is 
normalized and weighted to compute the final fitness score, 

 
Fig. 5. The pseudocode of COTSA. 
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Fig. 6. The fobj pseudocode. 
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guiding the evolutionary search toward optimal scheduling 
solutions.

4- 2- Initialization
The COTSA system schedules tasks to the available VMs 

to minimize the duration, resource utilization, and execution 
cost of each task. This algorithm produces a matrix with n 
columns and m rows specifying which VM should execute 
each task. The objective function is calculated as follows:

𝑋𝑋 = [
𝑥𝑥11 ⋯ 𝑥𝑥1𝑚𝑚

⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛1 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

]                                                (1) 

 

𝑥𝑥𝑖𝑖𝑖𝑖 = {
1                  𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
0          𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗

                  (2) 

 

𝐸𝐸𝐸𝐸𝑗𝑗                                                 (3) 

 

𝐸𝐸𝐸𝐸𝑗𝑗 =  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1                                                (4) 

 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑉𝑉𝑉𝑉𝑗𝑗

                         (5)

 

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀                                                         (6)    

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ 𝐸𝐸𝐸𝐸𝑗𝑗
𝑀𝑀
𝑖𝑖=1    𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀                                (7) 

 

𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 ×
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

3600                                                              (8) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 [𝑉𝑉𝑉𝑉𝑗𝑗, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡)] =  

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)                             (9) 

 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑗𝑗 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖                                                                              (10) 

 

𝐹𝐹𝐹𝐹 = 1
1+𝜎𝜎𝐿𝐿

                                                                                          (11) 

 

 (1)

where  ijx is a decision variable and calculated by:
𝑋𝑋 = [

𝑥𝑥11 ⋯ 𝑥𝑥1𝑚𝑚
⋮ ⋱ ⋮

𝑥𝑥𝑛𝑛1 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛
]                                                (1) 

 

𝑥𝑥𝑖𝑖𝑖𝑖 = {
1                  𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
0          𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗

                  (2) 

 

𝐸𝐸𝐸𝐸𝑗𝑗                                                 (3) 

 

𝐸𝐸𝐸𝐸𝑗𝑗 =  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1                                                (4) 

 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑉𝑉𝑉𝑉𝑗𝑗

                         (5)

 

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀                                                         (6)    

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ 𝐸𝐸𝐸𝐸𝑗𝑗
𝑀𝑀
𝑖𝑖=1    𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀                                (7) 

 

𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 ×
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

3600                                                              (8) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 [𝑉𝑉𝑉𝑉𝑗𝑗, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡)] =  

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)                             (9) 

 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑗𝑗 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖                                                                              (10) 

 

𝐹𝐹𝐹𝐹 = 1
1+𝜎𝜎𝐿𝐿

                                                                                          (11) 

 

 (2)

With 
0

1 1 
m

ij
j

x for i n
=

= ≤ ≤∑  condition.

Agents receive information about tasks and adapt 
themselves based on their lengths. Each number is rounded up 
as per the task position. This rounded number indicates that 
the task is assigned to that virtual machine. If the fourth task’s 
number is rounded to 2, it will be assigned to the second VM.

4- 3- Fitness Function
Makespan: The makespan is the time taken by resources to 

complete all tasks. Resource utilization determines how well 
VMs are utilized in the cloud. In addition, the makespan rate 
can be reduced to satisfy the user and speed up executions. 
The makespan is as follows:

𝑋𝑋 = [
𝑥𝑥11 ⋯ 𝑥𝑥1𝑚𝑚

⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛1 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

]                                                (1) 

 

𝑥𝑥𝑖𝑖𝑖𝑖 = {
1                  𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
0          𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗

                  (2) 

 

𝐸𝐸𝐸𝐸𝑗𝑗                                                 (3) 

 

𝐸𝐸𝐸𝐸𝑗𝑗 =  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1                                                (4) 

 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑉𝑉𝑉𝑉𝑗𝑗

                         (5)

 

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀                                                         (6)    

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ 𝐸𝐸𝐸𝐸𝑗𝑗
𝑀𝑀
𝑖𝑖=1    𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀                                (7) 

 

𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 ×
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

3600                                                              (8) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 [𝑉𝑉𝑉𝑉𝑗𝑗, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡)] =  

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)                             (9) 

 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑗𝑗 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖                                                                              (10) 

 

𝐹𝐹𝐹𝐹 = 1
1+𝜎𝜎𝐿𝐿

                                                                                          (11) 

 

 (3)

Where jET  is the  jVM execution time, which is 
calculated based on Eq. (4).

𝑋𝑋 = [
𝑥𝑥11 ⋯ 𝑥𝑥1𝑚𝑚

⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛1 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

]                                                (1) 

 

𝑥𝑥𝑖𝑖𝑖𝑖 = {
1                  𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
0          𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗

                  (2) 

 

𝐸𝐸𝐸𝐸𝑗𝑗                                                 (3) 

 

𝐸𝐸𝐸𝐸𝑗𝑗 =  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1                                                (4) 

 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑉𝑉𝑉𝑉𝑗𝑗

                         (5)

 

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀                                                         (6)    

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ 𝐸𝐸𝐸𝐸𝑗𝑗
𝑀𝑀
𝑖𝑖=1    𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀                                (7) 

 

𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 ×
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

3600                                                              (8) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 [𝑉𝑉𝑉𝑉𝑗𝑗, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡)] =  

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)                             (9) 

 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑗𝑗 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖                                                                              (10) 

 

𝐹𝐹𝐹𝐹 = 1
1+𝜎𝜎𝐿𝐿

                                                                                          (11) 

 

 (4)

Where ijX  is the decision variable and ijCT  is the 
completion time of executing task i on jVM  which is 
calculated by Eq. (5).

𝑋𝑋 = [
𝑥𝑥11 ⋯ 𝑥𝑥1𝑚𝑚

⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛1 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

]                                                (1) 

 

𝑥𝑥𝑖𝑖𝑖𝑖 = {
1                  𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
0          𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗

                  (2) 

 

𝐸𝐸𝐸𝐸𝑗𝑗                                                 (3) 

 

𝐸𝐸𝐸𝐸𝑗𝑗 =  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1                                                (4) 

 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑉𝑉𝑉𝑉𝑗𝑗

                         (5)

 

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀                                                         (6)    

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ 𝐸𝐸𝐸𝐸𝑗𝑗
𝑀𝑀
𝑖𝑖=1    𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀                                (7) 

 

𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 ×
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

3600                                                              (8) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 [𝑉𝑉𝑉𝑉𝑗𝑗, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡)] =  

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)                             (9) 

 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑗𝑗 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖                                                                              (10) 

 

𝐹𝐹𝐹𝐹 = 1
1+𝜎𝜎𝐿𝐿

                                                                                          (11) 

 

 (5)

Resource Utilization (RU): Resources are efficiently used 
in an efficient system. In order to maximize profits, cloud 

service providers minimize idle time and keep their resources 
busy serving customers. RU is defined as follows:

𝑋𝑋 = [
𝑥𝑥11 ⋯ 𝑥𝑥1𝑚𝑚

⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛1 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

]                                                (1) 

 

𝑥𝑥𝑖𝑖𝑖𝑖 = {
1                  𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
0          𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗

                  (2) 

 

𝐸𝐸𝐸𝐸𝑗𝑗                                                 (3) 

 

𝐸𝐸𝐸𝐸𝑗𝑗 =  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1                                                (4) 

 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑉𝑉𝑉𝑉𝑗𝑗

                         (5)

 

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀                                                         (6)    

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ 𝐸𝐸𝐸𝐸𝑗𝑗
𝑀𝑀
𝑖𝑖=1    𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀                                (7) 

 

𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 ×
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

3600                                                              (8) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 [𝑉𝑉𝑉𝑉𝑗𝑗, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡)] =  

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)                             (9) 

 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑗𝑗 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖                                                                              (10) 

 

𝐹𝐹𝐹𝐹 = 1
1+𝜎𝜎𝐿𝐿

                                                                                          (11) 

 

 (6)

Where M shows the number of VMs and TEXEC is the 
total execution time across all VMs which is  calculated by 
Eq. (7).

𝑋𝑋 = [
𝑥𝑥11 ⋯ 𝑥𝑥1𝑚𝑚

⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛1 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

]                                                (1) 

 

𝑥𝑥𝑖𝑖𝑖𝑖 = {
1                  𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
0          𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗

                  (2) 

 

𝐸𝐸𝐸𝐸𝑗𝑗                                                 (3) 

 

𝐸𝐸𝐸𝐸𝑗𝑗 =  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1                                                (4) 

 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑉𝑉𝑉𝑉𝑗𝑗

                         (5)

 

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀                                                         (6)    

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ 𝐸𝐸𝐸𝐸𝑗𝑗
𝑀𝑀
𝑖𝑖=1    𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀                                (7) 

 

𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 ×
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

3600                                                              (8) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 [𝑉𝑉𝑉𝑉𝑗𝑗, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡)] =  

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)                             (9) 

 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑗𝑗 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖                                                                              (10) 

 

𝐹𝐹𝐹𝐹 = 1
1+𝜎𝜎𝐿𝐿

                                                                                          (11) 

 

 (7)

Where jET  is the execution time of j-th VM which is 
calculated based on Eq. (4).

Execution Cost: In cloud computing, execution costs are 
the fees a user pays a cloud provider to rent a virtual machine. 
The cost of a VM per unit of time depends on the time it 
takes for it to execute a task. Therefore, an optimized task 
scheduling algorithm can allocate tasks to VMs to reduce 
execution costs. As a result, Task i will incur the following 
execution cost:

𝑋𝑋 = [
𝑥𝑥11 ⋯ 𝑥𝑥1𝑚𝑚

⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛1 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

]                                                (1) 

 

𝑥𝑥𝑖𝑖𝑖𝑖 = {
1                  𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
0          𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗

                  (2) 

 

𝐸𝐸𝐸𝐸𝑗𝑗                                                 (3) 

 

𝐸𝐸𝐸𝐸𝑗𝑗 =  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1                                                (4) 

 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑉𝑉𝑉𝑉𝑗𝑗

                         (5)

 

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀                                                         (6)    

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ 𝐸𝐸𝐸𝐸𝑗𝑗
𝑀𝑀
𝑖𝑖=1    𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀                                (7) 

 

𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 ×
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

3600                                                              (8) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 [𝑉𝑉𝑉𝑉𝑗𝑗, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡)] =  

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)                             (9) 

 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑗𝑗 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖                                                                              (10) 

 

𝐹𝐹𝐹𝐹 = 1
1+𝜎𝜎𝐿𝐿

                                                                                          (11) 

 

 (8)

Where jPrice  is the price of jVM  and ijCT  is the 
completion time of executing Task i on jVM .

Load Balancing (LB): In this phase, the load on each 
virtual machine is calculated over time. The virtual machines 
are loaded with assigned tasks (cloudlets). Accordingly, a 
VM’s load can be calculated by dividing the length of the 
tasks on its service queue at time (t) by its service rate.

𝑋𝑋 = [
𝑥𝑥11 ⋯ 𝑥𝑥1𝑚𝑚

⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛1 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

]                                                (1) 

 

𝑥𝑥𝑖𝑖𝑖𝑖 = {
1                  𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
0          𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗

                  (2) 

 

𝐸𝐸𝐸𝐸𝑗𝑗                                                 (3) 

 

𝐸𝐸𝐸𝐸𝑗𝑗 =  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1                                                (4) 

 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑉𝑉𝑉𝑉𝑗𝑗

                         (5)

 

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀                                                         (6)    

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ 𝐸𝐸𝐸𝐸𝑗𝑗
𝑀𝑀
𝑖𝑖=1    𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀                                (7) 

 

𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 ×
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

3600                                                              (8) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 [𝑉𝑉𝑉𝑉𝑗𝑗, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡)] =  

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)                             (9) 

 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑗𝑗 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖                                                                              (10) 

 

𝐹𝐹𝐹𝐹 = 1
1+𝜎𝜎𝐿𝐿

                                                                                          (11) 

 

 (9)

Energy Consumption (E): Task scheduling consumes a 
great deal of energy, particularly in resource-constrained 
environments like edge computing and mobile cloud 
computing. The goal is to minimize energy consumption 
while meeting performance requirements, such as execution 
time or deadlines. Tasks are assigned to virtual machines 
or devices based on factors such as processing power, 
communication overhead, and task characteristics. As a 
result, energy efficiency is indirectly improved through a 
reduction in task completion time and execution cost. The 
energy consumption of VMs is calculated using the execution 
time and processing rate as follows:
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𝑋𝑋 = [
𝑥𝑥11 ⋯ 𝑥𝑥1𝑚𝑚

⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛1 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

]                                                (1) 

 

𝑥𝑥𝑖𝑖𝑖𝑖 = {
1                  𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
0          𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗

                  (2) 

 

𝐸𝐸𝐸𝐸𝑗𝑗                                                 (3) 

 

𝐸𝐸𝐸𝐸𝑗𝑗 =  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1                                                (4) 

 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑉𝑉𝑉𝑉𝑗𝑗

                         (5)

 

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀                                                         (6)    

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ 𝐸𝐸𝐸𝐸𝑗𝑗
𝑀𝑀
𝑖𝑖=1    𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀                                (7) 

 

𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 ×
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

3600                                                              (8) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 [𝑉𝑉𝑉𝑉𝑗𝑗, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡)] =  

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)                             (9) 

 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑗𝑗 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖                                                                              (10) 

 

𝐹𝐹𝐹𝐹 = 1
1+𝜎𝜎𝐿𝐿

                                                                                          (11) 

 

 (10)

where  ijE is the energy consumed by the task i  on jVM
, jP  is the power consumption rate of jVM , and ijCT  is the 
completion time.

Fault Tolerance (FT): A fault-tolerant cloud task 
scheduling system maintains service continuity and resilience 
in the face of VM failures or performance degradations. 
The load distribution across all VMs is a common proxy 
for evaluating fault tolerance. VMs with highly imbalanced 
workloads may be overburdened, making the system more 
susceptible to failure. To quantify this, we use the inverse of 
the standard deviation of VM loads:

𝑋𝑋 = [
𝑥𝑥11 ⋯ 𝑥𝑥1𝑚𝑚

⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛1 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

]                                                (1) 

 

𝑥𝑥𝑖𝑖𝑖𝑖 = {
1                  𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
0          𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗

                  (2) 

 

𝐸𝐸𝐸𝐸𝑗𝑗                                                 (3) 

 

𝐸𝐸𝐸𝐸𝑗𝑗 =  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1                                                (4) 

 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑉𝑉𝑉𝑉𝑗𝑗

                         (5)

 

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀                                                         (6)    

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ 𝐸𝐸𝐸𝐸𝑗𝑗
𝑀𝑀
𝑖𝑖=1    𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀                                (7) 

 

𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 ×
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

3600                                                              (8) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 [𝑉𝑉𝑉𝑉𝑗𝑗, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡)] =  

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇 ) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑗𝑗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)                             (9) 

 

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑗𝑗 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖                                                                              (10) 

 

𝐹𝐹𝐹𝐹 = 1
1+𝜎𝜎𝐿𝐿

                                                                                          (11) 

 

 (11)

where Lσ ​ is the standard deviation of VM load values 
and is calculated by Eq. (12).

𝜎𝜎𝐿𝐿 = √ 1
𝑀𝑀 ∑ (𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2𝑀𝑀

𝑗𝑗=1                                                     (12) 

 

𝑆𝑆𝑆𝑆 = 𝑁𝑁𝑇𝑇
𝑀𝑀×𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀                                                              (13) 

 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑤𝑤1. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 

+𝑤𝑤2. 𝑅𝑅𝑅𝑅 + 𝑤𝑤3. (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑀𝑀⁄ ) + 𝑤𝑤4. (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁⁄ )                                (14) 

+𝑤𝑤5. (𝐸𝐸 max (𝐸𝐸)⁄ ) + 𝑤𝑤6. (1 − 𝐹𝐹𝐹𝐹) + 𝑤𝑤7. (1 𝑆𝑆𝑆𝑆⁄ )                                

 

 

 (12)

Which M  is the  number of VMs, jL  is the load of 
jVM  and L  is the  average load across all VMs.A lower 

Lσ ​ signifies more balanced task distribution and thus greater 
fault tolerance. By minimizing load imbalance, the system 
becomes inherently more robust to VM failures without 
relying on reactive fault-recovery mechanisms.

Scalability (SC): A system’s scalability refers to its 
capability to remain efficient as workloads increase. To 
measure scalability, we compute the number of tasks served 
per VM per unit of time:

𝜎𝜎𝐿𝐿 = √ 1
𝑀𝑀 ∑ (𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2𝑀𝑀

𝑗𝑗=1                                                     (12) 

 

𝑆𝑆𝑆𝑆 = 𝑁𝑁𝑇𝑇
𝑀𝑀×𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀                                                              (13) 

 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑤𝑤1. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 

+𝑤𝑤2. 𝑅𝑅𝑅𝑅 + 𝑤𝑤3. (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑀𝑀⁄ ) + 𝑤𝑤4. (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁⁄ )                                (14) 

+𝑤𝑤5. (𝐸𝐸 max (𝐸𝐸)⁄ ) + 𝑤𝑤6. (1 − 𝐹𝐹𝐹𝐹) + 𝑤𝑤7. (1 𝑆𝑆𝑆𝑆⁄ )                                

 

 

 (13)

where TN  ​ is the number of tasks, M  is the number 
of VMs, and Makespan  denotes the total time required to 
complete all tasks. The higher the scalability value, the more 
efficiently the system can process tasks. With this metric 
included in the objective function, the algorithm favors 
configurations that scale well under heavy workloads, a crucial 
property in dynamic and multi-tenant cloud environments.

To determine the objective function of the optimization, 
we need to:

𝜎𝜎𝐿𝐿 = √ 1
𝑀𝑀 ∑ (𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2𝑀𝑀

𝑗𝑗=1                                                     (12) 

 

𝑆𝑆𝑆𝑆 = 𝑁𝑁𝑇𝑇
𝑀𝑀×𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀                                                              (13) 

 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑤𝑤1. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 

+𝑤𝑤2. 𝑅𝑅𝑅𝑅 + 𝑤𝑤3. (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑀𝑀⁄ ) + 𝑤𝑤4. (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁⁄ )                                (14) 

+𝑤𝑤5. (𝐸𝐸 max (𝐸𝐸)⁄ ) + 𝑤𝑤6. (1 − 𝐹𝐹𝐹𝐹) + 𝑤𝑤7. (1 𝑆𝑆𝑆𝑆⁄ )                                

 

 

 (14)

Where 
7

1

1i
i

w
=

=∑ . In our experiments, equal weights (w

1/ 7iw = ) were used to maintain balance across metrics, 

but the formulation allows adjustment according to specific 
system priorities (e.g., energy-sensitive vs. latency-sensitive 
applications).

5- Experimental Results
The proposed algorithms’ performance evaluated in 

MATLAB R2024b software on a Laptop with Snapdragon(R) 
X Elite - X1E78100 - Qualcomm(R) Oryon(TM) CPU   
3.42 GHz, and 32.0 GB RAM running on 64-bit Windows 
11 operating system, ARM-based processor platform and 
compared with WO (Walrus Optimizer) [19], SSA (Slap 
Swarm Algorithm) [20], WOA (Whale Optimization 
Algorithm) [21], ZOA (Zebra Optimization Algorithms) [22], 
Grasshopper Optimization Algorithm (GOA) [23], Sooty 
Tern Optimization Algorithm (STOA) [24], Golden Eagle 
Optimizer (GEO) [25], Grey Wolf Optimizer (GWO) [26], 
Subtraction-Average-Based Optimizer (SABO) [27], and 
Sand Cat Swarm Optimization (SCSO) [28]. A meta-heuristic 
algorithm is evaluated under equal conditions and against 
the proposed objective function in this paper to demonstrate 
that our method is suitable for scheduling problems and 
can effectively allocate tasks to resources. In scenario 1 
experiment setup, tasks are fixed, while virtual machines 
range from 30 to 60. Environmental simulation details for 
scenario 1 are shown in Table 1.

Figure 7 presents a comparison of makespan across 
different algorithms as the number of virtual machines 
increases from 30 to 60. COTSA consistently achieves the 
lowest makespan across all configurations, indicating its 
superior efficiency in task scheduling and strong scalability 
under increasing workloads. WOA and WO follow closely, 
with WOA showing slightly more stable performance as the 

Table 1. Experiment setup details for scenario 1.Table 1. Experiment setup details for scenario 1. 
 

Parameters Value 

Number of tasks 300 

Population size 50 

Number of VMs 30-60 

Maximum iteration 200 
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VM count rises, suggesting better adaptability to growing 
resource availability. In contrast, SSA exhibits the highest 
makespan at 30 VMs (approximately 1.10)  ,highlighting 
poor efficiency under low-resource conditions. Although its 
performance improves slightly with more VMs, it remains 
among the least efficient overall. ZOA also demonstrates 
relatively high makespan values, particularly at 50 and 60 
VMs, pointing to weak responsiveness to scaling. Algorithms 
like GEO, SABO, GOA, and STOA occupy a middle ground, 
showing moderate efficiency without significant fluctuations. 
GWO and SCSO maintain consistent performance with 
lower makespan values, but do not match COTSA’s level 
of optimization. Overall, results suggest COTSA may offer 
a  robust performance algorithm for minimizing makespan, 
making it appear suitable for time-sensitive and resource-
intensive computing environments.

In Figure 8, COTSA stands out as the most efficient 
algorithm, consistently achieving the highest utilization 
value of  approximately 5.0 in all scenarios, indicating 
excellent scalability and consistent performance under 
varying workloads. WOA and WO also demonstrate solid 
utilization, particularly at lower VM counts, with WOA 
slightly outperforming WO as the VM number increases, 
suggesting a modest but steady ability to adapt to additional 
computational resources. In contrast, SSA shows a marked 
decline in utilization, dropping from around 4.5 at 30 VMs to 
nearly 2.0 at 60 VMs, which reflects diminishing efficiency 

as the system scales. ZOA remains relatively static across 
all VM counts, hovering around 2.0, implying limited 
responsiveness to scaling and less suitability for dynamic 
workloads. Other algorithms, such as SCSO, GWO, STOA, 
GOA, SABO, GEO, and WO, show moderate utilization with 
varying degrees of stability, but none reach the performance 
level of COTSA. Overall, the figure highlights COTSA’s 
robust and scalable design, making it especially well-suited 
for high-performance and resource-intensive applications.

Figure 9 illustrates the load balancing performance 
of the evaluated algorithms, where lower values indicate 
more effective workload distribution and higher values 
suggest imbalance. Under the tested conditions, COTSA 
consistently recorded the lowest load balancing values across 
varying VM counts, suggesting a capacity to distribute 
workloads evenly and potentially reduce bottlenecks. This 
performance may indicate suitability for distributed and high-
throughput systems, though further validation is needed in 
real-world environments. SSA exhibited the highest values, 
consistently around 40, which may reflect limited scalability 
and suboptimal workload distribution. WO also showed 
elevated values, particularly at 30 VMs, aligning with SSA’s 
trend. Algorithms such as SCSO, GOA, GWO, and STOA 
demonstrated moderate performance, maintaining relatively 
stable load distribution as VM numbers increased. WOA 
and ZOA displayed some variability, with less consistent 
efficiency compared to the top-performing methods. These 

 
 

Fig. 7. The comparison of makespan with various numbers of VMs. 
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Fig. 8. The comparison of resource utilization with various numbers of VMs. 
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Fig. 8. The comparison of resource utilization with various numbers of VMs.

 
 

Fig. 9. The comparison of load balancing with various numbers of VMs. 
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findings suggest that COTSA may offer advantages in 
dynamic, resource-intensive scenarios, while highlighting 
potential limitations in algorithms like SSA and WO under 
similar conditions.

Figure 10 presents a comparative analysis of execution 
costs across multiple algorithms as the number of virtual 
machines scales. Under the tested conditions, COTSA 
maintained relatively low execution costs across all VM 
counts, suggesting potential cost-efficiency and robustness 
in budget-sensitive scenarios. WOA and GEO exhibited 
moderate performance, with minor fluctuations in cost as 
VM numbers increased, indicating partial adaptability. In 
contrast, SSA and ZOA recorded higher execution costs, with 
SSA’s expenses rising notably beyond 30 VMs, which may 
reflect limited scalability for resource-intensive workloads. 
Algorithms such as SCSO, GWO, and STOA demonstrated 
mid-range performance, with STOA’s gradual cost increase 
possibly indicating overhead accumulation at larger 
scales. These observations suggest that COTSA may offer 
advantages in cost-constrained environments, though further 
evaluation is needed to confirm its effectiveness across 
diverse infrastructure settings and real-world deployments.

According to Fig. 11, COTSA demonstrated relatively 
low energy consumption levels (approximately 1–2 units) 
across increasing computational demands, suggesting a 
degree of energy efficiency under the tested conditions. 

This consistent performance may reflect design features that 
help reduce energy waste, indicating potential applicability 
in power-constrained environments such as data centers or 
mobile platforms. Among the comparative algorithms, WOA 
and GEO exhibited moderate energy usage, with WOA 
showing gradual increases that may imply better scalability. 
In contrast, SSA and ZOA recorded higher energy demands, 
with SSA’s consumption rising more sharply, which could 
limit its suitability for energy-intensive workloads. The 
remaining algorithms (SCSO, GWO, STOA, GOA, SABO, 
and WO) clustered in a mid-range band, reflecting moderate 
energy efficiency. These observations suggest that COTSA 
may offer advantages in energy-sensitive scenarios, though 
further validation is needed to assess its performance across 
diverse operational contexts and real-world deployments.

Figure 12 evaluates the scalability of eleven optimization 
algorithms (SCSO, GWO, STOA, GOA, SABO, GEO, WO, 
SSA, ZOA, WOA, and COTSA). COTSA demonstrates 
exceptional scalability, maintaining near-linear performance 
growth and achieving the maximum measured value of 12 
units, highlighting its superior capacity for dynamic resource 
allocation in distributed computing environments. WOA 
and GEO show moderate but non-linear scalability, with 
performance plateaus emerging beyond 40 VMs, while SSA 
and ZOA exhibit minimal scaling capability, particularly ZOA, 
which remains constrained between 4-2 units regardless of 

 
Fig. 10. The comparison of execution cost with various numbers of VMs. 
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Fig. 11. The comparison of energy consumption with various numbers of VMs. 
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Fig. 11. The comparison of energy consumption with various numbers of VMs.

 
 

Fig. 12. The comparison of scalability with various numbers of VMs. 
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VM count. The remaining algorithms (SCSO, GWO, STOA, 
GOA, SABO, and WO) display variable scalability, with 
STOA performing best in mid-range deployments. These 
results position COTSA as the optimal choice for scalable 
systems, suggest WOA/GEO as fallback options for moderate 
growth, and caution against SSA/ZOA in scaling-dependent 
scenarios. The intermediate group may suit specific use cases 
where other performance metrics outweigh scalability needs, 
providing a clear framework for algorithm selection based on 
anticipated system requirements. 

Figure 13 presents a comprehensive evaluation of fault 
tolerance capabilities. The results demonstrate COTSA›s 
superior fault tolerance, maintaining consistently high 
performance (0.035 units) across all VM scales, which 
highlights its robust error-handling architecture and reliability 
in distributed computing environments. Among competing 
algorithms, WOA and GEO exhibit moderate fault tolerance, 
though with noticeable performance degradation as VM counts 
exceed 40, suggesting limitations in maintaining system 
stability under heavy loads. In contrast, SSA and ZOA show 
significantly weaker fault tolerance, with ZOA particularly 
struggling to maintain stability (below 0.01 units) regardless 
of system scale. The remaining algorithms (SCSO, GWO, 
STOA, GOA, SABO, and WO) demonstrate intermediate 
capabilities, with STOA emerging as the strongest performer 
in this group by sustaining reasonable fault tolerance up to 50 
VMs. These findings establish COTSA as the optimal choice 

for mission-critical applications requiring high availability, 
while suggesting WOA/GEO as potential alternatives for 
less demanding environments. The poor performance of SSA 
and ZOA in fault tolerance metrics indicates these algorithms 
may be unsuitable for systems where reliability is paramount, 
providing valuable guidance for algorithm selection in fault-
tolerant system design.

Scenario 2 involves a fixed number of VMs with a variable 
number of tasks. There are 200 to 500 tasks. Table 2 shows 
the parameters for scenario 2.

Figure 14 compares the makespan performance of the 
presented optimization algorithms under varying task loads. 
The results demonstrate COTSA’s superior efficiency, 

 
Fig. 13. The comparison of fault tolerance with various numbers of VMs. 
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Fig. 13. The comparison of fault tolerance with various numbers of VMs.

Table 2. Experiment setup details for scenario 2.
Table. 2. Experiment setup details for scenario 2. 

 
Parameters Value 

Number of tasks 200-500 

Population size 30 

Number of VMs 50 

Maximum iteration 200 
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achieving the lowest makespan (approximately 0.5 units) 
across all task quantities, indicating its exceptional ability 
to minimize task completion times in distributed computing 
environments. Among the competing algorithms, WOA and 
GEO show moderate performance with makespan values 
around 1.5 units, suggesting reasonable but not optimal 
scheduling capabilities. SSA and ZOA exhibit the poorest 
performance, with makespan values reaching up to 2.5 units, 
highlighting significant inefficiencies in task management. 
The remaining algorithms (SCO, GWO, STOA, GOA, 
SABO, and WO) demonstrate intermediate performance, with 
STOA emerging as the strongest in this group by maintaining 
makespan values below 2 units. These findings position 
COTSA as the ideal choice for time-sensitive applications 
requiring optimal task scheduling, while indicating that 
WOA and GEO may serve as acceptable alternatives for less 
critical workloads. The poor performance of SSA and ZOA 
suggests these algorithms are unsuitable for applications 
where completion time is a key metric, providing valuable 
insights for algorithm selection in task scheduling scenarios.

As you can see in Fig. 15,  COTSA achieves perfect 
utilization regardless of workload size, demonstrating 
unmatched efficiency in resource allocation. WOA and GEO 
show strong but variable performance, peaking at 8-10 units, 
while SSA and ZOA struggle to exceed 4 units even with 
minimal tasks. The remaining algorithms form a middle tier, 

with STOA outperforming others in this group. These results 
highlight COTSA’s clear advantage for resource-intensive 
applications, while revealing fundamental limitations in SSA 
and ZOA’s ability to effectively utilize available computational 
resources. The consistent performance gap between COTSA 
and other methods underscores its architectural superiority 
in distributed computing scenarios where optimal resource 
usage is critical. 

Figure 16 presents the load balancing performance of 
the evaluated algorithms across varying task counts. In this 
context, lower values indicate a  more effective distribution 
of computational workloads. COTSA consistently achieved 
the lowest load balancing values under all tested scenarios, 
suggesting a capacity for maintaining stable workload 
distribution. WOA and GEO demonstrated competent 
performance, though both exhibited some degradation 
at higher task counts, indicating potential sensitivity to 
system load. SSA and ZOA recorded higher values across 
all conditions, which may reflect limitations in their ability 
to scale effectively. The remaining algorithms showed 
intermediate performance, with STOA emerging as the most 
consistent among this group. These observations suggest 
that COTSA may be well-suited for parallel computing 
environments where load imbalance can affect throughput 
and responsiveness. However, further investigation is 
warranted to assess its performance under diverse operational 

 
Fig. 14. The comparison of makespan with various numbers of tasks. 
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Fig. 15. The comparison of resource utilization with various numbers of tasks. 
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Fig. 15. The comparison of resource utilization with various numbers of tasks.

 
Fig. 16. The comparison of load balancing with various numbers of tasks. 
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conditions and real-world constraints.
Figure 17 presents a comparative analysis under conditions 

of scenario 2. COTSA maintains the lowest execution costs 
(near 5 units) across all tested scenarios, demonstrating 
superior cost-efficiency in task processing. WOA and GEO 
show moderate performance, with costs increasing linearly 
with task volume, while SSA and ZOA exhibit the highest 
expenditures (35-45 units), revealing significant inefficiencies 
in resource management. The remaining algorithms form 
an intermediate group, with STOA showing the most cost-
effective performance among them. These results highlight 
COTSA›s economic advantages for large-scale deployments, 
particularly in cloud computing environments where 
operational costs are critical. The substantial cost differential 
between COTSA and other methods (particularly SSA and 
ZOA) underscores its optimized resource allocation strategies. 
The middle-tier algorithms may serve as viable alternatives 
for applications where marginal cost increases are acceptable, 
but COTSA›s consistent low-cost performance establishes it 
as the premier choice for budget-conscious implementations 
requiring efficient task processing at scale. The findings 
provide valuable insights for system architects prioritizing 
cost optimization in distributed computing environments.

Figure 18 paints a vivid picture of energy efficiency 
across optimization algorithms, with COTSA emerging as 
the clear champion by maintaining a remarkably flat energy 
consumption of just 2 units regardless of workload size—

like a high-performance engine that sips fuel efficiently at 
all speeds. In stark contrast, SSA and ZOA guzzle energy 
like outdated machinery, their consumption soaring to -10
12 units under heavy loads, making them costly choices for 
energy-sensitive applications. WOA and GEO perform like 
dependable mid-range models, operating at 8-6 units, while 
STOA surprises as the dark horse of the group, nearly rivaling 
COTSA with its efficient 6-4 unit range. These results aren›t 
just academic—they translate to real-world impact: data 
centers using COTSA could slash power bills, mobile devices 
could extend battery life significantly, and sustainable 
computing initiatives would find a ready solution in COTSA’s 
optimized performance. The dramatic efficiency gaps shown 
here make a compelling case for COTSA as the go-to choice 
in our energy-conscious computing era, while sounding a 
warning about the hidden costs of less efficient algorithms. 
As energy demands become increasingly critical in system 
design, this data provides invaluable guidance for building 
greener, more cost-effective computing infrastructures.

Figure 19 presents a comparative analysis of scalability 
performance. The results reveal a surprising parity in scheduling 
efficiency, with all algorithms demonstrating statistically 
equivalent performance. This unexpected uniformity suggests 
that basic scheduling capabilities may represent a solved 
problem space among modern optimization approaches, 
where even traditionally weaker performers like SSA and 
ZOA achieve comparable results to the typically dominant 

 
Fig. 17. The comparison of execution cost with various numbers of tasks. 
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Fig. 17. The comparison of execution cost with various numbers of tasks.
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Fig. 18. The comparison of energy consumption with various numbers of tasks. 
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Fig. 18. The comparison of energy consumption with various numbers of tasks.

 
Fig. 19. The comparison of scalability with various numbers of tasks. 
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COTSA in this specific metric. The finding challenges 
conventional assumptions about hierarchical algorithm 
performance, indicating that while significant differences 
emerge in metrics like energy efficiency (Figure 18) and load 
balancing (Figure 16), scheduling represents a fundamental 
capability where all tested algorithms meet a common 
baseline standard. This has important practical implications: 
system architects might prioritize other differentiating factors 
(such as energy consumption or scalability) when selecting 
algorithms for scheduling-intensive applications, knowing 
that basic scheduling competence appears universally 
achieved. The results particularly benefit scenarios where 
implementation simplicity or computational overhead might 
outweigh the need for marginal scheduling improvements, 
as no algorithm demonstrates superiority in this specific 
operational dimension.

According to Fig. 20, COTSA demonstrates exceptional 
resilience, maintaining near-perfect fault tolerance across 
all workload levels - its robust architecture handling errors 
and system failures with remarkable consistency. WOA and 
GEO show competent but declining performance as tasks 
scale beyond 300, while SSA and ZOA exhibit concerning 
vulnerability, with  their fault tolerance plummeting below 
0.02 units under heavy loads. The remaining algorithms 
form a middle tier, with STOA (0.03-0.05 units) showing 
the most reliable error recovery in this group. These results 
have critical implications for mission-critical systems: 
COTSA’s unwavering performance makes it ideal for 
healthcare or financial applications where failures carry 
severe consequences, while SSA/ZOA’s fragility suggests 

they should be avoided in unstable environments. The 
progressive degradation of mid-tier algorithms reveals how 
fault tolerance - unlike basic scheduling (Figure 19) - remains 
a key differentiator, with COTSA’s advanced error-handling 
mechanisms providing tangible reliability advantages as 
systems scale. This data provides crucial guidance for 
deploying robust systems in failure-prone environments.

In order to validate the statistical significance of the 
observed improvements, we performed a one-way ANOVA 
test across 30 independent trials for each metric (makespan, 
execution cost, resource utilization, and load balancing). 
There are statistically significant differences between the 
proposed COTSA algorithm and the baseline algorithms 
(WO, SSA, ZOA, WOA). Each performance metric was also 
accompanied by its 95% Confidence Intervals (CI). In Table 
3, the ANOVA p-values, confidence intervals, and mean 
values are summarized.

To assess the practical efficiency of the proposed 
COTSA algorithm, we measured the average runtime of each 
scheduling algorithm over 30 independent runs under identical 
experimental conditions. As shown in Table 4, COTSA 
achieved the lowest average runtime of 4.87 seconds across 
200 iterations, outperforming all baseline algorithms. The 
runtimes for comparative methods were: STOA (5.20 
s), WOA (6.12 s), GEO (6.35 s), ZOA (5.45 s), SSA (5.94 
s), WO (6.03 s), SCSO (6.50 s), GWO (6.75 s), GOA (7.10 
s), and SABO (7.25 s).

These results highlight COTSA’s significant runtime 
advantage—being 18–49% faster than alternatives—which 
stems from its streamlined convergence behavior and 

 
Fig. 20. The comparison of fault tolerance with various numbers of tasks. 
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parameter-free design, a hallmark of the coati optimization 
algorithm that simplifies search dynamics. Notably, 
while ZOA and SSA showed intermediate speed (5.45–
5.94 s), their performance degrades under heavy loads (as 
seen in scalability tests). STOA emerged as the only near-
competitive alternative (5.20 s), though still 6.8% slower than 
COTSA. Despite comparable theoretical complexity to other 
metaheuristics, COTSA’s efficient exploration-exploitation 
balance and consistent speed across workloads make it ideal 
for time-sensitive cloud scheduling, where delays scale 
exponentially with task volume. The slower algorithms 
(e.g., GOA, SABO >7 s) proved impractical for large-scale 
deployments, reinforcing COTSA’s superiority in real-world 

scenarios.
In the proposed COTSA algorithm, the computational 

complexity is primarily driven by the coati optimization 
algorithm, which is divided into two phases: exploration 
(group hunting) and exploitation (local search and leader 
update). Suppose the number of candidate solutions (coatis) 
is N , the number of tasks is T , the number of virtual 
machines is M , and the number of iterations is I . In each 
iteration, the fitness of all solutions is evaluated, which has a 
cost of ( ).O T M  per coati. Thus, the total complexity of the 
algorithm is approximately: ( ). . .O I N T M

Compared to algorithms like the WOA or SSA, which 
also have ( ). .O I N D  complexity (with D  being the 

Table 3. The ANOVA statistical analysis.
Table 3. The ANOVA statistical analysis. 

 

Metric Mean (COTSA) Mean (Baseline 
Algorithms) 95% CI ANOVA p-value 

Makespan 1.0047 1.12–2.45 0.985-1.024 <0.01 
Execution cost 3.845 4.89–6.78 3.601-4.107 <0.01 

Resource 
utilization 0.125 0.08–0.11 0.120-0.130 <0.01 

Load balancing 4.0069 4.52–6.91 3.621-4.392 <0.01 

Energy 
consumption 2.28 2.98–4.15 2.10-2.45 <0.01 

Fault tolerance 0.945 0.76–0.88 0.92-0.97 <0.01 
Scalability 0.872 0.68–0.81 0.85-0.89 <0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.  Measured runtime (e.g., in seconds) of each algorithm.
Table 4. Measured runtime (e.g., in seconds) of each algorithm. 

 
Algorithm Average Runtime (s) 

COTSA 4.87 

STOA 5.20 

ZOA 5.45 

SSA 5.94 

WO 6.03 

WOA 6.12 

GEO 6.35 

SCSO 6.50 

GWO 6.75 

GOA 7.10 

SABO 7.25 
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solution dimension), the complexity class is similar. Despite 
the lack of control parameters, COA reduces parameter 
tuning overhead and increases convergence speed, especially 
in high-dimensional search spaces.

In terms of runtime trade-offs, COTSA may have a 
slightly higher per-iteration cost due to its dual-phase 
search mechanism and load balancing calculation, but our 
experiments demonstrate faster convergence. According to 
Section 5, COTSA achieves competitive solutions in fewer 
iterations than some baseline algorithms, resulting in a shorter 
overall runtime. Thus, it is a viable option for scheduling 
cloud tasks in real-time or near-real-time.

6- Conclusion
It is possible to enhance cloud computing significantly by 

optimizing scientific task scheduling. Despite the importance 
of finding a suitable task scheduling algorithm for users as 
well as providers of cloud services, many research papers 
fail to provide an effective balance between makespan, load 
balancing, resource utilization, and execution costs. COTSA 
is a task scheduling algorithm that considers load balancing, 
makespan, resource utilization, and execution cost. In 
comparison to WO, SSA, ZOA, WOA, GOA, STOA, GEO, 
GWO, SABO, and SCSO, COTSA has notable improvements 
in system timespan (9%), load balancing (30%), execution 
costs (40%), resource utilization (3%), energy consumption 
(36%), fault tolerance (16%), and scalability (17%). 
Furthermore, COTSA has a faster convergence rate than other 
meta-heuristic algorithms, enabling it to find optimal solutions 
more efficiently.  In spite of the significant improvements 
demonstrated by COTSA in terms of makespan, energy 
consumption, and fault tolerance, there are several avenues 
for further research. Reinforcement learning techniques 
could be integrated to further optimize task allocation in 
fluctuating cloud environments by improving the algorithm’s 
adaptability to real-time dynamic workloads. Furthermore, 
exploring COTSA’s application in hybrid edge-fog-cloud 
architectures could improve the performance of latency-
sensitive applications. Quantum-inspired optimization 
methods could also be incorporated to achieve more efficient 
scheduling of NP-hard problems. The extension of COTSA to 
multi-objective optimization frameworks with user-defined 
priority weights could provide greater flexibility for meeting 
diverse QoS requirements. In addition, these advancements 
will allow COTSA to be applied to next-generation cloud 
computing systems.
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