@

AUT JOURNAL OF
MODELING AND
SIMULATION

AUT Journal of Modeling and Simulation

AUT J. Model. Simul., 57(1) (2025) 89-112
DOL: 10.22060/miscj.2025.23520.5381

COTSA: A Load-Balanced Task Scheduling Algorithm using Coati Optimization in

Cloud Computing Environment
Zahra Jalali Khalil Abadi, Najme Mansouri*, Mohammad Masoud Javidi ~, Behnam Mohammad Hasani Zade

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran.

Review History:

Received: Sep. 10, 2024
Revised: Sep. 02,2025
Accepted: Sep. 07, 2025
Available Online: Sep. 08, 2025

ABSTRACT: During the scheduling process, it is important to respect the constraints given by the jobs
and the cloud providers. In addition to maintaining a balance between Quality of Service (QoS), fairness,
and efficiency of jobs, scheduling is challenging. This paper aims to propose an efficient algorithm
for load-balanced task scheduling in the cloud. Our algorithm uses a new meta-heuristic algorithm
called COA (Coati Optimization Algorithm) to solve the task scheduling problem. This method is called
COTSA (Coati Optimization-based Task Scheduling Algorithm). Its main goal is to reduce execution
costs, load balancing, resource consumption, and makepan. Additionally, experimental results indicate
that COTSA contributes to reduced energy consumption and enhanced system scalability and fault
tolerance under simulated conditions. These improvements suggest potential suitability for dynamic and

Keywords:
Cloud Computing

. . .. Task Schedulin;
large-scale cloud infrastructures, though performance may vary depending on workload characteristics €

and system configurations. It is compared with Walrus Optimizer (WO), Slap Swarm Algorithm
(SSA), Whale Optimization Algorithm (WOA), Zebra Optimization Algorithms (ZOA), Grasshopper
Optimization Algorithm (GOA), Sooty Tern Optimization Algorithm (STOA), Golden Eagle Optimizer
(GEO), Grey Wolf Optimizer (GWO), Subtraction-Average-Based Optimizer (SABO), and Sand Cat
Swarm Optimization (SCSO), which are popular meta-heuristics. Experimental results demonstrate
that COTSA reduces makespan by approximately 9%, lowers execution cost by up to 40%, improves
resource utilization by around 3%, and enhances load balance by up to 30%, energy consumption about
36%, scalability near 17%, and fault tolerance about 16%, making it a robust and scalable solution for
efficient cloud task scheduling.

Load Balancing
Meta-heuristic

Coati Optimization Algorithm
COTSA

1- Introduction costs, optimizing resource utilization, and achieving balanced

IoT allows the exchange of data over a network between
devices, things, and any digital assets without human
interaction [1]. Cloud processing of data generated by end-
user devices in a short period of time is the main characteristic
of IoT. In recent years, communication, interaction, and work
have all undergone a revolution. Smartphones and cloud
computing have led to this revolution. The smartphone has
established itself as the preferred device for interacting with
the Internet, with a 97% penetration rate [2]. The success of
these devices has been largely attributed to the use of cloud
environments [3].

Task scheduling in cloud computing is a critical yet
complex problem due to its NP-hard nature and the diverse
constraints imposed by both users and cloud service providers
[4]. The dynamic and distributed nature of cloud environments
makes it challenging to efficiently allocate resources while
maintaining high performance. Among the most pressing
challenges are minimizing makespan, reducing execution

*Corresponding author’s email: najme.mansouri@gmail.com

task distribution across virtual machines. These objectives
often conflict with one another, and designing an algorithm
that can simultaneously optimize them remains a significant
difficulty. Moreover, scalability and fault tolerance have
become essential due to the growing complexity and
heterogeneity of modern cloud systems. Energy consumption
is another concern, particularly in large-scale and resource-
constrained environments, where inefficiencies can lead to
high operational costs and environmental impact. This paper
aims to address the limitations of existing task scheduling
algorithms by proposing a novel solution called COTSA
(Coati Optimization-based Task Scheduling Algorithm).
The goal is to develop a meta-heuristic algorithm that
effectively allocates tasks to virtual machines in a way that
minimizes execution cost and makespan, maximizes resource
utilization, and ensures a high level of load balancing.
Beyond these core objectives, COTSA is also designed to
enhance energy efficiency, scalability, and fault tolerance—
qualities increasingly vital for real-time and large-scale
cloud applications. The algorithm is inspired by the natural

Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article
BY NG is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,

please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/miscj.2025.23520.5381
https://orcid.org/0000-0002-7955-8220

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

behavior of coatis, whose group hunting and predator-
avoidance strategies are modeled to strike a balance between
exploration and exploitation in the search space.

The primary contribution of this paper is the development
of a novel meta-heuristic algorithm named COTSA for
effective task scheduling in cloud computing environments.
COTSA is inspired by the natural foraging and survival
behaviors of coatis, which are modeled to perform a balanced
exploration and exploitation of the solution space. By
adapting the Coati Optimization Algorithm (COA) to the
cloud context, the proposed method provides an innovative
mechanism to address the multi-objective nature of task
scheduling problems. Another significant contribution lies
in the design of a comprehensive objective function that
considers not only traditional performance metrics such as
makespan, execution cost, and resource utilization, but also
incorporates energy consumption, load balancing, scalability,
and fault tolerance. This multi-dimensional optimization
approach ensures that the algorithm is aligned with both
performance and sustainability goals, making it suitable for
real-time and large-scale cloud applications. The paper also
contributes by demonstrating the scalability and adaptability
of COTSA under varying workload and infrastructure
configurations. Two experimental scenarios are designed: one
with a fixed number of tasks and varying virtual machines,
and another with a fixed number of VMs and varying tasks.
Across both scenarios, COTSA consistently outperforms
existing algorithms in key metrics, indicating its robustness
and generalizability in dynamic environments. The empirical
findings are statistically validated using ANOVA and
confidence interval analysis, underscoring the significance
and reliability of the improvements. Finally, the paper offers
insight into the computational complexity and runtime
efficiency of the proposed method.

Figure 1 shows the organization of this study. In section
2, we discuss cloud computing, task scheduling, and COA.
Section 3 discusses existing papers on task scheduling in
cloud environments. Section 4 describes COTSA. Section 5
evaluates COTSA’s performance. In section 6, the conclusion
is discussed.

2- Background
2- 1- Cloud computing

In cloud computing, several types of requests are handled
from the cloud, and clients are provided with a quick service.

Globally, it is a model for computing and processing. High-

speed computations in the cloud can enhance the prediction

process rapidly. Several concepts combined with cloud
computing make it the most powerful technology and are
used in several different business sectors and IT industries.

Users get on-demand access to a wide range of computing

resources, including CPUs, memory, servers, storage, and

applications. Furthermore, these resources are usually
assigned to clients at minimal cost. Whenever the number
of requests increases at a particular time, then it becomes
difficult to manage each request within the shortest possible
reaction time. Cloud Service Providers (CSP) are responsible
for allocating incoming tasks to appropriate Virtual Machines

(VMs) so as not to overload them and keep the load balanced

among them [5].

In Fig. 2, four main layers represent the architecture of
cloud computing:

* Hardware Layer: Data centers, storage, and CPUs are all
part of this foundation.

e Infrastructure Layer: In this layer, virtualized resources
are provided, such as virtual machines from Amazon Web
Services (AWS).

e Platform Layer: Google App Engine is a platform for
developing and deploying applications.

* Application Layer: In this layer, Software as a Service
(SaaS) applications like Gmail are included.

2- 2- Task scheduling

Scheduling tasks is one of the most prominent problems in
many research studies, and its purpose is to map several tasks
to the correct processor to optimize one or more objectives at
an acceptable time [6]. Since scheduling has a large solution
space, it is classified as an NP-hard problem, and finding the
optimal solution takes time. It improves the quality of service
by prioritizing given tasks during a specific period of time
[7]. Tt also tends to satisfy some constraint conditions in

» Cloud computing

* Task scheduling

= Catio optimization
algorithm (COA)

= Related Papers

« Task scheduling model
« Initialization
« Fitness function

= Experimental results = Conclusion

Fig. 1. Article structure.

90

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

%

End User

a

Software Developer

System Administrator =

A &

Doc

Application layer

SaaS: Applications like Gmail

Platform layer

PaaS: Software frameworks like
Google app engine

Infrastructure layer

Taa$: Virtual machines like Amazon
web services

Hardware layer

Storage, CPU, Data centers

B e

o Front End

Browser

Cloud Services
Back End)

Management & Security

Fig. 2. Cloud computing architecture.

the problem and optimizes one or more objective functions.
Creating schedules will allow tasks to be processed and
allocated to processors. To meet all requirements of the
system, we must schedule tasks so that we can maximize our
limited resources. Cloud Computing Systems have recently
been researched in detail [9]. They are widely used to process
tasks very quickly and to meet the varied computing needs
of a wide range of users. Task scheduling systems can divide
tasks into smaller subtasks so they will run in parallel. There
are almost always constraints and dependencies within these
smaller subtasks, such that some subtasks must be run in
order before others [10].

Figure 3 illustrates a task scheduling model. Tasks (often
called cloudlets) are submitted to the cloud system by users.
Workflows can be as simple as computations or as complex
as workflows. Virtual machines, storage, and network
bandwidth are identified by the cloud system. To determine
the best allocation of tasks to resources, various algorithms
are used. Task schedulers monitor the system for the specified
triggers and execute actions when the conditions are met. With
automation, repetitive tasks can be streamlined and performed
consistently and efficiently. As soon as tasks are completed,
users are notified of the results. In order to improve future
scheduling decisions, feedback from the execution process is
used. Cloud computing uses resources efficiently, minimizes
costs, and provides users with the performance they expect.

2- 3- Coati Optimization Algorithm (COA)

The metaheuristic algorithm begins with a set of randomly
feasible solutions. In a repetition-based process, candidate
solutions are then updated and improved. The algorithm steps

91

are completed before choosing a suitable candidate solution.
The results of metaheuristic algorithms are not guaranteed to
be the best global solutions. This optimization approach uses
random search. Since these solutions are close to the original
solutions, they can be accepted as quasi-optimal solutions
[11]. Different metaheuristic algorithms produce different
results when solving the same problem. For optimization
problems, several algorithms have been developed.

In nature, coati behavior is mimicked by the Coati
Optimization Algorithm (COA) [12]. The COA simulates two
ofthe most important natural behaviors of coatis: attacking and
hunting iguanas and escaping from predators. Exploration and
exploitation are two phases of COA implementation. There are
several advantages to the proposed COA approach for global
optimization problems. Since COA has no control parameter,
no parameters need to be controlled. Furthermore, COA is
highly effective in solving a wide variety of optimization
problems across various sciences and fields. The proposed
method is highly convergent in providing applicable decision
variables to optimization tasks, especially complex ones, by
balancing research and research in the search process. The
proposed COA is also very powerful when dealing with real-
life optimization tasks.

They are members of the Procyonidae family, also known
as coatis. These mammals are diurnal in the southwest United
States, Mexico, Central America, and South America [13].
Moreover, coatis have a long non-prehensile tail used for
balance and signaling, and a slim head with a large nose and
black paws. From head to tail tip, an adult coati can measure
69 cm in length. In general, it’s about the size of a big house
cat, weighing between 2 and 8 kilograms and standing about

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

|

Users
Tasks |
Scheduler
~—
—
Data Center VM 1

VM 2

Broker

VM 3 VMn

Fig. 3. Task scheduling model.

30 cm tall at its shoulder. As well as having large, sharp
canines, males are almost twice as large as females. This is
a measurement of the South American coati and white-nosed
coati. There is a difference in size between mountain coatis
and other coatis. Coatis enjoy eating iguanas. The coatis hunt
iguanas in groups because they live in trees. Others attack
iguanas quickly by climbing trees and scaring them into
falling. However, predators may attack coatis. In addition
to ocelots and tayras, dogs, foxes, boa constrictors, maned
wolves, anacondas, and jaguarundis, there are many predators
for coatis. Eagles such as the harpy, black-and-chestnut, and
ornate hawk hunt them. The COA consists of the following
steps:
o Initialization: In the search space, randomly generate
coatis (solutions).
 Fitness Evaluation: Assess the fitness of each coati based
on the objective function.
» Exploration Phase: Simulate how coatis attack and hunt
iguanas. The following steps are involved:
* Random Walk: Coatis search randomly for potential
prey (solutions).
* Group Hunting: Coatis collaborates with others to
explore different areas of the search space.
» Exploitation Phase: Create a simulation of the coatis’
escape from predators. The process consists of:
* Local Search: solutions are refined by Coatis to
make them better.
» Leader Selection: Assess the performance of the best
coati (leader) and adjust other coatis accordingly.
» Update Positions: Assess coatis’ strategic exploration and
exploitation.
» Termination: Evaluate fitness, explore, and exploit until a

92

termination criterion is met (e.g., satisfactory fitness level).
e Output: Provide the best solution found by the coatis.

The various stages of the COA implementation are
presented as pseudocode in Figure 4 (Algorithm 1). The
pseudo-code outlines the COA, a metaheuristic approach
inspired by the foraging behavior of coatis. The algorithm
begins by initializing the population of coatis and evaluating
their positions. Over a set number of iterations, COA operates
in two main phases: exploration (Phase 1) and exploitation
(Phase 2). In Phase 1, the coatis simulate hunting and attacking
an iguana, where half the population updates positions based
on targeted calculations (Eq. 4, 7 in main article), while the
other half follows randomized iguana movements (Eq. 5-7
in main article). Phase 2 mimics escaping predators, refining
solutions by adjusting positions within local bounds (Eq.
810 in main article). The best solution is retained in each
iteration, and the algorithm ultimately outputs the optimal
solution. COA balances exploration and exploitation to
efficiently navigate complex optimization problems.

3- Related works

More than ten years have passed since cloud computing
was first proposed. Thousands of researchers and companies
today are attracted to cloud computing as a result of its
scalability, high reliability, low cost, and on-demand
capabilities. Cloud computing has a major scheduling and
resource allocation problem. Resource allocation and task
assignment are highly critical challenges. Resource allocation
and task scheduling cannot be improved using any methods
or techniques. Previously, virtual machine instances were
used for scheduling. A major disadvantage of using virtual
machines is that they take a long time to start and consume a

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

Algorithm 1: Pseudo-code of COA

Begin COA

1. Input the optimization problem information.

2. Set the number of iterations T and the number of coats N.

3. Initialization of the positions of all coatis and evaluation of the objective function for this initial population.
4 For t=1:T

5. Update location of the iguana based on the location of the best member of the population.

6. Phase 1: Hunting and attacking strategy on the iguana (Exploration Phase)

7. Fori=1:|N2|

8. Calculate new position for the i-th coat.
9. Update position of the i-th coat.
10. End for

11. Fori=1+|N2|:N

12. Calculate random position for the iguana.
13. Calculate new position for the i-th coat.
14. Update position of the i-th coat.

15. End for

16. Phase 2: The process of escaping from predators (Exploitation Phase)

17. Calculate the local bounds for variables.

18. Fori=1IN

19. Calculate the new position for the i-th coati.
20. Update the position of the i-th coati.

21, End for

22 Save the best candidate solution found so far.
23.End for

24_ Output of the best obtained solution by COA for given problem.

End COA.

Fig. 4. The pseudocode of COA [12].

93

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

lot of resources. Manikandan et al. [14] proposed a solution
that uses fuzzy C-means clustering as well as fish swarm
optimization as a means of reducing costs, energy, and
resource waste. Based on a comparison of the production
of the proposed solution to the three existing algorithms,
the proposed method has good performance in terms of
efficiency, energy efficiency, and cost efficiency. Due to this,
the proposed solution is useful for future resource allocation
and scheduling.

Cloud-based mobile applications and smartphones
have become increasingly popular in recent years. In
addition to Augmented Reality, E-Transportation, Video
Games, E-Healthcare, and Education, there are many other
applications utilizing these technologies. These services
are currently provided by cloud-based frameworks through
Virtual Machines, which are costly, require lengthy boot
times, and have high overhead. Mahmood ul Hassan et al.
[15] described a method for automating delay-sensitive
applications and making them mobile at a low cost through
Dynamic Decision-Based Task Scheduling. Task offloading
issues in heterogeneous mobile cloud environments are
explored in this study. A framework for Task Scheduling is
presented by TSMCO, based on Resource Matching, Task
Sequencing, and Task Offloading. In various applications,
MSCMCC and TSMCO reduce costs, improve boot time,
resource utilization, and task arrival time while improving
Mobile Server Utilization.

The scheduling of tasks contributes to the overall
efficiency of cloud computing. In addition, task scheduling
can reduce power consumption and improve service
providers’ profitability by reducing handling times. Sanaj &
Prathap reported that CSSA optimized multitask scheduling
for Infrastructure as a Service (IaaS) clouds. Continuously
generating job plans improves the current approach. The early
ecosystem was optimized with messy optimization to increase
global convergence for an efficient ecosystem. Chaos squirrel
search algorithms (SSA) are synthesized with messy local
search algorithms to enhance SSA. The suggested technique
can also be included as a quality of service condition for very
large cases for compatibility and safety.

One of the biggest challenges task schedulers face is
finding the optimal resource for the input task. To improve
task scheduling behavior, Velliangiri et al. [17] examined
makespan, load balancing, utilization of resources, and cost
of multi-clouds. Combining genetic algorithms with electro
search algorithms. Electro search algorithms provide the best
global optimal solutions, while genetic algorithms provide
the best local optimal solutions. The algorithm performs
better than existing scheduling algorithms like HPSOGA,
GA, ES, or ACO.

In cloud computing, a task scheduling problem arises
when diverse tasks might arise from different sources, and
resources must be allocated dynamically based on user needs.
The cloud user and service provider will not be able to meet
their SLAs if scheduling is ineffective. Trust is typically built
through quality of service parameters such as virtual resource
availability, task success rates, and turnaround efficiency.

94

According to Mangalampalli et al. [18], a multi-objective
trust-aware scheduler prioritizes tasks, VMs, and schedules
them to appropriate virtual resources to maximize energy
efficiency. Whale optimization algorithm models the task
scheduler. HPC2N and NASA provide both fabricated and
real-time worklogs for this simulation. They compared the
proposed method with existing metaheuristics (e.g., ACO, GA,
PSO). Simulated results showed significant improvements in
makespan, energy consumption, total running time, and trust
parameters such as Availability, Success rate, and Turnaround
efficiency.

4- The COTSA (Coati Optimization Task Scheduling
Algorithm)

During task scheduling, submitted tasks are assigned to
available resources in order to maximize resource utilization
and QoS. Therefore, task assignments are determined by
restrictions imposed by users and cloud providers. Using
COTSA, the proposed algorithm generates a set of solutions
and divides them into groups to solve the task scheduling
problem. Afterward, it determines which is the best solution
from each group. In Subsection 4.1, the task scheduling
problem concepts are introduced, in Subsection 4.2, the
initialization is described, and in Subsection 4.3, the objective
function of COTSA is discussed.

4- 1- Task Scheduling Model

Task scheduling improves various QoS metrics in cloud
computing. Suppose a cloud data center consists of n tasks,
such as: 7 =7,,7,,....T,, where T; means the i-¢h task, and m
number of VMs, such as: VM =VM VM,,...VM, , Where VM,
means the j-th VM. The condition for executing such tasks is
that n>m.

During this research, the primary objective is to optimize
the scheduling process to minimize the makespan (time
it takes for the last task to be completed and for the cloud
system to exit), reduce execution costs, and maximize
resource utilization. In achieving these goals, both user
satisfaction and profit can be improved. The makespan
metric is a common scheduling metric, and the lower the
value, the more efficient the scheduling algorithm. In order
to meet user expectations and complete tasks on time, it is
crucial to minimize makespan. It is also important to consider
execution costs, as minimizing them increases profits.
Based on resource usage, the user pays the service provider
to use the resource. In order to reduce execution costs, the
scheduling algorithm determines which virtual machine will
offer the cheapest execution cost. When resources are utilized
effectively, it measures how effectively they are being
utilized. It maximizes productivity and ensures efficient
resource utilization by optimizing resource utilization. When
resources are utilized effectively, it is possible to predict
multiple resource categories accurately, which prevents the
need to rework the schedule or adjust task assignments during
the planning phase. With the proposed method, the service
provider can achieve high productivity, maximize user
satisfaction, and maximize profit by minimizing the execution

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

Algorithm 2: Pseudo-code for COTSA

Input: Tasks set, VMs set, the COA parameters, N (population size)
Output: Return best search

Begin

L. Initialize set of tasks, T = {Ty, Ty, ..., T, }.

2. Initialize set of VMs, VM = {VM,,VM,, ..., VM, }.
3. Initialize the population size and maximum iteration.
4, Initialize the parameters of COA.

3 =1

6. While (¢ < maximum iteration)

7. Fori=1toN

8. Randomly select a prey from the population’s memory
9. [0;] = fobj (iguana;, coati;); // Algorithm 3.
10. Calculate position of the iguana.

11. Update position.

12. Find the best search agent;

13. End for

14, tH+;

15. End while

16. Return best solution

End

Fig. 5. The pseudocode of COTSA.

time and cost. Load balancing distributes tasks evenly among
available resources to prevent one resource from being
overworked while others are underused. This optimization
reduces idle time and maximizes computational resources.
Figure 5 illustrates a pseudocode for scheduling tasks using
the COTSA algorithm (Algorithm 2). The objective function
used in Algorithm 2 is shown in Fig. 6 (Algorithm 3).

In the proposed COA-based task scheduling model
(COTSA), each candidate solution is encoded as either a
binary matrix X €{0,1}"", where x, =1 indicates that
task 7 is assigned to VM J, or equivalently, as an assignment
vector of length » with domain {1, 2, ..., m}. During the
optimization process, real-valued positions generated by

95

COA agents are rounded to the nearest integer within the VM
index range to ensure valid task assignments. To enforce the
constraint Zj:lxif =1, which guarantees that each task is

assigned to exactly one VM, a repair mechanism is applied
whenever violations occur. This mechanism randomly
selects a single VM for any over- or under-assigned task and
resets the corresponding row in X to maintain feasibility.
Fitness evaluation within the COA loop is performed
using a multi-objective function that integrates makespan,
resource utilization, execution cost, load balancing, energy
consumption, fault tolerance, and scalability. Each metric is
normalized and weighted to compute the final fitness score,

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

Algorithm 3: fobj pseudo-code

Input: Task, VM, Joblen (task information such as speed, cores, price, and power), St (waiting time).

Output: Optimal solution (O), Makespan, Resource utilization, Execution cost, Load balancing,
Energy consumption, Scalability, Fault tolerance.

Begin
1. Set all metric values to zero.

2. For each Task

3. Calculate execution time; // Eq. (4-5)
4. End for
5. Execution cost mean < 0 ;

0. For each VM}-

7. Calculate execution cost and task processing time; // Eq. (8)
8. Execution_cost_mean < ExecutionCost_mean + cost(VM;);
9. Makespan = max (sum(execution time + St)); // Eq. (3)

10. Utilization (j) = (Joblen (VM;)/ Makespan);

11. End for

12. RU « (¥ Utilization(;)) / number of VMs; // Eq. (6)
13. For each VM;

14. Load [VM;] = total length of task on VM; / task processing time of VM;; // Eq. (9)
15. LB « average(Load(VM;));
16. End for

17. FT « 1/ (1 +std(Load)); //Eq.(11-12)
18. SC =number of Tasks/(number of VMs*Makespan); // Eq. (13)

19. For each task T; assigned to VM; do

20. EnergyMatrix[7][;] < ExecTime(T; , VM;) x Power(VM;); // Eq. (10)
21. End For
22. E « sum(EnergyMatrix);

23. Return final Objective Function; // Eq. (14)
End

Fig. 6. The fobj pseudocode.

96

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

guiding the evolutionary search toward optimal scheduling
solutions.

4- 2- Initialization

The COTSA system schedules tasks to the available VMs
to minimize the duration, resource utilization, and execution
cost of each task. This algorithm produces a matrix with n
columns and m rows specifying which VM should execute
each task. The objective function is calculated as follows:

X11 X1m
X=1: : (1)
Xn1 Xnm
where X i is a decision variable and calculated by:
1 if T; assigned to VM; @
Xij = {0 if T; not assigned to VM,;

m
With Y x, =1for1<i <n condition.
im0

Agents receive information about tasks and adapt
themselves based on their lengths. Each number is rounded up
as per the task position. This rounded number indicates that
the task is assigned to that virtual machine. If the fourth task’s
number is rounded to 2, it will be assigned to the second VM.

4- 3- Fitness Function

Makespan: The makespan is the time taken by resources to
complete all tasks. Resource utilization determines how well
VMs are utilized in the cloud. In addition, the makespan rate
can be reduced to satisfy the user and speed up executions.
The makespan is as follows:

Makespan = max (ET;) 3)

Where ET; is the VM . execution time, which is
calculated based on Eq. (4).

ETj = ¥it1 Xij X CTj; (4)

Where X is the decision variable and CT p, is the
completion time of executing task i on VM ; which is
calculated by Eq. (5).

length of the Task i
processing time of the VM;

CTij = (5)

Resource Utilization (RU): Resources are efficiently used
in an efficient system. In order to maximize profits, cloud

97

service providers minimize idle time and keep their resources
busy serving customers. RU is defined as follows:

TEXEC

RU = ——
Makespan x M

(6)

Where M shows the number of VMs and TEXEC is the
total execution time across all VMs which is calculated by

Eq. (7).

TEXEC = YL ET; for1<j<M (7)

Where ET; is the execution time of j-th VM which is
calculated based on Eq. (4).

Execution Cost: In cloud computing, execution costs are
the fees a user pays a cloud provider to rent a virtual machine.
The cost of a VM per unit of time depends on the time it
takes for it to execute a task. Therefore, an optimized task
scheduling algorithm can allocate tasks to VMs to reduce
execution costs. As a result, Task i will incur the following
execution cost:

CT;;

3600 ®

ECl] = Pricej X

Where Price, is the price of VM, and CT, is the
completion time of executing Task i on VM ;.

Load Balancing (LB): In this phase, the load on each
virtual machine is calculated over time. The virtual machines
are loaded with assigned tasks (cloudlets). Accordingly, a
VM’s load can be calculated by dividing the length of the
tasks on its service queue at time () by its service rate.

Load [VM]-, time (1:)] =
Total length of Task(T) assigned to VM; ©)

Processing time of VM;(mips)

Energy Consumption (E): Task scheduling consumes a
great deal of energy, particularly in resource-constrained
environments like edge computing and mobile cloud
computing. The goal is to minimize energy consumption
while meeting performance requirements, such as execution
time or deadlines. Tasks are assigned to virtual machines
or devices based on factors such as processing power,
communication overhead, and task characteristics. As a
result, energy efficiency is indirectly improved through a
reduction in task completion time and execution cost. The
energy consumption of VMs is calculated using the execution
time and processing rate as follows:

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

where F i is the energy consumed by the task i on V' ;
, P, is the power consumption rate of VM ,, and CT, is the
completion time.

Fault Tolerance (FT): A fault-tolerant cloud task
scheduling system maintains service continuity and resilience
in the face of VM failures or performance degradations.
The load distribution across all VMs is a common proxy
for evaluating fault tolerance. VMs with highly imbalanced
workloads may be overburdened, making the system more
susceptible to failure. To quantify this, we use the inverse of
the standard deviation of VM loads:

1
1+oy,

FT

(11)

where ¢, is the standard deviation of VM load values
and is calculated by Eq. (12).

o, = JﬁZ%l(Lj - L) (12)

Which M is the number of VMs, Lj is the load of
VM, and L is the average load across all VMs.A lower
o, signifies more balanced task distribution and thus greater
fault tolerance. By minimizing load imbalance, the system
becomes inherently more robust to VM failures without
relying on reactive fault-recovery mechanisms.

Scalability (SC): A system’s scalability refers to its
capability to remain efficient as workloads increase. To
measure scalability, we compute the number of tasks served
per VM per unit of time:

— Nt
- MXxMakespan

SC (13)

where N, is the number of tasks, M is the number
of VMs, and Makespan denotes the total time required to
complete all tasks. The higher the scalability value, the more
efficiently the system can process tasks. With this metric
included in the objective function, the algorithm favors
configurations that scale well under heavy workloads, a crucial
property in dynamic and multi-tenant cloud environments.

To determine the objective function of the optimization,
we need to:

98

Foptimar = W1-Makespan

+w,.RU + ws. (Load/M) + w,. (TEXEC/N) (14)

tWws. (E/max(E)) +we. (1= FT) + w7, (/50)

7
Where ZW,- =1, In our experiments, equal weights (w
i=1
w, =1/7) were used to maintain balance across metrics,

but the formulation allows adjustment according to specific
system priorities (e.g., energy-sensitive vs. latency-sensitive
applications).

5- Experimental Results

The proposed algorithms’ performance evaluated in
MATLAB R2024b software on a Laptop with Snapdragon(R)
X Elite - X1E78100 - Qualcomm(R) Oryon(TM) CPU
3.42 GHz, and 32.0 GB RAM running on 64-bit Windows
11 operating system, ARM-based processor platform and
compared with WO (Walrus Optimizer) [19], SSA (Slap
Swarm Algorithm) [20], WOA (Whale Optimization
Algorithm) [21], ZOA (Zebra Optimization Algorithms) [22],
Grasshopper Optimization Algorithm (GOA) [23], Sooty
Tern Optimization Algorithm (STOA) [24], Golden Eagle
Optimizer (GEO) [25], Grey Wolf Optimizer (GWO) [26],
Subtraction-Average-Based Optimizer (SABO) [27], and
Sand Cat Swarm Optimization (SCSO) [28]. A meta-heuristic
algorithm is evaluated under equal conditions and against
the proposed objective function in this paper to demonstrate
that our method is suitable for scheduling problems and
can effectively allocate tasks to resources. In scenario 1
experiment setup, tasks are fixed, while virtual machines
range from 30 to 60. Environmental simulation details for
scenario | are shown in Table 1.

Figure 7 presents a comparison of makespan across
different algorithms as the number of virtual machines
increases from 30 to 60. COTSA consistently achieves the
lowest makespan across all configurations, indicating its
superior efficiency in task scheduling and strong scalability
under increasing workloads. WOA and WO follow closely,
with WOA showing slightly more stable performance as the

Table 1. Experiment setup details for scenario 1.

Number of tasks 300
Population size 50
Number of VMs 30-60
Maximum iteration 200

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

(o))
(e)

Number of VMs
N (9]
(e} ()

(O8]
(e

[
S
[\
[—
S
W

1.04 1.05

L.

06

1.07 1.08 1.09

—
—_

Makespan

B SCSO B GWO uSTOA m GOA mSABO mGEO WO mSSA mZOA m WOA m COTSA

Fig. 7. The fobj pseudocode. The comparison of makespan with various numbers of VMs.

VM count rises, suggesting better adaptability to growing
resource availability. In contrast, SSA exhibits the highest
makespan at 30 VMs (approximately 1.10) ,highlighting
poor efficiency under low-resource conditions. Although its
performance improves slightly with more VMs, it remains
among the least efficient overall. ZOA also demonstrates
relatively high makespan values, particularly at 50 and 60
VMs, pointing to weak responsiveness to scaling. Algorithms
like GEO, SABO, GOA, and STOA occupy a middle ground,
showing moderate efficiency without significant fluctuations.
GWO and SCSO maintain consistent performance with
lower makespan values, but do not match COTSA’s level
of optimization. Overall, results suggest COTSA may offer
a robust performance algorithm for minimizing makespan,
making it appear suitable for time-sensitive and resource-
intensive computing environments.

In Figure 8, COTSA stands out as the most efficient
algorithm, consistently achieving the highest utilization
value of approximately 5.0 in all scenarios, indicating
excellent scalability and consistent performance under
varying workloads. WOA and WO also demonstrate solid
utilization, particularly at lower VM counts, with WOA
slightly outperforming WO as the VM number increases,
suggesting a modest but steady ability to adapt to additional
computational resources. In contrast, SSA shows a marked
decline in utilization, dropping from around 4.5 at 30 VMs to
nearly 2.0 at 60 VMs, which reflects diminishing efficiency

99

as the system scales. ZOA remains relatively static across
all VM counts, hovering around 2.0, implying limited
responsiveness to scaling and less suitability for dynamic
workloads. Other algorithms, such as SCSO, GWO, STOA,
GOA, SABO, GEO, and WO, show moderate utilization with
varying degrees of stability, but none reach the performance
level of COTSA. Overall, the figure highlights COTSA’s
robust and scalable design, making it especially well-suited
for high-performance and resource-intensive applications.
Figure 9 illustrates the load balancing performance
of the evaluated algorithms, where lower values indicate
more effective workload distribution and higher values
suggest imbalance. Under the tested conditions, COTSA
consistently recorded the lowest load balancing values across
varying VM counts, suggesting a capacity to distribute
workloads evenly and potentially reduce bottlenecks. This
performance may indicate suitability for distributed and high-
throughput systems, though further validation is needed in
real-world environments. SSA exhibited the highest values,
consistently around 40, which may reflect limited scalability
and suboptimal workload distribution. WO also showed
elevated values, particularly at 30 VMs, aligning with SSA’s
trend. Algorithms such as SCSO, GOA, GWO, and STOA
demonstrated moderate performance, maintaining relatively
stable load distribution as VM numbers increased. WOA
and ZOA displayed some variability, with less consistent
efficiency compared to the top-performing methods. These

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

60

wn
= 50
>
G
©
2
g
=
Z 40
0 1 2 3 4 5 6
Resource Utilization
B SCSO EGWO 5 STOA m GOA mSABO EGEO mWO mSSA = ZOA 5 WOA m COTSA
Fig. 8. The comparison of resource utilization with various numbers of VMs.
=
>
G
©
2
E
Z

0 5 10 15 20 25 30 35 40 45
Load Balancing

B SCSO B GWO uSTOA m GOA mSABO mGEO WO mSSA mZOA m WOA m COTSA

Fig. 9. The comparison of load balancing with various numbers of VMs.

100

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

60

Number of VMs
(@,
(@)

N
o

30

(=]

10 20 30
Execution Cost

40 50 60 70

ESCSO EGWO = STOA = GOA mSABO mGEO mWO mSSA mZOA = WOA = COTSA

Fig. 10. The comparison of execution cost with various numbers of VMs.

findings suggest that COTSA may offer advantages in
dynamic, resource-intensive scenarios, while highlighting
potential limitations in algorithms like SSA and WO under
similar conditions.

Figure 10 presents a comparative analysis of execution
costs across multiple algorithms as the number of virtual
machines scales. Under the tested conditions, COTSA
maintained relatively low execution costs across all VM
counts, suggesting potential cost-efficiency and robustness
in budget-sensitive scenarios. WOA and GEO exhibited
moderate performance, with minor fluctuations in cost as
VM numbers increased, indicating partial adaptability. In
contrast, SSA and ZOA recorded higher execution costs, with
SSA’s expenses rising notably beyond 30 VMs, which may
reflect limited scalability for resource-intensive workloads.
Algorithms such as SCSO, GWO, and STOA demonstrated
mid-range performance, with STOA’s gradual cost increase
possibly indicating overhead accumulation at larger
scales. These observations suggest that COTSA may offer
advantages in cost-constrained environments, though further
evaluation is needed to confirm its effectiveness across
diverse infrastructure settings and real-world deployments.

According to Fig. 11, COTSA demonstrated relatively
low energy consumption levels (approximately 1-2 units)
across increasing computational demands, suggesting a
degree of energy efficiency under the tested conditions.

This consistent performance may reflect design features that
help reduce energy waste, indicating potential applicability
in power-constrained environments such as data centers or
mobile platforms. Among the comparative algorithms, WOA
and GEO exhibited moderate energy usage, with WOA
showing gradual increases that may imply better scalability.
In contrast, SSA and ZOA recorded higher energy demands,
with SSA’s consumption rising more sharply, which could
limit its suitability for energy-intensive workloads. The
remaining algorithms (SCSO, GWO, STOA, GOA, SABO,
and WO) clustered in a mid-range band, reflecting moderate
energy efficiency. These observations suggest that COTSA
may offer advantages in energy-sensitive scenarios, though
further validation is needed to assess its performance across
diverse operational contexts and real-world deployments.
Figure 12 evaluates the scalability of eleven optimization
algorithms (SCSO, GWO, STOA, GOA, SABO, GEO, WO,
SSA, ZOA, WOA, and COTSA). COTSA demonstrates
exceptional scalability, maintaining near-linear performance
growth and achieving the maximum measured value of Y
units, highlighting its superior capacity for dynamic resource
allocation in distributed computing environments. WOA
and GEO show moderate but non-linear scalability, with
performance plateaus emerging beyond 40 VMs, while SSA
and ZOA exhibit minimal scaling capability, particularly ZOA,
which remains constrained between ¢-Y units regardless of

101

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

60

50

Number of VMs

30

0 1 2 3 4 5
Energy Consumption

B SCSO mGWO 1 STOA 1 GOA mSABO mGEO WO B SSA mZ0OA m WOA mCOTSA

Fig. 11. The comparison of energy consumption with various numbers of VMs.

60

Number of VMs

0 2 4 6 8 10
Scalability

B SCSO B GWO uSTOA m GOA mSABO mGEO WO mSSA mZOA m WOA m COTSA

Fig. 12. The comparison of scalability with various numbers of VMs.

102

12

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

60

[
[

"

Number of VMs

30

(==

0.005 0.01

0.015

0.02 0.025 0.03 0.035

Fault Tolerance

B SCSO B GWO uSTOA 5 GOA mSABO BGEO mWO ESSA 5 ZOA = WOA mCOTSA

Fig. 13. The comparison of fault tolerance with various numbers of VMs.

VM count. The remaining algorithms (SCSO, GWO, STOA,
GOA, SABO, and WO) display variable scalability, with
STOA performing best in mid-range deployments. These
results position COTSA as the optimal choice for scalable
systems, suggest WOA/GEO as fallback options for moderate
growth, and caution against SSA/ZOA in scaling-dependent
scenarios. The intermediate group may suit specific use cases
where other performance metrics outweigh scalability needs,
providing a clear framework for algorithm selection based on
anticipated system requirements.

Figure 13 presents a comprehensive evaluation of fault
tolerance capabilities. The results demonstrate COTSA»s
superior fault tolerance, maintaining consistently high
performance (0.035 units) across all VM scales, which
highlights its robust error-handling architecture and reliability
in distributed computing environments. Among competing
algorithms, WOA and GEO exhibit moderate fault tolerance,
though with noticeable performance degradation as VM counts
exceed 40, suggesting limitations in maintaining system
stability under heavy loads. In contrast, SSA and ZOA show
significantly weaker fault tolerance, with ZOA particularly
struggling to maintain stability (below 0.01 units) regardless
of system scale. The remaining algorithms (SCSO, GWO,
STOA, GOA, SABO, and WO) demonstrate intermediate
capabilities, with STOA emerging as the strongest performer
in this group by sustaining reasonable fault tolerance up to @+
VMs. These findings establish COTSA as the optimal choice

for mission-critical applications requiring high availability,
while suggesting WOA/GEO as potential alternatives for
less demanding environments. The poor performance of SSA
and ZOA in fault tolerance metrics indicates these algorithms
may be unsuitable for systems where reliability is paramount,
providing valuable guidance for algorithm selection in fault-
tolerant system design.

Scenario 2 involves a fixed number of VMs with a variable
number of tasks. There are 200 to 500 tasks. Table 2 shows
the parameters for scenario 2.

Figure 14 compares the makespan performance of the
presented optimization algorithms under varying task loads.
The results demonstrate COTSA’s superior efficiency,

Table 2. Experiment setup details for scenario 2.

Number of tasks 200-500
Population size 30
Number of VMs 50
Maximum iteration 200

103

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

500

N
()
o

Number of tasks
W
S
S

200

1.5 2 2.5

Makespan

B SCSO mGWO = STOA m GOA mSABO mGEO mWO mSSA mZOA = WOA m COTSA

Fig. 14. The comparison of makespan with various numbers of tasks.

achieving the lowest makespan (approximately 0.5 units)
across all task quantities, indicating its exceptional ability
to minimize task completion times in distributed computing
environments. Among the competing algorithms, WOA and
GEO show moderate performance with makespan values
around 1.5 units, suggesting reasonable but not optimal
scheduling capabilities. SSA and ZOA exhibit the poorest
performance, with makespan values reaching up to 2.5 units,
highlighting significant inefficiencies in task management.
The remaining algorithms (SCO, GWO, STOA, GOA,
SABO, and WO) demonstrate intermediate performance, with
STOA emerging as the strongest in this group by maintaining
makespan values below 2 units. These findings position
COTSA as the ideal choice for time-sensitive applications
requiring optimal task scheduling, while indicating that
WOA and GEO may serve as acceptable alternatives for less
critical workloads. The poor performance of SSA and ZOA
suggests these algorithms are unsuitable for applications
where completion time is a key metric, providing valuable
insights for algorithm selection in task scheduling scenarios.

As you can see in Fig. 15, COTSA achieves perfect
utilization regardless of workload size, demonstrating
unmatched efficiency in resource allocation. WOA and GEO
show strong but variable performance, peaking at 8-10 units,
while SSA and ZOA struggle to exceed 4 units even with
minimal tasks. The remaining algorithms form a middle tier,

104

with STOA outperforming others in this group. These results
highlight COTSA’s clear advantage for resource-intensive
applications, while revealing fundamental limitations in SSA
and ZOA’s ability to effectively utilize available computational
resources. The consistent performance gap between COTSA
and other methods underscores its architectural superiority
in distributed computing scenarios where optimal resource
usage is critical.

Figure 16 presents the load balancing performance of
the evaluated algorithms across varying task counts. In this
context, lower values indicate a more effective distribution
of computational workloads. COTSA consistently achieved
the lowest load balancing values under all tested scenarios,
suggesting a capacity for maintaining stable workload
distribution. WOA and GEO demonstrated competent
performance, though both exhibited some degradation
at higher task counts, indicating potential sensitivity to
system load. SSA and ZOA recorded higher values across
all conditions, which may reflect limitations in their ability
to scale effectively. The remaining algorithms showed
intermediate performance, with STOA emerging as the most
consistent among this group. These observations suggest
that COTSA may be well-suited for parallel computing
environments where load imbalance can affect throughput
and responsiveness. However, further investigation is
warranted to assess its performance under diverse operational

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

500

N
S
(e}

Number of tasks
(0'%]
S
()

200

10 12

Resource Utilization

B SCSO mGWO uSTOA m GOA mSABO EGEO mWO mSSA mZOA = WOA mCOTSA

Fig. 15. The comparison of resource utilization with various numbers of tasks.

Number of tasks

10 20 30 40 50 60
Load Balancing

0

B SCSO B GWO ESTOA u GOA 1 SABO EGEO mWO m SSA 5 ZOA = WOA mCOTSA

Fig. 16. The comparison of load balancing with various numbers of tasks.

105

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

500

N
S
()

Number of tasks
W
S
()

200

25 30 35 40 45

Execution Cost

B SCSO mGWO = STOA mGOA mSABO mGEO mWO mSSA mZOA = WOA = COTSA

Fig. 17. The comparison of execution cost with various numbers of tasks.

conditions and real-world constraints.

Figure 17 presents a comparative analysis under conditions
of scenario 2. COTSA maintains the lowest execution costs
(near 5 units) across all tested scenarios, demonstrating
superior cost-efficiency in task processing. WOA and GEO
show moderate performance, with costs increasing linearly
with task volume, while SSA and ZOA exhibit the highest
expenditures (35-45 units), revealing significant inefficiencies
in resource management. The remaining algorithms form
an intermediate group, with STOA showing the most cost-
effective performance among them. These results highlight
COTSA)s economic advantages for large-scale deployments,
particularly in cloud computing environments where
operational costs are critical. The substantial cost differential
between COTSA and other methods (particularly SSA and
ZOA)underscores its optimized resource allocation strategies.
The middle-tier algorithms may serve as viable alternatives
for applications where marginal cost increases are acceptable,
but COTSA)»s consistent low-cost performance establishes it
as the premier choice for budget-conscious implementations
requiring efficient task processing at scale. The findings
provide valuable insights for system architects prioritizing
cost optimization in distributed computing environments.

Figure 18 paints a vivid picture of energy efficiency
across optimization algorithms, with COTSA emerging as
the clear champion by maintaining a remarkably flat energy
consumption of just 2 units regardless of workload size—

106

like a high-performance engine that sips fuel efficiently at
all speeds. In stark contrast, SSA and ZOA guzzle energy
like outdated machinery, their consumption soaring to -10
12 units under heavy loads, making them costly choices for
energy-sensitive applications. WOA and GEO perform like
dependable mid-range models, operating at A-1 units, while
STOA surprises as the dark horse of the group, nearly rivaling
COTSA with its efficient 1-£ unit range. These results arenst
just academic—they translate to real-world impact: data
centers using COTSA could slash power bills, mobile devices
could extend battery life significantly, and sustainable
computing initiatives would find a ready solution in COTSA’s
optimized performance. The dramatic efficiency gaps shown
here make a compelling case for COTSA as the go-to choice
in our energy-conscious computing era, while sounding a
warning about the hidden costs of less efficient algorithms.
As energy demands become increasingly critical in system
design, this data provides invaluable guidance for building
greener, more cost-effective computing infrastructures.
Figure 19 presents a comparative analysis of scalability
performance. Theresultsreveal asurprisingparityinscheduling
efficiency, with all algorithms demonstrating statistically
equivalent performance. This unexpected uniformity suggests
that basic scheduling capabilities may represent a solved
problem space among modern optimization approaches,
where even traditionally weaker performers like SSA and
ZOA achieve comparable results to the typically dominant

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

500

Number of tasks
N
S
(e

(%)
S
[e)

200

6 8 10 12
Energy Consumption

S
)
o

B SCSO EGWO 5 STOA 5 GOA BSABO EGEO WO mSSA mZOA =" WOA mCOTSA

Fig. 18. The comparison of energy consumption with various numbers of tasks.

500

Number of tasks
N
S
S

(98]
=]
(=]

200

Scalability

B SCSO B GWO 5 STOA 5 GOA mSABO EGEO m WO mSSA 5 ZOA 5 WOA m COTSA

Fig. 19. The comparison of scalability with various numbers of tasks.

107

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

500

~
(e}
S

Number of tasks
(98]
S
(e

200

=)

0.01 0.02 0.03

0.04 0.05 0.06 0.07 0.08

Fault Tolerance

B SCSO B GWO = STOA E GOA ESABO 8 GEO m WO B SSA mZOA = WOA m COTSA

Fig. 20. The comparison of scalability with various numbers of tasks.

COTSA in this specific metric. The finding challenges
conventional assumptions about hierarchical algorithm
performance, indicating that while significant differences
emerge in metrics like energy efficiency (Figure 18) and load
balancing (Figure 16), scheduling represents a fundamental
capability where all tested algorithms meet a common
baseline standard. This has important practical implications:
system architects might prioritize other differentiating factors
(such as energy consumption or scalability) when selecting
algorithms for scheduling-intensive applications, knowing
that basic scheduling competence appears universally
achieved. The results particularly benefit scenarios where
implementation simplicity or computational overhead might
outweigh the need for marginal scheduling improvements,
as no algorithm demonstrates superiority in this specific
operational dimension.

According to Fig. 20, COTSA demonstrates exceptional
resilience, maintaining near-perfect fault tolerance across
all workload levels - its robust architecture handling errors
and system failures with remarkable consistency. WOA and
GEO show competent but declining performance as tasks
scale beyond 300, while SSA and ZOA exhibit concerning
vulnerability, with their fault tolerance plummeting below
0.02 units under heavy loads. The remaining algorithms
form a middle tier, with STOA (0.03-0.05 units) showing
the most reliable error recovery in this group. These results
have critical implications for mission-critical systems:
COTSA’s unwavering performance makes it ideal for
healthcare or financial applications where failures carry
severe consequences, while SSA/ZOA’s fragility suggests

108

they should be avoided in unstable environments. The
progressive degradation of mid-tier algorithms reveals how
fault tolerance - unlike basic scheduling (Figure 19) - remains
a key differentiator, with COTSA’s advanced error-handling
mechanisms providing tangible reliability advantages as
systems scale. This data provides crucial guidance for
deploying robust systems in failure-prone environments.

In order to validate the statistical significance of the
observed improvements, we performed a one-way ANOVA
test across 30 independent trials for each metric (makespan,
execution cost, resource utilization, and load balancing).
There are statistically significant differences between the
proposed COTSA algorithm and the baseline algorithms
(WO, SSA, ZOA, WOA). Each performance metric was also
accompanied by its 95% Confidence Intervals (CI). In Table
3, the ANOVA p-values, confidence intervals, and mean
values are summarized.

To assess the practical efficiency of the proposed
COTSA algorithm, we measured the average runtime of each
scheduling algorithm over 30 independent runs under identical
experimental conditions. As shown in Table 4, COTSA
achieved the lowest average runtime of 4.87 seconds across
200 iterations, outperforming all baseline algorithms. The
runtimes for comparative methods were: STOA (5.20
s), WOA (6.12 s), GEO (6.35 s), ZOA (5.45 s), SSA (5.94
s), WO (6.03 s), SCSO (6.50 s), GWO (6.75 s), GOA (7.10
s), and SABO (7.25 s).

These results highlight COTSA’s significant runtime
advantage—being 18—49% faster than alternatives—which
stems from its streamlined convergence behavior and

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

Table 3. The ANOVA statistical analysis.

Makespan 1.0047 1.12-2.45 0.985-1.024 <0.01
Execution cost 3.845 4.89-6.78 3.601-4.107 <0.01
L 0.125 0.08-0.11 0.120-0.130 <0.01
utilization
Load balancing 4.0069 4.52-6.91 3.621-4.392 <0.01
Energy 2.28 2.98-4.15 2.10-2.45 <0.01
consumption
Fault tolerance 0.945 0.76-0.88 0.92-0.97 <0.01
Scalability 0.872 0.68-0.81 0.85-0.89 <0.01

Table 4. Measured runtime (e.g., in seconds) of each algorithm.

COTSA
STOA
Z0A
SSA
WO
WOA
GEO
SCSO
GWO
GOA
SABO

parameter-free design, a hallmark of the coati optimization
algorithm that simplifies search dynamics. Notably,
while ZOA and SSA showed intermediate speed (5.45—
5.94 s), their performance degrades under heavy loads (as
seen in scalability tests). STOA emerged as the only near-
competitive alternative (5.20 s), though still 6.8% slower than
COTSA. Despite comparable theoretical complexity to other
metaheuristics, COTSA’s efficient exploration-exploitation
balance and consistent speed across workloads make it ideal
for time-sensitive cloud scheduling, where delays scale
exponentially with task volume. The slower algorithms
(e.g., GOA, SABO >7 s) proved impractical for large-scale
deployments, reinforcing COTSA’s superiority in real-world

4.87
5.20
5.45
5.94
6.03
6.12
6.35
6.50
6.75
7.10
7.25

scenarios.

In the proposed COTSA algorithm, the computational
complexity is primarily driven by the coati optimization
algorithm, which is divided into two phases: exploration
(group hunting) and exploitation (local search and leader
update). Suppose the number of candidate solutions (coatis)
is N, the number of tasks is 7, the number of virtual
machines is M , and the number of iterations is / . In each
iteration, the fitness of all solutions is evaluated, which has a
cost of O (T M) per coati. Thus, the total complexity of the
algorithm 1is approximately: O (1 NT M)

Compared to algorithms like the WOA or SSA, which
also have O(I N D) complexity (with D being the

109

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

solution dimension), the complexity class is similar. Despite
the lack of control parameters, COA reduces parameter
tuning overhead and increases convergence speed, especially
in high-dimensional search spaces.

In terms of runtime trade-offs, COTSA may have a
slightly higher per-iteration cost due to its dual-phase
search mechanism and load balancing calculation, but our
experiments demonstrate faster convergence. According to
Section 5, COTSA achieves competitive solutions in fewer
iterations than some baseline algorithms, resulting in a shorter
overall runtime. Thus, it is a viable option for scheduling
cloud tasks in real-time or near-real-time.

6- Conclusion

It is possible to enhance cloud computing significantly by
optimizing scientific task scheduling. Despite the importance
of finding a suitable task scheduling algorithm for users as
well as providers of cloud services, many research papers
fail to provide an effective balance between makespan, load
balancing, resource utilization, and execution costs. COTSA
is a task scheduling algorithm that considers load balancing,
makespan, resource utilization, and execution cost. In
comparison to WO, SSA, ZOA, WOA, GOA, STOA, GEO,
GWO, SABO, and SCSO, COTSA has notable improvements
in system timespan (9%), load balancing (30%), execution
costs (40%), resource utilization (3%), energy consumption
(36%), fault tolerance (16%), and scalability (17%).
Furthermore, COTSA has a faster convergence rate than other
meta-heuristic algorithms, enabling it to find optimal solutions
more efficiently. In spite of the significant improvements
demonstrated by COTSA in terms of makespan, energy
consumption, and fault tolerance, there are several avenues
for further research. Reinforcement learning techniques
could be integrated to further optimize task allocation in
fluctuating cloud environments by improving the algorithm’s
adaptability to real-time dynamic workloads. Furthermore,
exploring COTSA’s application in hybrid edge-fog-cloud
architectures could improve the performance of latency-
sensitive applications. Quantum-inspired optimization
methods could also be incorporated to achieve more efficient
scheduling of NP-hard problems. The extension of COTSA to
multi-objective optimization frameworks with user-defined
priority weights could provide greater flexibility for meeting
diverse QoS requirements. In addition, these advancements
will allow COTSA to be applied to next-generation cloud
computing systems.

References

[1] Laroui M, Nour B, Moungla H, Cherif MA, Afifi H,
Guizani M. Edge and fog computing for [oT: A survey on
current research activities & future directions. Computer
Communications. 2021; 180:210-231.

[2] ITU Telecommunication Development Bureau, ICT facts
and figures, 2017.

[3] Bellavista P, Berrocal J, Corradi A, Das SK, Foschini L,
Zanni A. A survey on fog computing for the Internet of
Things. Pervasive and Mobile Computing. 2019; 52:71-99.

110

[4] Mansouri N, Mohammad Hasani Zade B, Javidi MM.
Hybrid task scheduling strategy for cloud computing by
modified particle swarm optimization and fuzzy theory.
Computers & Industrial Engineering. 2019; 130:597-
633.

[5]Pradhan A, Bisoy SK, Das A. A survey on PSO-
based meta-heuristic scheduling mechanism in cloud
computing environment. Journal of King Saud University
— Computer and Information Sciences. 2022; 34:4888-
4901.

[6] Alworafi, MA, Mallappa, S. A collaboration of deadline
and budget constraints for task scheduling in cloud
computing. Cluster Computing. 2019;1-11.

[7] Sangaiah AK, Hosseinabadi AR, Shareh MB, Bozorgi
Rad SY, Zolfagharian A, Chilamkurti N. IoT resource
allocation and optimization based on heuristic algorithm.
Sensors. 2020; 20(2):1-26.

[8] Topcuoglu H, Hariri S, Wu M-Y. Performance-effective
and low-complexity task scheduling for heterogeneous
computing. IEEE Trans Parallel Distributed Systems.
2002; 13(3):260-274.

[9] Pirozmand P, Rahmani Hosseinabadi AA, Farrokhzad
M, Sadeghilalimi M, Mirkamali S, Slowik A. Multi-
objective hybrid genetic algorithm for task scheduling
problem in cloud computing. Neural Computing and
Applications. 2021; .

[10] Madni SHH, Abd Latiff MS, Ali J. Hybrid gradient
descent cuckoo search (HGDCS) algorithm for resource
scheduling in aaS cloud computing environment. Cluster
Computing. 2019; 22:301-334.

[11] Dehghani M, Montazeri Z, Dehghani A, Malik OP,
Morales-Menendez R, Dhiman G, Nouri N, Ehsanifar
A, Guerrero JM, Ramirez-Mendoza RA. Binary spring
search algorithm for solving various optimization
problems. Applied Sciences. 2021; 11(3):1286.

[12] Dehghani M, Montazeri Z, Trojovskd E, Trojovsky
P. Coati Optimization Algorithm: A new bio-inspired
metaheuristic algorithm for solving optimization
problems. Knowledge-Based Systems. 2023;259:110011.

[13] Cuaron A, Helgen K, Reid F, Pino J, Gonzalez-Maya J,
narica N. The IUCN red list of threatened species 2016:
e. T41683A45216060.

[14] Manikandan N, Divya P, Janani S. BWFSO: Hybrid
Black-widow and Fish swarm optimization Algorithm
for resource allocation and task scheduling in cloud
computing. Materials Today: Proceedings. 2022;
62:4903-4908.

[15]Hassan M, Al-Awady AA, Ali A, Munawar Igbal M,
Akram M, Khan J, Abu-Odeh AA. An efficient dynamic
decision-based task optimization and scheduling
approach for microservice-based cost management in
mobile cloud computing applications. Pervasive and
Mobile Computing 2023; 92:101785.

[16] Sanaj MS, Prathap PMJ. Nature-inspired chaotic

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

squirrel search algorithm (CSSA) for multi-objective
task scheduling in an TAAS cloud computing atmosphere.
Engineering Science and Technology, an International
Journal. 2020; 23:891-902.

[17] Velliangiri S, Karthikeyan P, Xavier VMA, Baswaraj
D. Hybrid electro search with genetic algorithm for task
scheduling in cloud computing. Ain Shams Engineering
Journal. 2021; 12:631-639.

[18] Mangalampalli S, Karri GR, Kose U. Multi-objective
trust-aware task scheduling algorithm in cloud
computing using whale optimization. Journal of King

Saud University — Computer and Information Sciences.
2023; 35:791-809.

[19] Han M, Du Z, Yuen KF, Zhu H, Li Y, Yuan Q. Walrus
optimizer: A novel nature-inspired metaheuristic
algorithm. Expert Systems with Applications. 2024;
239:122413.

[20] Mirjalili SA, Gandomi AH, Mirjalili SZ, Saremi S, Faris
H, Mirjalili SM. Salp Swarm Algorithm: A bio-inspired
optimizer for engineering design problems. Advances in
Engineering Software. 2017; 114:163-191.

[21]Mirjalili SA, Lewis A. The whale optimization
algorithm. Advances in Engineering Software. 2016;
95:51-67.

[22] Trojovska E, Dehghani M, Trojovsky P. Zebra

optimization algorithm: A new bio-inspired optimization
algorithm for Solving Optimization Algorithm. IEEE
Access. 2022; 10:49445-49473.

[23] Saremi S, Mirjalili S, Lewis A. Grasshopper optimization
algorithm: Theory and application. Advances in
engineering software, 2017; 105:30-47.

[24] Dhiman G, Kaur A, STOA: A bio-inspired based
optimization algorithm for industrial engineering
problems. Engineering Applications of Artificial
Intelligence, 2019; 82:148-174.

[25] Mohammadi-Balani A, Nayeri MD, Azar A,
Taghizadeh-Yazdi M. Golden eagle optimizer: A nature-
inspired metaheuristic algorithm. Computers & Industrial
Engineering, 2021; 152:107050.

[26] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer.
Advances in Engineering Software, 2014; 69:46-61.
[27] Trojovsky P, Dehghani M. Subtraction-average-based
optimizer: Anew swarm-inspired metaheuristic algorithm
for solving optimization problems. Biomimetics, 2023;

8(2):149.

[28] Seyyedabbasi A, Kiani F. Sand cat swarm optimization:

A nature-inspired algorithm to solve global optimization

problems. Engineering with Computers, 2023;
39(4):2627- 2651.

HOW TO CITE THIS ARTICLE

ment, AUT J. Model. Simul., 57(1) (2025) 89-112.

DOI: 10.22060/miscj.2025.23520.5381

Z. Jalali Khalil Abadi, N. Mansouri, M. M. Javidi, B. Mohammad Hasani Zade, COTSA: A Load-
Balanced Task Scheduling Algorithm using Coati Optimization in Cloud Computing Environ-

111

http://10.22060/miscj.2025.23520.5381

Z. Jalali Khalil Abadi et al., AUT J. Model. Simul., 57(1) (2025) 89-112, DOI: 10.22060/miscj.2025.23520.5381

112

