[1] P. Zarchan, Tactical and Strategic Missile Guidance: An Introduction Seventh edition itle, Reston, VA, 2019.
[2] S.N. Ghawghawe, D. Ghose, Pure proportional navigation against time-varying target manoeuvres, IEEE Trans. Aerosp. Electron. Syst. 32 (1996). https://doi.org/10.1109/7.543854.
[3] Y. Ulybyshev, Terminal guidance law based on proportional navigation, J. Guid. Control. Dyn. 28 (2005) 821–824. https://doi.org/10.2514/1.12545.
[4] L.C. Yuan, Homing and Navigational Courses of Automatic Target‐Seeking Devices, J. Appl. Phys. 19 (1948). https://doi.org/10.1063/1.1715028.
[5] N. Cho, Y. Kim, Optimality of augmented ideal proportional navigation for maneuvering target interception, IEEE Trans. Aerosp. Electron. Syst. 52 (2016). https://doi.org/10.1109/TAES.2015.140432.
[6] F.W. Nesline., P. Zarchan, A New Look at Classical vs Modern Homing Missile Guidance, J. Guid. Control 4 (1981). https://doi.org/10.2514/3.56054.
[7] A. Dhar, D. Ghose, Capture region for a realistic TPN guidance law, IEEE Trans. Aerosp. Electron. Syst. 29 (1993). https://doi.org/10.1109/7.220946.
[8] Z. Guo, J. Guo, X. Wang, J. Chang, H. Huang, Sliding mode control for systems subjected to unmatched disturbances/unknown control direction and its application, Int. J. Robust Nonlinear Control 31 (2021) 1303–1323. https://doi.org/10.1002/rnc.5336.
[9] X. Wang, Y. Zhang, P. Gao, Design and analysis of second-order sliding mode controller for active magnetic bearing, Energies 13 (2020). https://doi.org/10.3390/en13225965.
[10] J. Zenteno-Torres, J. Cieslak, J. Dávila, D. Henry, Sliding Mode Control with Application to Fault-Tolerant Control: Assessment and Open Problems, Automation 2 (2021) 1–30. https://doi.org/10.3390/automation2010001.
[11] N.J. Slegers, O.A. Yakimenko, Optimal control for terminal guidance of autonomous parafoils, in: 20th AIAA Aerodyn. Decelerator Syst. Technol. Conf., American Institute of Aeronautics and Astronautics Inc., 2009. https://doi.org/10.2514/6.2009-2958.
[12] Y.B. Shtessel, I.A. Shkolnikov, A. Levant, Smooth second-order sliding modes: Missile guidance application, Automatica 43 (2007) 1470–1476. https://doi.org/10.1016/j.automatica.2007.01.008.
[13] Y.B. Shtessel, I.A. Shkolnikov, A. Levant, MISSILE INTERCEPTOR GUIDANCE AND CONTROL USING SECOND ORDER SLIDING MODES, IFAC Proc. Vol. 38 (2005). https://doi.org/10.3182/20050703-6-CZ-1902.00798.
[14] Y. Shtessel, C. Tournes, I. Shkolnikov, Guidance and autopilot for missiles steered by aerodynamic lift and divert thrusters using second order sliding modes, Collect. Tech. Pap. - AIAA Guid. Navig. Control Conf. 2006 8 (2006) 5250–5271. https://doi.org/10.2514/6.2006-6784.
[15] W. Liu, Y. Wei, M. Hou, G. Duan, Integrated guidance and control with partial state constraints and actuator faults, J. Franklin Inst. 356 (2019). https://doi.org/10.1016/j.jfranklin.2019.04.008.
[16] T. Shima, M. Idan, O.M. Golan, Sliding-mode control for integrated missile autopilot guidance, J. Guid. Control. Dyn. 29 (2006) 250–260. https://doi.org/10.2514/1.14951.
[17] M. Idan, T. Shima, O.M. Golan, Integrated Sliding Mode Autopilot-Guidance for Dual-Control Missiles, J. Guid. Control. Dyn. 30 (2007). https://doi.org/10.2514/1.24953.
[18] X. Yan, S. Lyu, Robust intercept guidance law with predesigned zero-effort miss distance convergence for capturing maneuvering targets, J. Franklin Inst. 357 (2020). https://doi.org/10.1016/j.jfranklin.2019.10.021.
[19] C.D. Yang, H.Y. Chen, Nonlinear H∞ robust guidance law for homing missiles, J. Guid. Control. Dyn. 21 (1998) 882–890. https://doi.org/10.2514/2.4321.
[20] J. Makena, S. Omwoma, Nonlinear H∞ Guidance Design for Missile against Maneuvering Target, Adv. Res. 9 (2017) 1–21. https://doi.org/10.9734/air/2017/33186.
[21] S. Golzari, F. Rashidi, H.F. Farahani, A Lyapunov function based model predictive control for three phase grid connected photovoltaic converters, Sol. Energy 181 (2019) 222–233. https://doi.org/10.1016/j.solener.2019.02.005.
[22] R. Yanushevsky, W. Boord, Lyapunov approach to guidance laws design, Nonlinear Anal. Theory, Methods Appl. 63 (2005). https://doi.org/10.1016/J.NA.2005.02.044.
[23] X. Li, B. Xu, S. Li, Feedback Linearization with Active Disturbance Rejection for Entry Guidance, in: 2019 Chinese Control Conf., IEEE, 2019. https://doi.org/10.23919/ChiCC.2019.8866531.
[24] Z. Xiaojian, L. Mingyong, L. Yang, Z. Feihu, Impact angle control over composite guidance law based on feedback linearization and finite time control, J. Syst. Eng. Electron. 29 (2018) 1036–1045. https://doi.org/10.21629/JSEE.2018.05.14.
[25] A.S. Morris, R. Langari, Measurement and Instrumentation: Theory and Application, Elsevier, 2020. https://doi.org/10.1016/C2018-0-01451-6.
[26] D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica 36 (2000). https://doi.org/10.1016/S0005-1098(99)00214-9.
[27] J.A. Rossiter, Model-Based Predictive Control, CRC Press, 2017. https://doi.org/10.1201/9781315272610.
[28] M.M. Kale, A.J. Chipperfield, Reconfigurable flight control strategies using model predictive control, in: Proc. IEEE Internatinal Symp. Intell. Control, IEEE, n.d. https://doi.org/10.1109/ISIC.2002.1157736.
[29] P. Anderson, H. Stone, Predictive Guidance and Control for a Tail-Sitting Unmanned Aerial Vehicle, in: 2007 Information, Decis. Control, IEEE, 2007. https://doi.org/10.1109/IDC.2007.374541.
[30] A. Bhaskaran, A.S. Rao, Predictive control of unstable time delay series cascade processes with measurement noise, ISA Trans. 99 (2020) 403–416. https://doi.org/10.1016/j.isatra.2019.08.065.
[31] P. Sindareh Esfahani, J.K. Pieper, Robust model predictive control for switched linear systems, ISA Trans. 89 (2019). https://doi.org/10.1016/j.isatra.2018.12.006.
[32] I. Harbi, M. Abdelrahem, M. Ahmed, R. Kennel, Reduced-complexity model predictive control with online parameter assessment for a grid-connected single-phase multilevel inverter, Sustain. 12 (2020) 1–23. https://doi.org/10.3390/su12197997.
[33] A. Botelho, B. Parreira, P.N. Rosa, J.M. Lemos, Predictive Control for Spacecraft Rendezvous, Springer International Publishing, Cham, 2021. https://doi.org/10.1007/978-3-030-75696-3.
[34] J. Luo, K. Jin, M. Wang, J. Yuan, G. Li, Robust entry guidance using linear covariance-based model predictive control, Int. J. Adv. Robot. Syst. 14 (2017). https://doi.org/10.1177/1729881416687503.
[35] Z. Li, Y. Xia, C.Y. Su, J. Deng, J. Fu, W. He, Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization, IEEE Trans. Neural Networks Learn. Syst. 26 (2015) 1803–1809. https://doi.org/10.1109/TNNLS.2014.2345734.
[36] F. Gavilan, R. Vazquez, E.F. Camacho, An iterative model predictive control algorithm for UAV guidance, IEEE Trans. Aerosp. Electron. Syst. 51 (2015) 2406–2419. https://doi.org/10.1109/TAES.2015.140153.
[37] X. Yan, S. Lyu, Mars entry guidance based on nonlinear model predictive control with disturbance observer, J. Franklin Inst. 356 (2019). https://doi.org/10.1016/j.jfranklin.2019.08.040.
[38] H. Nobahari, S. Nasrollahi, A terminal guidance algorithm based on ant colony optimization, Comput. Electr. Eng. 77 (2019). https://doi.org/10.1016/j.compeleceng.2019.05.012.
[39] H. Nobahari, S. Nasrollahi, A nonlinear robust model predictive differential game guidance algorithm based on the particle swarm optimization, J. Franklin Inst. 357 (2020) 11042–11071. https://doi.org/10.1016/j.jfranklin.2020.08.032.
[40] H. Hong, A. Maity, F. Holzapfel, S. Tang, Model Predictive Convex Programming for Constrained Vehicle Guidance, IEEE Trans. Aerosp. Electron. Syst. 55 (2019) 2487–2500. https://doi.org/10.1109/TAES.2018.2890375.
[41] E.F. Camacho, C. Bordons, Model Predictive control, Springer London, London, 2007. https://doi.org/10.1007/978-0-85729-398-5.
[42] A. Ebrahimi, A. Mohammadi, A. Kashaninia, Suboptimal midcourse guidance design using generalized model predictive spread control, Trans. Inst. Meas. Control (2020). https://doi.org/10.1177/0142331220928888.
[43] M.E.S.M. Essa, M.A.S. Aboelela, M.A. Moustafa Hassan, S.M. Abdrabbo, Model predictive force control of hardware implementation for electro-hydraulic servo system, Https://Doi.Org/10.1177/0142331218784118 41 (2018) 1435–1446. https://doi.org/10.1177/0142331218784118.
[44] P. Krupa, I. Alvarado, D. Limon, T. Alamo, Implementation of Model Predictive Control for Tracking in Embedded Systems Using a Sparse Extended ADMM Algorithm, IEEE Trans. Control Syst. Technol. (2021) 1–8. https://doi.org/10.1109/TCST.2021.3128824.
[45] A. Silveira, A. Silva, A. Coelho, J. Real, O. Silva, Design and real-time implementation of a wireless autopilot using multivariable predictive generalized minimum variance control in the state-space, Aerosp. Sci. Technol. 105 (2020) 106053. https://doi.org/10.1016/J.AST.2020.106053.
[46] T. Kailath, L. Systems, Thomas Kailath Linear Systems 1980, (n.d.) 1–479.
[47] M. Rubagotti, D.M. Raimondo, A. Ferrara, L. Magni, Robust Model Predictive Control With Integral Sliding Mode in Continuous-Time Sampled-Data Nonlinear Systems, IEEE Trans. Automat. Contr. 56 (2011) 556–570. https://www.academia.edu/8860751/Robust_Model_Predictive_Control_With_Integral_Sliding_Mode_in_Continuous_Time_Sampled_Data_Nonlinear_Systems (accessed January 7, 2023).
[48] L. Wang, Discrete model predictive controller design using Laguerre functions, J. Process Control 14 (2004). https://doi.org/10.1016/S0959-1524(03)00028-3.
[49] Wang L, Model Predictive Control System Design and Implementation Using MATLAB®, Springer London, London, 2009. https://doi.org/10.1007/978-1-84882-331-0.
[50] A. Yadegari, M.S. Nazari, N. Ghahremani, Application and Evaluation of Laguerre Functions in Helicopter Flight Control System Designed by Model Predictive Control, Aerosp. Mech. J. 15 (2019) 25–38. https://maj.ihu.ac.ir/article_202601.html.