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ABSTRACT 

In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum 

phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of 

the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology 

employs an algebraic equation with parametric coefficients for the systems with scalar internal dynamics and 

a differential equation for those systems with the internal dynamics of order higher than one. It is shown that 

1) if the system starts from different initial conditions located in the close proximity of the origin the 

regulation error of the closed-loop system with the proposed controller is less than that of the closed-loop 

system with the high gain LQR, which is surely designed for the linearized system around the origin, 2). for 

the initial conditions located in a region far from the origin, the proposed controller significantly outperforms 

the LQR controller. 
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1.  INTRODUCTION 

The optimal control of nonlinear systems is one of the 

difficult and challenging subjects in control theory. The 

main objective of the optimal control theory is to 

determine a control input by minimizing or maximizing a 

proper performance index such that the underlying system 

keeps satisfying its physical constraints. The two main 

approaches to solve the optimal control problem are the 

Variational and the Dynamic Programming approach [1]. 

The dynamic programming approach is mainly based 

on the principle of optimality leading to a significant 

reduction in the time of computations if compared to the 

global evaluations of all admissible possibilities of a 

system. This in general is resulted in the solution of the 

partial differential HJB equation [2]. Due to difficulties in 

analytic solution of the HJB equation, there is rarely an 

analytical solution although several numerical 

computational approaches have been proposed in the 

literature; i.e., multiple shooting techniques which solve 

two-point boundary value problems [3, 4], or direct 

methods [5-7]. More details of the optimal control theory 

may be found in [8, 9] and [10]. 

Furthermore, the robust optimal control problems, 

which have received more attentions in science and 

engineering since last two decades, were developed in 

[11-13] for linear systems and in [14] and [15] for 

nonlinear systems in a linear approximation. 

A robust continuous feedback control can be designed 

using techniques like high-gain feedback, min–max 

control, or sliding-mode control [16]. High gain feedback 

control appears to have advantages of good disturbance 

rejection, good tracking performance, bandwidth 

increasing and easy realization of decoupling of the 

input/output variables for the multivariable systems [17].  

High gain feedback has gained much interest in 

singular optimal control problems named cheap control 

[18-24]. [25] studied the cheap control of non-minimum 

phase nonlinear systems in the strict-feedback normal 

form defined in [26]. They used the HJB equation to solve 

the minimum energy problem for the internal dynamics of 

the systems with normal strictly feedback form. The 

internal dynamics in this class of systems is affine with 

respect to its single input y (the system’s output) as 

   0 1 y   f f
 

where   is the system’s internal states. Due to this 

property they could easily use HJB equation to find the 

minimum energy “y” as the control input to stabilize the 

origin of internal dynamics.  

After that by exploiting the structure of these systems 

an approximation of the optimal value function, which is 

indeed O( )-near-optimal on the basis of the cheap 

control HJB equation is derived. 

In this paper, we propose a new method to 

approximate a high gain optimal regulator for the special 

class of non-minimum phase, affine nonlinear systems 

whose internal dynamics are non-affine with respect to 

their input “y”. In this technique, we consider a special 

structure for the cheap control input “u” and then 

construct an algebraic or differential equation whose 

solution is used to compute the unknown part of the 

controller. Note that the near-optimal regulator 

approximates the optimal regulator in the order of O(ε) 

[27]. 

In this study, we focus on the aforementioned class of 

SISO affine nonlinear systems of relative degree one and 

will consider whole SISO nonlinear systems in the 

upcoming paper.  

Notice that the method proposed here can be applied 

to input-output decoupled square MIMO systems. 

Therefore, to design the optimal high gain state feedback 

for an MIMO system, we may still apply the proposed 

method through a suitable input-output pairing method, 

which is beyond the main scope of the paper.  

The rest of the paper is organized as follows. Section 2 

presents the preliminary remarks on cheap control along 

with the HJB equation for linear systems and affine 

nonlinear systems with affine internal dynamics. An 

analytical method to compute the solution of the HJB 

equation and then a near optimal high gain controller for a 

wide class of affine nonlinear systems is proposed in 

Section 3. Section 4 presents some illustrative examples 

and finally, Section 5 concludes the paper.  

2.  PRELIMINARIES  

Consider the following SISO affine nonlinear system 

with a relative degree of r (r <n) at the origin. 

   

 

u

y h

 



x f x g x

x

 
(1) 

where nx is the state vector and ,y u  are the 

input and output signals respectively.  

This system can be written in normal form as [21] 
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   

 

1 2

2 3

1

, ,

,

r r

r

z z

z z

z z

z b a u









 



z z

q z

 

 

 
(2) 

where   1

1 2

TT r

rz z z y y y     z and 

   x  such that  
  0.

d

d




x
g x

x
 Here  , q z  is 

called internal dynamics. The inputs of the internal 

dynamics are the system’s output and its derivatives. The 

unforced internal dynamics is zero dynamics which is 

used to define the minimum phase property as below. 

Definition 1 [21]: Nonlinear System (1) with normal 

form (2) is called minimum phase if the origin of the zero 

dynamics  0, q  is (globally) asymptotically stable 

and it is called weakly minimum phase if the origin of the 

zero dynamics is stable. 

Based on this definition a system is said to be non-

minimum phase if the origin of its zero dynamics is not 

stable. 

The goal here is to regulate the output of a non-

minimum phase system to zero while it should have at 

least a certain amount of energy to stabilize its internal 

dynamics. Cheap control methodology can be applied to 

attain a proper solution for this regulation problem due to 

the fact that there is no constraint imposed on the input 

signal. It is well known that any optimal control problem 

can be reduced to the Riccati (for linear systems) and HJB 

differential equation (for nonlinear systems) [2].  

In this section, we first briefly review the cheap 

control problem, which can be viewed as a special kind of 

optimal control problems, for affine nonlinear systems 

with affine internal dynamics. After that in the next 

section, we propose a new method to design a near 

optimal regulator for the affine nonlinear systems with 

non-affine internal dynamics.: 

A. Nonlinear Systems With Affine Internal 

Dynamics 

Consider the affine nonlinear system (1) with normal 

form (2) of relative degree 1 and the following cost 

functional. 

    2 2 2

0

1

2
J y t u t dt 



 
 

(3) 

The cheap control input to stabilize the nonlinear 

system (2) and minimize the cost functional (3) is 

 *

2

1
,

V
u a y

y


 


  (4) 

which is obtained by solving the following HJB equation 

[12]. 

   

 

2

2

2

2

1
, ,

2

1
, 0

2

V V
y b y y

y

V
a y

y

 
 

 

 
  

 

 




q
 

(5) 

In order to solve this equation, we can use an 

approximate solution of V on the optimal trajectory, 
* *,y  , given bellow  

       * * * * * 2

0 1; , ,V y V V y O                        (6) 

By substituting (6) into (5) it becomes obvious that we 

need one extra equation to find the Vi (i=0,1 …) terms. To 

do so, for the systems with affine internal dynamics, 

 *

0V   is determined by employing the minimum energy 

problem of internal dynamics. For the sake of simplicity, 

from now on the symbol“*” is omitted. 

Now, consider the affine nonlinear system (2) with the 

affine internal dynamics  

   0 1 y   f f  (7) 

The HJB equation (5) for this system becomes 

      

  

0 1

2
22

2

,

1 1
, 0

2 2

V V
b y y

y

V
y a y

y

 
 

 

 
   

 

  




f f
 

(8) 

It is well-known that this problem has a solution for 

each 0,  if there exists a C1 positive semi-definite 

function  , ,V y   such that the state feedback control 

(4) globally asymptotically stabilizes the origin of system 

(2) [32]. The solution of this problem when 0   hinges 

upon the solution to the following minimum energy 

problem, where the system output is treated as the control 

variable: Find “y” to asymptotically stabilize the origin of 

the internal dynamics (7) and to minimize the cost 

functional 

 2

0

1

2
J y t dt



   (9) 

Now, if there exists a C1 positive definite function 

 0V   which satisfies the HJB equation 
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     0 0 0
0 1 1

1
0

2

T
TV V V  

 
  

  
  

f f f
 

(10) 

such that 

    0
1

T
T V

y 


  


 


f
 

(11) 

globally asymptotically stabilizes the origin of the internal 

dynamics (7) then (11) is the optimal control and  0V  is 

the optimal value function. Now the control input signal 

  
1

u y 



   (12) 

is the approximate cheap control input, which stabilizes 

the origin of system (2). 

The optimal output signal for the systems with scalar 

internal dynamics ( ) becomes 

 
 

 
0

1

2 f
y

f


 




   (13) 

and therefore the near optimal high gain control input is 

obtained as  

 
0

1

1
2

f
u y

f



 

 
   

 

. 

3.  NEAR OPTIMAL HIGH GAIN CONTROLLER FOR THE 

SPECIAL CLASS OF NONLINEAR SYSTEMS 

Now, in this section we propose an analytical method 

to solve cheap control HJB equation (5) for a class of 

affine nonlinear systems with non-affine internal 

dynamics. According to this method we are looking for a 

closed form optimal output signal as a function of internal 

states. We should note that for this special class of 

systems, it is almost impossible to obtain an analytical 

solution for the minimum energy problem. 

Now consider the affine nonlinear system (2) with 

relative degree one and the internal dynamics of form 

 

 

 

 

1 1

2 2

2 2

1 1 ,

n n

n n

q

q

q

q y









 

 

 









 









 

(14) 

We are interested to find an optimal high gain control 

of the form 

    
1

,cu y y 



    (15) 

where     is a smooth function of the internal states. 

Note that (15) is in fact an approximation of (4) which 

should satisfy (5). 

In order to find the near optimal control input (15) the 

following assumption is crucial. 

Assumption 1- There is a finite positive number m 

such that the following expression gives a reasonable 

approximation of  1 ,nq y  . 

       1 0 1, , 1m

n mq y f f y f y m         

where 

 
 

   

1

0

0 1

,1
, 0

!

0,

k

n

k k

y

n

q y
f k

k y

f q








  








 

 

Now consider the affine nonlinear system with the 

normal form 

   

 

 

 

     

1 1

2 2

2 2

1 0 1

, , ,

, 1

n n

m

n m

y b y a y u

q

q

q

f f y f y m









 



  








 

     

 







  

 
(16) 

where    0 0, , , 0 , 0 .py u y y       

The main goal is to solve the cheap control problem 

(i.e., the HJB Eq. (5)) for    through the optimal high 

gain control input signal (15). Now, use the approximate 

solution of V given in (6) and then write the HJB Eq. (5) 

as 

   
   

   
   

 

 

 

      

 
   

 
 

 

0 1 2

1

1 1

0 1 2

2

2 2

0

1

1

0 1

1

2

1 2

2

12 2

,
2

,
2

,
2

,
2 ,

,
, 0

n

n n

n

m

m

n

V V y
O q

V V y
O q

V

V y
f f y f y

O

V y
O b y

y

V y
y a y O

y

 
 

 
 








 





 





  
  

  

  
    

  

 
 
 

 
     

 
 
 
 
 

 
  

 

 
    

 

 


 





  





  

(17) 

which can be easily rewritten as 

       2 3

0 1 2, , , 0p y p y p y O       
 (18) 

where the functional 
ip s are easily determined from (17).  
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Now by setting ε to zero, (17) reduces to 

 
 

 
 

 

 
      

 
 

0 0

0 1 2

1 2

0

0 1

1

2

12 2

, 2 2

2

,
, 0

n

n

m

m

n

V V
p y q q

V
f f y f y

V y
y a y

y

 









 
  

 


   



 
   

 

 
  


  




 

(19) 

By substituting (6) into (4) we have 

   11
,

V
u a y O

y




 
   

 
  (20) 

Use (20) and (15) and after some algebraic 

manipulations to write 

 

 
  1

,

,

c yV
y

y a y





 







 (21) 

Substitute (21) into (19) and obtain: 

 
 

 
 

 
      

    

0 0

1 2

1 2

0

0 1

1

22 2

2 2

2

, 0

n

n

m

m

n

c

V V
q q

V
f f y f y

y y y

 



 







 
 

 


   



   

 
 


  

 

 (22) 

Knowing that the closed-loop system through the 

cheap control input (15) is indeed a singular perturbation 

system represented as 

        

 

 

 

     

1 1

2 2

2 2

1 0 1

, , , ,

, 1

c

n n

m

n m

y b y a y y y

q

q

q

f f y f y m

   









 



   








 

     

   







  

 

according to the singular perturbation’s theorem [33], 

the fast dynamics, y, through a fast transient response is 

laid on the following slow manifold and stayed there 

forever. 

 y  
 

(23) 

Knowing that the HJB equation is only for optimal 

trajectories, the solution (23) should satisfy (22) and its all 

derivatives. By substituting (23) into both (22) and the 

first derivative of (22), the equations (24) and (25) are 

derived respectively. 

 
 

 
 

 

 
          

2 0 0

1 2

1 2

0

0 1

1

2

2 0

n

n

m

m

n

V V
q q

V
f f f


 

 








 
  

 


    



 
 
 

 
  


    

 
(24) 

 
        10

1

1

2 2 0
m

m

n

V
f mf  








   




   

 

(25) 

The following equation easily follows from (25). 

   

      
0

1
1 1

m
n m

V

f mf



  


 


  

 

  

 
(26) 

Now, substitute (26) into (24) to obtain 

 
 

 
 

            
      

 

0 0

1 2

1 2

0 1

1

1

2

2

2

0

n

n

m

m

m

m

V V
q q

f f f

f mf

 

  











 
 

 

   


 

 

 
 
 

 
 

     

  



 
(27) 

Dividing equation (27) by equation (43.14) and using 

the following fact 

   

 

 0 0

i i

V V 

  

  


  

  


 

we obtain the following differential equation. 

 
 

 
 

          

        

 

1 2

1 2

0 1

1
11

1

2

n

n

m

m

m
nm

q q

f f f

f mf

 

 

 


 








 
  

 

    
 

     
 

 
 

    


   

 

(28) 

For the system (16) with the scalar internal dynamics, 

(n=2), the differential equation (28) is reduced to an 

algebraic equation of the form 

          

        

0 1

1

1

1
0

2

m

m

m

m

f f f

f mf

      

     

   

   

 

which in turn yields 

         

     

3

0 1 32

2 0m

m

f f f

m f

      

  

 

   
 (29) 

Now, for the system (16) with n=2 and m=1 (i.e., the 

affine nonlinear system in strictly feedback form) the 

solution of (29) can be easily obtained as 

 
 

 
0

1

2f

f


 




  which interestingly is identically the 

same as the solution obtained from minimum energy 

problem given in (13). 
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The following lemma shows that for nonlinear system 

(16) the first term of the approximate cost value function 

V given in (6) is indeed the amount of energy of the 

optimal output signal. 

Lemma 1: Consider affine nonlinear system (1) with 

   0 0, 0 0h f  and well-defined normal form (16). 

The value function  0V   is  

  2

0

1

2
t dt



   

where  t  is the response of the differential equation 

  ,  q  with initial value  .and     is a 

function satisfies (28).  

Proof: Using the fact that  ; ,V y   is the value 

function of cost functional (3), it could be written as 

       

    

2

0 1

2 2 2

0

; , ,

1

2

V y V V y O

y t u t dt

  




  

 

  
 

(30) 

where ,y   are the optimal trajectories. By substituting 

optimal control input (20) in (30) and using (21), we have 

       

   
 

 
    

2

0 1

2

2 2

0

; , ,

,1
,

2 ,

c

V y V V y O

y
y t a y y O dt

a y

  


 



  

  
         


  


 



 

Here by replacing the optimal trajectory y from (23), 

the value function V when 1 becomes 

       

        

2

0 1

2 2 2

0 0

; , ,

1 1

2 2

V y V V y O

O dt dt O

  

   
 

  

    

  

 

 

Therefore, it can be easily concluded that  

   2

0

0

1

2
V dt



    

Notice that   in above is the initial value of the 

internal states. 

Theorem 1: Consider affine nonlinear system (1) with 

normal form (16). The origin of the internal dynamics of 

system (2) becomes asymptotically stable through the 

output signal  y    if     satisfies dynamical 

equation (28) and also  0 0  . 

Proof: In order to prove the asymptotic stability of the 

internal dynamics we choose cost value function  0V   as 

the Lyapunov function. From the Lyapunov’s second 

method for stability [26], the origin of the internal 

dynamics is (locally) asymptotically stable if  0 0V   

for every nonzero  t  (located in a neighborhood of the 

origin) and  0 0V  at the origin. Now,  0V   is 

computed as 

 
 

 
 

 
  

1
0

0

1

2
0 0

1

1 1

,

n
i

i i

n

i n

i i n

V d
V

dt

V V
q q






 









 






 
 

 








 
  

 

Knowing that     satisfies (28), thus it surely 

satisfies (24), (25) and finally it should satisfy equation 

(22) through  y   . By substituting  y    into 

(22) it becomes 

 
 

 
    

0

1

1

0 2

1

1

2

2 , 0n

n

V
q

V
q



 












  







  

 

and then 

 
 

 
 

  

 

2
0 0

0 1

1 1

2

,

1

2

n

i n

i i n

V V
V q q 

 







 

 
 

 

 


 

   


 

which is negative for all nonzero  (located in a 

neighborhood of the origin) and this in turn leads to the 

(locally) asymptotic stability of the origin of the internal 

dynamics and simply completes the proof. 

Now to find the proportional approximate cheap 

control input (24), we in fact need to compute the 

functional coefficient  ,c y  . To do so, we assume 

that for the square of this functional the following power 

series expansion is given 

     

   

2

0 1

3

3

,

, max 3,

c

l

l

y n n y

n y l m







 

  

  


 (31) 

By substituting (31) into equation (21), it becomes 
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 
 

 
 

 

 

 

      

   

 
    

0 0

1 2

1 2

0

0 1

1

0 1 2 2

3

3

2

2

2

2

0

n

n

b

m

m

n

t

t

V V
q q

V
f f y f y

n n y
y y

n y

y



 



 











  
  

  


   



 
    
   

 





 
 


  

 
 



 

(32) 

Now, (32) can be simply rewritten as 

     0 1 0m

ms s y s y       (33) 

where is s are computed from the following equations. 

           

             

     

          
     

          

     

          

       

     

2

0 0 0

2

1 1 0 1

2 2

2

0 1 2

3 3

2

1 2 3

2

2 1

1 1 3

2

1

2

2

2

k k

k k k

m m m

m m

s b f n

s f n n

s f

n n n

s f

n n n

s f

n n n

s f n

s f

 

  



 



 



 





 

  

  

  

 

  



  



  

 



     

      

  

    

  

    

  

    

   

  

 

(34) 

According to the fact that only the optimal 

trajectory  y    satisfies the HJB equation, by 

replacing y  with     in (33) and its first m-1 

derivatives, the coefficients is s are easily computed from 

the following equation. 

 
   

 
1 1

,
!

1, ,

k

m k m

m m m k
s s

k

k m



  




   
(35) 

where      m ms f    .  

Now from (34) the coefficients of  2 ,c y  are 

determined as 

 

   

   

   
   

1

1

1

1
1

!

1 ! 1 !

1, ,

k j

k

m j

m k

j
j

m

k j

f
n

m
f

j m j

k m







 



 






 




  



 
 
  
  
     





 


 

 
(36) 

Remark 1: For the system (1) with relative degree r>1, 

we first reduce the system’s relative degree to one and 

then employ the proposed algorithm to design the near-

optimal controller.  

To do so, the following simple output redefinition is 

used. 

   2 1

1 1

r r

new ry c y c y y
 

     (37) 

where 1 1, , rc c   are the coefficients of a Hurwitz 

polynomial such as   1 2

1 1

r r

rp s s c s c 

     . The 

normal form of system (1) through this output redefinition 

becomes 

   

 

1 2

2 3

1 1 1 1 1

, ,

,

new n new new n new new

n new s

r r r new

y b y a y u

y

z z

z z

z c z c z y  

 







    

 

 q z ,

 

(38) 

where  

 1 1,
T TT T

new s s rz z 
     z z

 

and  

 

 

 

   

   

1 1 1 1

1 1 1 1

1 1 1 1

1 2 2 1

1 1 1 1 1

,

,

,

,

r r r new

r r r new

r r r new

n new new r r

r r r new

z c z c z y

n new new z c z c z y

n new new z c z c z y

b y c z c z

c c z c z y

b

a y a

y q

 

 

 

 

  

   

   

   

  

   











 

 

z

z

q z

 

Here the internal dynamics is  

 

1 2

2 3

1 1 1 1 1

,n new s

r r r new

y

z z

z z

z c z c z y  







    

 q z ,

 

which indeed is not in the form (14). Knowing that the 

second part of the internal dynamics, sz , is a linear 

system and it is asymptotically stable through 0newy  , 

we omitted this part of the internal dynamics however it is 

appeared in the first part of internal dynamics. Therefore 
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the near optimal high gain controller is only designed for 

 ,n new sy q z , . 

Below we present some illustrative examples to clarify 

better the merit of the proposed controller.. 

4.  ILLUSTRATIVE EXAMPLES 

Example 1- Consider the following affine nonlinear 

system: 

   

2 2

210 cos

y y u

y y



   

   


   

 

where y is its output and   is its internal state. The zero 

dynamics of the system is   . Obviously, the system 

is non-minimum phase because the origin of its zero 

dynamics is unstable. The solution of equation (29) for 

this system is simply given as  
2

10


 







 and the 

coefficient  ,c y   equals 1. Therefore from (15), the 

near optimal high gain controller (NOHGC) becomes 

1 2
, 0

10
u y




 

 
   

 

 

The closed-loop system via this controller can be 

described as 

   

2 2

2

2

10

10 cos

y y y

y y


  



   

  
     

 


   

 

The fast dynamics of this singular perturbation system 

is  /y y O       where 2

10
y y




 


 and t




 .  

Obviously, the origin of the fast dynamics is 

asymptotically stable leading to the following equation. 

 
 

 
   

2
,

10

t
y t O t T

t


 




  


 

Note that  T   is a very small positive number of 

order  . According to the stability theorem of the singular 

perturbation systems [33], the origin of the closed-loop 

system is asymptotically stable provided that the origin of 

its slow and fast dynamics are both asymptotically stable. 

The slow dynamics of this system is 

 
2

2
cos

10


  



 
    

 

 (39) 

It can be easily shown that the origin, 0  , is 

asymptotically stable provided that the initial value of the 

internal state satisfies 
0 5.5   ; this in turn leads to the 

local asymptotic stability of  the origin  0, 0y    of the 

closed-loop system. Furthermore, for other initial 

conditions there exist two stable equilibrium points 

1,2( 7.7, 13.8)    , and two unstable ones 

3,4( 5.5, 11)    ; this will guarantee the bounded-ness of 

the solution of the closed-loop system for a wide range of 

initial conditions, see Figure 1.  

For the sake of comparison, we design a high gain 

LQR controller (HG-LQR) for the system. To do so, the 

linearized system around the origin is obtained as 

10

y u

y 




   

For the cost functional (3) with 1 , the optimal 

state feedback controller will tend to 1

5
LQRu y





 
   

 
. 

The slow dynamics of the closed-loop system is 

 
22

cos
5 5

 
  

 
     

 
 (40) 

The origin of the closed-loop system through the HG-

LQR controller is asymptotically stable for the initial 

conditions 
0 4.9    while the system’s solution becomes 

unbounded for the other initial conditions (there is only 

one equilibrium point near the point ( 5, 1)y     which 

is unstable). The simulation results are illustrated in 

Figures 3, 4 and 5 for the initial conditions 0, 3y   , 

and 310  . It seems that the regulation error norm of 

NOHGC is significantly less than that of HG-LQR. 
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-50

-40

-30
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time(s)

x

x ' = - x - cos(x) (2 x/(x + 10))2

 

Fig. 1.  The behavior of the slow dynamics through NOHGC for 

different initial values, x   
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Fig. 2.  The behavior of the slow dynamics through HG-LQR for 

different initial values, x   
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Fig. 3. Output signal for NOHGC and HG-LQR  
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Fig. 4. Internal state signal through NOHGC and HG-LQR 
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Fig. 5.  Control input signal of NOHGC and HG-LQR 

Example 2- Consider the following affine nonlinear 

system. 

 

 

2 2 2

1 2

1 2

2 1 2

4 1

sin

y y y y u

y

 

 

  

     






    

where y is its output and 
1 2,   are its internal states. The 

zero dynamics of the system is 

 
1 2

2 2 1sin

 

  




   

Obviously, the system is non-minimum phase because 

the origin of its zero dynamics is unstable. 

In order to employ the proposed method to find an 

explicit function  y   , it is required that to show 

whether the system satisfies Assumption 1, which is done 

below. 

The power series of  1 2sin y    around y=0 can 

be easily obtained as 

     

   

1 2 1 2 1 2

2 3

1 2 1 2

sin sin cos

1 1
sin cos

2 6

y y

y y

     

   

     

    

 

The approximation errror for m=2 (the first three 

terms) and m=3 (the first four terms) are given in Figures 

6 and 7, respectively. It is obvious that both expressions 

give a good enough approximation of  1 2sin y    . 

More terms are obviously needed for a wider range of y 

values around zero though this is out of question in our 

case. 

Equation (28) for this system becomes 

       

   

 1 2 1 2

2
3

1 21 2

2sin cos

1/ 6cos

     


   

    
 
   
 

 



 

and its solution is obtained through some algebraic 

manipulations as 

 

 

 

   

   

 

 

   

   

1/3
4

1 2

4
1 2 1 2 1 2

2

1 2 1 2

1/3
4

1 2

4
1 2 1 2 1 2

2

1 2 1 2

11cos
1.41421

sec 7cos cos 2 2

6sin cos

11cos
1.41421

2cos 7cos cos 2 2

6sin cos



 

     

   

 

     

   





 
 
     
 
 
   
 

 
 
      
 
 
   
 


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For this system, the coefficient  ,c y   equals 1. 

Now from (15), the NOHGC becomes   
1

u y 



   . 

Obviously, the slow dynamics of the closed-loop system 

becomes 

  
1 2

2 1 2sin

 

   




  


 

(41) 

The phase plane diagram of the slow dynamics (41) is 

shown in Figure 8.  

Now the linearized system around the origin is 

2

1 2

2 1 2

y u

y



 

  

 



     

For the cost functional (4) with 310  , the HG-

LQR controller becomes 

 1 21000 1.003 2.003 +3.24LQRu y    
 

The slow dynamics of the closed-loop system through 

the above control input is 

 
1 2

2 1 2sin 2.24

 

  




    

(42) 

Figure 9 shows the region of attraction of the origin, 

 , due to the LQR controller.  

According to the Figures 8 and 9 we cannot say that 

the region of attraction of the origin through the proposed 

controller is bigger than that of the HG-LQR controller; 

however, some simulation results show that the regulation 

error norm of NOHGC is less than that of HG-LQR. 

The simulation results are illustrated in Figs 10 and 11 

for the initial conditions 
1 20, 1, 1y       , 

and 310   . 
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Fig. 6. Approximation error for m=2 
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Fig. 7. Approximation error for m=3 
x1 ' = x2                           

x2 ' = sin(x1 + x2 + M - 2 M( - 1))

M = sec(x1 + x2) (sqrt(22 cos(x1 + x2)4 - 14 cos(x1 + x2)4 cos(2 (x1 + x2))) - 6 sin(x1 + x2) cos(x1 + x2)2)(1/3)
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Fig. 8. Phase plane diagram of the slow dynamics given in (41) 

where 
i ix   

x1 ' = x2                                                

x2 ' = sin(x1 + x2 +  - 66.48/34.86 x1 - 107.57/34.86 x2)
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Fig. 9. Phase plane diagram of the slow dynamics given in (42) 

where 
i ix   
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Fig. 10. Figure 10: Output signal through NOHGC and HG-LQR 
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Fig. 11. Control input signal through NOHGC and HG-LQR 

5.  CONCLUSIONS 

In this paper, a new analytical method to design an 

optimal high gain controller for the affine nonlinear 

systems was introduced. To find this controller an 

approximate closed form solution of the HJB equation 

associated with the cheap control problem was computed. 

The HJB equation was solved by using of an algebraic 

equation for the systems with scalar internal dynamics and 

a differential equation for those with the internal dynamics 

of higher order than one.  

Finally through some examples, it was shown that the 

regulation error of the closed-loop system via the 

proposed optimal high gain controller is significantly 

lower than that of the closed-loop system using the high 

gain LQR which is surely designed for the linearized 

system around the origin. 
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