Robust Model Predictive Terminal Guidance Law Using Laguerre Functions

Document Type : Research Article

Authors

Faculty of Electrical and Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran

Abstract

This paper presents a new approach for guiding a pursuer to intercept a maneuvering target in two dimensions. This robust nonlinear approach is based on the combination of predictive control and sliding mode control. The guidance strategy uses a model predictive control method based on the Laguerre function to calculate the pursuer’s acceleration command independently of the target’s acceleration. To handle unknown target maneuvers, a sliding mode term is added to adjust to the target’s acceleration commands, making the algorithm more robust against uncertainties and improving its ability to pursue maneuvering targets effectively. The proposed guidance algorithm was extensively tested through simulations with various target maneuvers, including non-maneuvering, step maneuvers, sinusoidal maneuvers, and stochastic maneuvers. A detailed comparison was made with traditional methods like proportional navigation, ant colony optimization-based predictive control, proportional guidance with a bias switch, and a square programming approach based on differential game theory. Additionally, to observe the effect of the design parameters in the proposed guidance law, a sensitivity analysis is done on the convergence of the pursuer acceleration and the line-of-sight rate. Finally, the influence of disturbances was investigated by adjusting the target acceleration parameter to 10%, 20%, 30%, 50%, 75%, and 100% beyond the maximum value.

Keywords

Main Subjects


[1]      P. Zarchan, Tactical and Strategic Missile Guidance: An Introduction Seventh edition itle, Reston, VA, 2019.
[2]      S.N. Ghawghawe, D. Ghose, Pure proportional navigation against time-varying target manoeuvres, IEEE Trans. Aerosp. Electron. Syst. 32 (1996). https://doi.org/10.1109/7.543854.
[3]      Y. Ulybyshev, Terminal guidance law based on proportional navigation, J. Guid. Control. Dyn. 28 (2005) 821–824. https://doi.org/10.2514/1.12545.
[4]      L.C. Yuan, Homing and Navigational Courses of Automatic Target‐Seeking Devices, J. Appl. Phys. 19 (1948). https://doi.org/10.1063/1.1715028.
[5]      N. Cho, Y. Kim, Optimality of augmented ideal proportional navigation for maneuvering target interception, IEEE Trans. Aerosp. Electron. Syst. 52 (2016). https://doi.org/10.1109/TAES.2015.140432.
[6]      F.W. Nesline., P. Zarchan, A New Look at Classical vs Modern Homing Missile Guidance, J. Guid. Control 4 (1981). https://doi.org/10.2514/3.56054.
[7]      A. Dhar, D. Ghose, Capture region for a realistic TPN guidance law, IEEE Trans. Aerosp. Electron. Syst. 29 (1993). https://doi.org/10.1109/7.220946.
[8]      Z. Guo, J. Guo, X. Wang, J. Chang, H. Huang, Sliding mode control for systems subjected to unmatched disturbances/unknown control direction and its application, Int. J. Robust Nonlinear Control 31 (2021) 1303–1323. https://doi.org/10.1002/rnc.5336.
[9]      X. Wang, Y. Zhang, P. Gao, Design and analysis of second-order sliding mode controller for active magnetic bearing, Energies 13 (2020). https://doi.org/10.3390/en13225965.
[10]    J. Zenteno-Torres, J. Cieslak, J. Dávila, D. Henry, Sliding Mode Control with Application to Fault-Tolerant Control: Assessment and Open Problems, Automation 2 (2021) 1–30. https://doi.org/10.3390/automation2010001.
[11]    N.J. Slegers, O.A. Yakimenko, Optimal control for terminal guidance of autonomous parafoils, in: 20th AIAA Aerodyn. Decelerator Syst. Technol. Conf., American Institute of Aeronautics and Astronautics Inc., 2009. https://doi.org/10.2514/6.2009-2958.
[12]    Y.B. Shtessel, I.A. Shkolnikov, A. Levant, Smooth second-order sliding modes: Missile guidance application, Automatica 43 (2007) 1470–1476. https://doi.org/10.1016/j.automatica.2007.01.008.
[13]    Y.B. Shtessel, I.A. Shkolnikov, A. Levant, MISSILE INTERCEPTOR GUIDANCE AND CONTROL USING SECOND ORDER SLIDING MODES, IFAC Proc. Vol. 38 (2005). https://doi.org/10.3182/20050703-6-CZ-1902.00798.
[14]    Y. Shtessel, C. Tournes, I. Shkolnikov, Guidance and autopilot for missiles steered by aerodynamic lift and divert thrusters using second order sliding modes, Collect. Tech. Pap. - AIAA Guid. Navig. Control Conf. 2006 8 (2006) 5250–5271. https://doi.org/10.2514/6.2006-6784.
[15]    W. Liu, Y. Wei, M. Hou, G. Duan, Integrated guidance and control with partial state constraints and actuator faults, J. Franklin Inst. 356 (2019). https://doi.org/10.1016/j.jfranklin.2019.04.008.
[16]    T. Shima, M. Idan, O.M. Golan, Sliding-mode control for integrated missile autopilot guidance, J. Guid. Control. Dyn. 29 (2006) 250–260. https://doi.org/10.2514/1.14951.
[17]    M. Idan, T. Shima, O.M. Golan, Integrated Sliding Mode Autopilot-Guidance for Dual-Control Missiles, J. Guid. Control. Dyn. 30 (2007). https://doi.org/10.2514/1.24953.
[18]    X. Yan, S. Lyu, Robust intercept guidance law with predesigned zero-effort miss distance convergence for capturing maneuvering targets, J. Franklin Inst. 357 (2020). https://doi.org/10.1016/j.jfranklin.2019.10.021.
[19]    C.D. Yang, H.Y. Chen, Nonlinear H∞ robust guidance law for homing missiles, J. Guid. Control. Dyn. 21 (1998) 882–890. https://doi.org/10.2514/2.4321.
[20]    J. Makena, S. Omwoma, Nonlinear H∞ Guidance Design for Missile against Maneuvering Target, Adv. Res. 9 (2017) 1–21. https://doi.org/10.9734/air/2017/33186.
[21]    S. Golzari, F. Rashidi, H.F. Farahani, A Lyapunov function based model predictive control for three phase grid connected photovoltaic converters, Sol. Energy 181 (2019) 222–233. https://doi.org/10.1016/j.solener.2019.02.005.
[22]    R. Yanushevsky, W. Boord, Lyapunov approach to guidance laws design, Nonlinear Anal. Theory, Methods Appl. 63 (2005). https://doi.org/10.1016/J.NA.2005.02.044.
[23]    X. Li, B. Xu, S. Li, Feedback Linearization with Active Disturbance Rejection for Entry Guidance, in: 2019 Chinese Control Conf., IEEE, 2019. https://doi.org/10.23919/ChiCC.2019.8866531.
[24]    Z. Xiaojian, L. Mingyong, L. Yang, Z. Feihu, Impact angle control over composite guidance law based on feedback linearization and finite time control, J. Syst. Eng. Electron. 29 (2018) 1036–1045. https://doi.org/10.21629/JSEE.2018.05.14.
[25]    A.S. Morris, R. Langari, Measurement and Instrumentation: Theory and Application, Elsevier, 2020. https://doi.org/10.1016/C2018-0-01451-6.
[26]    D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica 36 (2000). https://doi.org/10.1016/S0005-1098(99)00214-9.
[27]    J.A. Rossiter, Model-Based Predictive Control, CRC Press, 2017. https://doi.org/10.1201/9781315272610.
[28]    M.M. Kale, A.J. Chipperfield, Reconfigurable flight control strategies using model predictive control, in: Proc. IEEE Internatinal Symp. Intell. Control, IEEE, n.d. https://doi.org/10.1109/ISIC.2002.1157736.
[29]    P. Anderson, H. Stone, Predictive Guidance and Control for a Tail-Sitting Unmanned Aerial Vehicle, in: 2007 Information, Decis. Control, IEEE, 2007. https://doi.org/10.1109/IDC.2007.374541.
[30]    A. Bhaskaran, A.S. Rao, Predictive control of unstable time delay series cascade processes with measurement noise, ISA Trans. 99 (2020) 403–416. https://doi.org/10.1016/j.isatra.2019.08.065.
[31]    P. Sindareh Esfahani, J.K. Pieper, Robust model predictive control for switched linear systems, ISA Trans. 89 (2019). https://doi.org/10.1016/j.isatra.2018.12.006.
[32]    I. Harbi, M. Abdelrahem, M. Ahmed, R. Kennel, Reduced-complexity model predictive control with online parameter assessment for a grid-connected single-phase multilevel inverter, Sustain. 12 (2020) 1–23. https://doi.org/10.3390/su12197997.
[33]    A. Botelho, B. Parreira, P.N. Rosa, J.M. Lemos, Predictive Control for Spacecraft Rendezvous, Springer International Publishing, Cham, 2021. https://doi.org/10.1007/978-3-030-75696-3.
[34]    J. Luo, K. Jin, M. Wang, J. Yuan, G. Li, Robust entry guidance using linear covariance-based model predictive control, Int. J. Adv. Robot. Syst. 14 (2017). https://doi.org/10.1177/1729881416687503.
[35]    Z. Li, Y. Xia, C.Y. Su, J. Deng, J. Fu, W. He, Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization, IEEE Trans. Neural Networks Learn. Syst. 26 (2015) 1803–1809. https://doi.org/10.1109/TNNLS.2014.2345734.
[36]    F. Gavilan, R. Vazquez, E.F. Camacho, An iterative model predictive control algorithm for UAV guidance, IEEE Trans. Aerosp. Electron. Syst. 51 (2015) 2406–2419. https://doi.org/10.1109/TAES.2015.140153.
[37]    X. Yan, S. Lyu, Mars entry guidance based on nonlinear model predictive control with disturbance observer, J. Franklin Inst. 356 (2019). https://doi.org/10.1016/j.jfranklin.2019.08.040.
[38]    H. Nobahari, S. Nasrollahi, A terminal guidance algorithm based on ant colony optimization, Comput. Electr. Eng. 77 (2019). https://doi.org/10.1016/j.compeleceng.2019.05.012.
[39]    H. Nobahari, S. Nasrollahi, A nonlinear robust model predictive differential game guidance algorithm based on the particle swarm optimization, J. Franklin Inst. 357 (2020) 11042–11071. https://doi.org/10.1016/j.jfranklin.2020.08.032.
[40]    H. Hong, A. Maity, F. Holzapfel, S. Tang, Model Predictive Convex Programming for Constrained Vehicle Guidance, IEEE Trans. Aerosp. Electron. Syst. 55 (2019) 2487–2500. https://doi.org/10.1109/TAES.2018.2890375.
[41]    E.F. Camacho, C. Bordons, Model Predictive control, Springer London, London, 2007. https://doi.org/10.1007/978-0-85729-398-5.
[42]    A. Ebrahimi, A. Mohammadi, A. Kashaninia, Suboptimal midcourse guidance design using generalized model predictive spread control, Trans. Inst. Meas. Control (2020). https://doi.org/10.1177/0142331220928888.
[43]    M.E.S.M. Essa, M.A.S. Aboelela, M.A. Moustafa Hassan, S.M. Abdrabbo, Model predictive force control of hardware implementation for electro-hydraulic servo system, Https://Doi.Org/10.1177/0142331218784118 41 (2018) 1435–1446. https://doi.org/10.1177/0142331218784118.
[44]    P. Krupa, I. Alvarado, D. Limon, T. Alamo, Implementation of Model Predictive Control for Tracking in Embedded Systems Using a Sparse Extended ADMM Algorithm, IEEE Trans. Control Syst. Technol. (2021) 1–8. https://doi.org/10.1109/TCST.2021.3128824.
[45]    A. Silveira, A. Silva, A. Coelho, J. Real, O. Silva, Design and real-time implementation of a wireless autopilot using multivariable predictive generalized minimum variance control in the state-space, Aerosp. Sci. Technol. 105 (2020) 106053. https://doi.org/10.1016/J.AST.2020.106053.
[46]    T. Kailath, L. Systems, Thomas Kailath Linear Systems  1980, (n.d.) 1–479.
[47]    M. Rubagotti, D.M. Raimondo, A. Ferrara, L. Magni, Robust Model Predictive Control With Integral Sliding Mode in Continuous-Time Sampled-Data Nonlinear Systems, IEEE Trans. Automat. Contr. 56 (2011) 556–570. https://www.academia.edu/8860751/Robust_Model_Predictive_Control_With_Integral_Sliding_Mode_in_Continuous_Time_Sampled_Data_Nonlinear_Systems (accessed January 7, 2023).
[48]    L. Wang, Discrete model predictive controller design using Laguerre functions, J. Process Control 14 (2004). https://doi.org/10.1016/S0959-1524(03)00028-3.
[49]    Wang L, Model Predictive Control System Design and Implementation Using MATLAB®, Springer London, London, 2009. https://doi.org/10.1007/978-1-84882-331-0.
[50]    A. Yadegari, M.S. Nazari, N. Ghahremani, Application and Evaluation of Laguerre Functions in Helicopter Flight Control System Designed by Model Predictive Control, Aerosp. Mech. J. 15 (2019) 25–38. https://maj.ihu.ac.ir/article_202601.html.