[1] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, “Cost-driven scheduling of grid workflows using partial critical paths,” Parallel IEEE Trans. on Distrib. Syst., vol. 23, no. 8, pp. 1400–1414, 2012.
[2] L. F. Bittencourt and E. R. M. Madeira, “HCOC: a cost optimization algorithm for workflow scheduling in hybrid clouds,” J. Internet Serv. Appl., vol. 2, no. 3, pp. 207–227, 2011.
[3] R. G. Michael and S. J. David, “Computers and intractability: a guide to the theory of NP-completeness,” WH Free. Co., San Fr., 1979.
[4] A. Abraham, R. Buyya, B. Nath, and others, “Nature’s heuristics for scheduling jobs on computational grids,” in The 8th IEEE international conference on advanced computing and communications (ADCOM 2000), pp. 45–52, 2000.
[5] A. K. Aggarwal and R. D. Kent, “An adaptive generalized scheduler for grid applications,” in 19th International Symposium on High Performance Computing Systems and Applications, HPCS 2005., pp. 188–194, 2005.
[6] M. Aggarwal, R. D. Kent, and A. Ngom, “Genetic algorithm based scheduler for computationalgrids,” in 19th International Symposium on High Performance Computing Systems and Applications, HPCS 2005., , pp. 209–215, 2005.
[7] A. H. Alhusaini, V. K. Prasanna, and C. S. Raghavendra, “A unified resource scheduling framework for heterogeneous computing environments,” in Proceedings. Eighth Heterogeneous Computing Workshop, 1999.(HCW’99), pp. 156–165, 1999.
[8] R. Bajaj and D. P. Agrawal, “Improving scheduling of tasks in a heterogeneous environment,” IEEE Trans.Parallel Distrib. Syst., vol. 15, no. 2, pp. 107–118, 2004.
[9] S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya, “Environment-conscious scheduling of HPC applications on distributed cloud-oriented data centers,” J. Parallel Distrib. Comput., vol. 71, no. 6, pp. 732–749, 2011.
[10] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing,” Futur. Gener. Comput. Syst., vol. 28, no. 5, pp. 755–768, 2012.
[11] A. J. Younge, G. Von Laszewski, L. Wang, S. Lopez-Alarcon, and W. Carithers, “Efficient resource management for cloud computing environments,” in International Green Computing Conference , pp. 357–364, 2010.
[12] A. Nathani, S. Chaudhary, and G. Somani, “Policy based resource allocation in IaaS cloud,” Futur. Gener. Comput. Syst., vol. 28, no. 1, pp. 94–103, 2012.
[13] W. Wang, G. Zeng, D. Tang, and J. Yao, “Cloud-DLS: Dynamic trusted scheduling for Cloud computing,” Expert Syst. Appl., vol. 39, no. 3, pp. 2321–2329, 2012.
[14] M. E. Frîncu, “Scheduling highly available applications on cloud environments,” Futur. Gener. Comput. Syst., vol. 32, pp. 138–153, 2014.
[15] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, “Dynamic mapping of a class of independent tasks onto heterogeneous computing systems,” J. Parallel Distrib. Comput., vol. 59, no. 2, pp. 107–131, 1999.
[16] K. Etminani and M. Naghibzadeh, “A min-min max-min selective algorihtm for grid task scheduling,” in 3rd IEEE/IFIP International Conference in Central Asia on Internet, ICI 2007., pp. 1–7, 2007.
[17] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective and low-complexity task scheduling for heterogeneous computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, 2002.
[18] T. Yang and A. Gerasoulis, “A fast static scheduling algorithm for DAGs on an unbounded number of processors,” in Proceedings of the 1991 ACM/IEEE conference on Supercomputing, pp. 633–642, 1991.
[19] V. Sarkar, Partitioning and scheduling parallel programs for multiprocessors. MIT press, 1989.
[20] L. F. Bittencourt and E. R. M. Madeira, “A performance-oriented adaptive scheduler for dependent tasks on grids,” Concurr. Comput. Pract. Exp., vol. 20, no. 9, pp. 1029–1049, 2008.
[21] L. F. Bittencourt and E. R. M. Madeira, “Towards the scheduling of multiple workflows on computational grids,” J. grid Comput., vol. 8, no. 3, pp. 419–441, 2010.
[22] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, “Deadline-constrained workflow scheduling algorithms for Infrastructure as a Service Clouds,” Futur. Gener. Comput. Syst., vol. 29, no. 1, pp. 158–169, 2013.
[23] D. Poola, S. K. Garg, R. Buyya, Y. Yang, and K. Ramamohanarao, “Robust scheduling of scientific workflows with deadline and budget constraints in clouds,” in The 28th IEEE International Conference on Advanced Information Networking and Applications (AINA-2014), pp. 1–8, 2014.
[24] H. Kanemitsu, M. Hanada, T. Hoshiai, and H. Nakazato, “Effective use of computational resources in multi-core distributed systems,” in 16th International Conference on Advanced Communication Technology (ICACT), 2014, pp. 305–314, 2014.
[25] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good, and others, “Pegasus: A framework for mapping complex scientific workflows onto distributed systems,” Sci. Program., vol. 13, no. 3, pp. 219–237, 2005.
[26] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi, “Characterization of scientific workflows,” in Third Workshop on Workflows in Support of Large-Scale Science, 2008. WORKS 2008., pp. 1–10, 2008.