[1] J. B. Lasserre, C. Prieur, and D. Henrion.“Nonlinear optimal control: numerical approximation via moments and LMI relaxations.in joint,” IEEE Conference on Decision and Control and European Control Conference, 2005.
[2] J. Arthur, E. Bryson, and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation and
Control: Hemisphere Publ. Corp., Washington D.C, 1975.
[3] W. Grimm and A. Markl, “Adjoint estimation from a direct multiple shooting method,” Journal of
Optimization Theory and Applications, vol. 92,No. 2, pp- 263–283, 1997.
[4] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, ed. T. Edition, New York: Springer-
Verlag, 2002.
[5] O. v. Stryk and R. Bulirsch, “Direct and indirect methods for trajectory optimization,” annals of
operations research, vol. 37, No. 1, pp-357–373,1992.
[6] R. Fletcher, Practical methods of optimization:Unconstrained optimization, John Wiley & Sons,
Ltd., Chichester, 1980.
[7] P. E. Gill, W. Murray, and M. H. Wright, Practical optimization. : Academic Press, Inc., London-New
York, 1981.
[8] D. E. Kirk, Optimal Control Theory: An Introduction, Prentice-Hall, Englewood Cliffs, NJ:
Dover Publications, USA, 1998.
[9] D. S. Naidu, Optimal Control Systems: CRC Press, Idaho State University, USA,, 2003.
[10] S. Subchan and R. Zbikowski, computational Optimal Control: Tools and Practice, United
Kingdom: John Wiley & Sons, 2009.
[11] K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control: Prentice Hall, Englewood Cliffs,
NJ, 1996.
[12] A. Ben-Tal and A. Nemirovski, “Robust Convex Optimization,” Mathematics of operations
research, vol. 23, No. 4, pp-769-805, 1998.
[13] A. Ben-Tal and A. Nemirovski, “Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications,” MPSSIAM Series on Optimization. MPS-SIAM,
Philadelphia, 2001.
[14] Z. K. Nagy and R. Braatz, “Open-loop and closedloop robust optimal control of batch processes
using distributional and worst-case analysis,”Journal of Process Control, vol. 14, No. 4, pp-411–422, 2004.
[15] M. Diehl, H. G. Bock, and E. Kostina, “An approximation technique for robust nonlinear
optimization,” Mathematical Programming, vol.
107, No. 1-2, pp-213–230, 2006.
[16] S. Seshagiria and H. K. Khalilb, “Robust output feedback regulation of minimum-phase nonlinear
systems usingconditional integrators,” Automatica,vol. 41, No. 1, pp-43 – 54, 2005.
[17] H. Nogami and H. Maeda, “Robust Stabilization of Multivariable High Gain Feedback Systems,”
Transactions of the Society of Instrument and Control Engineers, vol. E, No. 1, pp- 83-91, 2001.
[18] W. Maas and A. v. d. Schaft. “Singular nonlinear Hinf optimal control by state feedback,” in 33th
IEEE conference on decision & control. Lake Buena Vista, USA, 1994.
[19] A. Astolfi. “singular Hinf control,” in 33th IEEE conference on decision and control. Lake Buena
Vista, USA, 1994.
[20] R. Marino, et al., “Nonlinear Hinf almost disturbance decoupling,” systems & control letters,vol. 23, No. 3, pp- 159-168, 1994.
[21] A. Isidori, nonlinear control systems. third ed, Berlin: Springer Verlag, 1995.
[22] A. Isidori, “Global almost disturbance decoupling with stability for non minimumphase single-input single-output nonlinear systems,” systems & control letters, vol. 28, No. 2, pp-115-122, 1996.
[23] B. Achwartz, A. Isidori, and T. Tarn. “Performance bounds for disturbance attenuation in nonlinear nonminimum-phase systems,” in European Control Conference Brussels, Belgium, 1997.
[24] M. Seron, et al., Feedback limitations in nonlinear systems: From Bode integrals to cheap control, University of California: Santa Barbara, 1997.
[25] M. M. Seron, et al., “Feedback limitations in nonlinear systems: From bode integrals to cheap control,” IEEE Transactions on Automatic Control, vol. 44, No. 4, pp-829–833, 1999.
[26] M. Krstic', I. Kanellakopoulos, and P. Kokotovic', Nonlinear and adaptive control design: John Wiley & Sons, 1995.
[27] J. W. Helton, et al., “Singularly perturbed control systems using non-commutative computer algebra,” International Journal of Robust and Nonlinear Control, Special Issue: GEORGE ZAMES COMMEMORATIVE ISSUE, vol. 10, No. 11-12, pp- 983–1003, 2000.
[28] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, New York, Chichester, Brisbane, Toronto: Wiley-Interscience, a division of John Wiley & Sons, Inc, 1972a.
[29] H. Kwakernaak and R. Sivan, “The maximally achievable accuracy of linear optimal regulators and linear optimal filters,” IEEE Transactions on Automatic Control, vol. 17, No. 1, pp-79-86, 1972b.
[30] U. Shaked, Singular and cheap optimal control: the minimum and nonminimum phase cases, National Research Institute for Mathematical Sciences: Pretoria, Republic of South Africa, 1980.
[31] A. Jameson and R. E. O'Malley, “Cheap control of the time-invariant regulator,” applied mathematics & optimization, vol. 1, No. 4, pp-337-354, 1975.
[32] R. Sepulchre, et al., Constructive nonlinear control, Springer, Editor: London, 1997.
[33] P. V. Kokotovic, H. K. Khalil, and J. O’Reilly, Singular Perturbations Methods in Control: Analysis and Design, New York: Academic Press, 1986.