

 Amirkabir University of Technology

 (Tehran Polytechnic)

 Vol. 46, No. 1, spring 2014, pp. 19- 29

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

AIJ-MISC))

*email: naghibzadeh@um.ac.ir

Vol. 46 - No. 1 - Spring 2014 19

A Clustering Approach to Scientific Workflow Scheduling

on the Cloud with Deadline and Cost Constraints

Arash Deldari
1
, Mahmoud Naghibzadeh

1
*, Saeid Abrishami

1
, and Amin Rezaeian

1

1- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, IRAN

ABSTRACT

One of the main features of High Throughput Computing systems is the availability of high power

processing resources. Cloud Computing systems can offer these features through concepts like Pay-Per-Use

and Quality of Service (QoS) over the Internet. Many applications in Cloud computing are represented by

workflows. Quality of Service is one of the most important challenges in the context of scheduling scientific

workflows. On the other hand, the remarkable growth of the multicore processor technology has led to the

use of these processors by service providers as building blocks of their infrastructure. Therefore, scheduling

scientific workflows on the Cloud requires especial attention to multicore processor infrastructure which

adds more challenges to the problem. On the other hand, in addition to these challenges users’ QoS

constraints like execution time and cost should be regarded. The main objective of this research is

scheduling workflows on the Cloud, considering a multicore based infrastructure. A new algorithm is

proposed which finds clusters of the workflow that can be executed in parallel while having large data

communications. These kinds of clusters could be appropriate candidates to be executed on a multicore

processor. In contrast, there are other clusters which should be executed in serial. This algorithm

investigates whether serial execution of these clusters is possible or not. The experimental results show that

the algorithm has a positive effect on execution time and cost of the workflow execution.

KEYWORDS

High Throughput Computing, Cloud computing, Workflow scheduling, Clustering, Time Overlap

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

Arash Deldari, Mahmoud Naghibzadeh, Saeid Abrishami, and Amin Rezaeian

20 Vol. 46 - No. 1 - Spring 2014

1. INTRODUCTION

The concept of High Throughput Computing (HTC)

with loosely coupled applications such as bags of tasks or

scientific workflows has been popular for years. One of

the greatest features of HTC systems such as Grid and

Cloud is that processing resources with variable sizes and

capabilities are accessible on-demand. The well-known

Community Grid offered required resources free of

charge. Utility Grids use the economic concept such that

storage and processing resources with different Quality of

Service (QoS) characteristics can be provided at different

prices [1]. The required QoS specifications of users are

guaranteed through contracts between the users and the

service providers in these systems called Service Level

Agreements (SLAs). As Cloud Computing is considered

as an extension of Utility Grids, it uses the concepts of

Pay-Per-Use and Quality of Service to offer this feature

over the Internet. Instead of investing in the required

resources and their maintenance, they can be leased as

required. The on-demand and Pay-Per-Use usage of Cloud

resources makes this infrastructure highly scalable and

cost effective. Storage and processing resources are

presented on the Cloud through the virtualization process

which is an important feature of the Cloud. The virtual

environment offered in the Cloud is completely

independent of other environment as well as the physical

hardware [2]. This environment also allows the service

providers to customize their resources based on the users’

requirements. Thus, Cloud computing is regarded as an

appropriate infrastructure for executing HTC applications

such as scientific workflows.

The main purpose of scheduling algorithms is

increasing system performance and throughput. Optimal

scheduling in the Cloud is considered to be a multi

objective problem and it is hard to solve [3]. Thus, most of

the traditional scheduling algorithms for other systems

cannot be applied to the Cloud environment.

A workflow can be described as a set of tasks in which

each task is dependent on the data produced by its

predecessors. Therefore, this communication between

tasks causes precedence constraints in the workflow. This

model has been used in a lot of scientific processes,

including chemistry, computer science, physics, biology,

etc. A scientific workflow can be described as a Directed

Acyclic Graph (DAG) in which the vertices represent the

tasks and the edges represent control and data

dependencies. Two of the most important items of Quality

of Service in scheduling workflows on the Cloud are time

and cost.

On the other hand, the widespread development of the

multi-core processor technology has caused the service

providers to choose these kinds of processors as their

infrastructure. Consequently, executing a workflow on the

Cloud must consider scheduling on multi-core processors

in such a way that execution time and cost are decreased.

 In this paper, a new scheduling algorithm called

Cluster Combining Algorithm (CCA) is proposed. This

scheduling algorithm minimizes the execution time of the

workflow (i.e. makespan) and the cost considering the

multi-core processor infrastructure. First of all a clustering

algorithm is applied to the workflow DAG and each

cluster in the primary clustering phase is mapped onto a

single core processing resource for execution. Then the

CCA combines these primary clusters with the purpose of

scheduling the combined clusters on multi-core

processors. Most of the work done in this context does not

consider the time interval intersection in parallel execution

of the workflows. This approach uses a new concept called

Time Overlap to decide how to execute these combined

clusters. The clusters with a high Time Overlap are

executed in parallel while others with no Time Overlap or

low Time Overlap are executed in series. A scoring

approach is devised to decide serial or parallel execution

of these clusters. A coefficient has been used to make a

tradeoff between time and cost in the scoring function.

The importance of the workflow’s makespan or execution

cost can be determined using this coefficient. The CCA

algorithm pays especial attention to minimizing execution

time and cost by maximizing the utilization of rented time

periods of processing resources and also minimizing the

inter cluster data communications. Experiments show that

this approach has a positive effect on time and cost.

The rest of this paper is organized as follows. A

background on workflow scheduling and resource

management and related work on distributed systems is

presented in section II. The proposed algorithm is

described in section III. In section IV the simulation

results and the performance evaluation of execution time

and cost of the proposed algorithm are presented. The

concluding remarks appear in the last section.

2. RELATED WORK

Cloud computing can be considered as the extension of

the Grid, parallel and distributed computing which offers 4

types of services: Infrastructure as a Service (IaaS),

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

A Clustering Approach to Scientific Workflow Scheduling on the Cloud with

Deadline and Cost Constraints

Vol. 46 - No. 1 - Spring 2014 21

Platform as a Service (PaaS), Software as a Service (SaaS)

and Network as a Service (NaaS). The exceedingly high

popularity of Cloud computing has drawn the attention of

a lot of researchers in recent years. Scheduling and

resource management are regarded as one of the most

important issues in this context. The primary objective of

such scheduling is increasing the performance of

processing resources in distributed systems such as Clouds

and Grids.

A great deal of research effort has been dedicated to

the problem of scheduling on distributed systems like Grid

and Cloud [4]-[8]. Energy efficient scheduling of HPC

applications on Cloud data centers has been investigated

by Gang et al. [9]. The main objectives of this research

was reducing environmental pollution and increasing

service provider’s profits, whereas other related research

studies have mainly considered reducing cost. Beloglazov

et al. [10] have also proposed a heuristic approach for

resource provisioning in Cloud data centers. The main

objective of this research was reducing energy by dynamic

adaptation of Virtual Machine allocation during runtime

and also turning idle nodes to sleep mode.

A large number of researchers have considered

reliability, load balancing, accessibility and performance

in scheduling and resource management on the Cloud [11]

- [14].

Workflows are a common model for describing a wide

range of scientific applications on distributed systems. The

problem of scheduling workflows can be described as

mapping tasks to proper resources and meeting certain

QoS attributes. Generally workflow scheduling is divided

into two categories: static and dynamic. In static

scheduling, the plan is completed before runtime and the

scheduling scheme does not change during execution. On

the other hand, scheduling is done during runtime without

any primitive plans in the dynamic mode [1].

The problem of optimal task scheduling is considered

to be NP-complete. Therefore, many heuristic and meta-

heuristic techniques have been proposed with polynomial

time complexity [17-20].

Batch mode best effort scheduling algorithms usually

schedule a group of ready tasks on the resources to be

processed. In this context, Min-Min and Max-Min [15] are

two of the most well-known algorithms. In both methods,

firstly the earliest finish time of each task is computed.

The Min-Min approach selects the task with the minimum

earliest finish time to be scheduled. On the other hand, the

Max-Min method chooses the task with the biggest earliest

finish time. In a similar approach proposed by Etminani et

al. [16], the group of ready tasks is divided into two and

then one part is scheduled by Min-Min and the other part

is scheduled by Max-Min.

The high computing power of distributed systems has

made it an appropriate platform for workflow execution.

One of the famous research works done by Topcuoglu et

al. [17] in this context considers scheduling workflows on

a heterogeneous computing environment. The HEFT

algorithm assigns an upward rank to each task and maps it

to the processor that has the earliest finish time. This

research study has also introduced the CPOP algorithm

which uses the summation of upward and downward rank

as the priority of the tasks.

The DSC clustering algorithm which has been

proposed by Yang and Gerasoulis [18] executes a set of

tasks on each processor. Sarkar [19] also introduces a two-

step procedure for scheduling: 1- Primary clustering based

on the assumption that there exist infinite processors. 2-

Aggregation and scheduling of these clusters to meet the

number of the available processors.

Bittencourt and Madeira [20] have considered

scheduling related tasks on the Grid. Their objectives were

reducing runtime, maximizing utilization and throughput.

In a similar research they proposed a method that

minimized the required scheduling time and maximized

the fairness between processes [21].

The HCOC algorithm for scheduling workflows on

hybrid Clouds consisting of private and public Clouds has

also been suggested by Bittencourt and Madeira [2]. The

main objective of this research was to reduce makespan to

meet a specified deadline and execution cost. Therefore,

the general tendency has been to schedule the workflow on

the available resources in the private Cloud. In cases

where the makespan does not meet the specified deadline,

the resources on the public Cloud have been leased on a

Pay-Per-Use basis. Cost and the number of tasks have

been considered when scheduling the workflow on the

time slots in which the public Cloud is available.

The PCP algorithm has been proposed by Abrishami et

al. [1] to schedule scientific workflows on IaaS Cloud

which minimizes execution cost considering time

constraint using the Partial Critical Path concept.

Therefore, a sequence of tasks is mapped onto a processor

for execution. They also proposed Budget-PCP [22] which

minimizes the execution time with respect to the cost

constraint. This approach distinguishes the sequence of

tasks pretty well, but does not recognize the relationship

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

Arash Deldari, Mahmoud Naghibzadeh, Saeid Abrishami, and Amin Rezaeian

22 Vol. 46 - No. 1 - Spring 2014

vp vi’s parents

vc vi’s children

s Si

r Si ,s Sj

between the sequences. Accordingly, this method does not

function properly in scheduling on multi-core processors.

Poola et al. [23] have presented a workflow scheduling

algorithm on the Cloud which considers robustness and

fault-tolerance with time and cost constraints. This method

solves the problem of uncertainties such as performance

variations and failures in Cloud environment by adding

slack time based on the deadline and budget constraints.

Kanemitsu et al. [24] have proposed a theoretical

method for mapping jobs to computers in such a way that

it considers parallel execution and this increases resource

utilization. In this research, it was assumed that each

computer has two or more processors that have been

connected through infinite bandwidth. This method does

not cover the time intersection between clusters that are

going to be executed in parallel on different processing

elements which might lead to a large amount of free time

slacks on the processors.

In this work, the Time Overlap concept has been

introduced to compute the time intersection between the

clusters. Therefore, clusters with a high time overlap are

executed in parallel. Moreover, this method increases the

utilization of the processing resources by minimizing the

free time gaps.

3. THE PROPOSED METHOD

In this section, the proposed approach is described in

detail. First the system model for the algorithm is

illustrated and then the CCA method is demonstrated.

A. The System Model

The application model used for scientific workflow is a

Directed Acyclic Graph G= (V,E) in which V = {vi | i=

1,…,V} denotes the set of tasks of the workflow and E = {

ei,j | (i,j) {1,…,V} × {1,…,V}} represents the edges

between the vertices. In addition, each edge has a weight

which denotes the precedence constraint and the amount

of communication between tasks vi and vj. A ventry and

vexit with zero processing time and zero communication

have been added to the DAG since the algorithm needs a

graph with individual entry and exit nodes.

In addition, MET(vp) and MTT(ei,j) denote the

Minimum Execution Time and the Minimum Transfer

Time that are defined as:

MET(vi)= min ET (vi ,s)

MTT(ei,j) = min TT (ei,j ,r ,s)

 Using the following definitions the Earliest Start Time

is computed by:

EST(ventry) = 0

EST(vi) = max (EST(vp)+MET(vp)+MTT(ep,i))

Also the Latest Finish Time of each task is defined as

the latest time that the task’s computations should be

completed so that the workflow meets the specified

deadline:

LFT(vexit) = deadline

LFT(vi) = min (LFT(vc)-MET(vc)-MTT(ei,c))

Therefore, the overall execution time or makespan of

the workflow is defined as the time between ventry and the

completion of vexit. Many techniques such as analytical

benchmarking, code profiling, statistical prediction, and

code analysis have been used to estimate the execution

time of a task on an arbitrary resource [1].

It has also been assumed that TT(ei,j , a , b) and

TC(ei,j , a , b) denote the estimated transfer time and the

transfer cost between resource a that is processing task i

and resource b that is processing task j. The transfer cost

can be computed according to the service provider’s data

communication pricing policy between the resources and

also in and out of the specific cloud. Each cluster is

modeled as CL(v, config, est, eft) where v is the set of

nodes in the cluster, config is the machine onto which the

cluster is mapped for processing, and est and eft denote

the cluster’s Earliest Start Time and Earliest Finish Time.

To model the Cloud resources, CONFIG= (C, P, T) which

respectively denotes the number of cores, the leasing price

for each resource and also the billing time intervals has

been used. Although there are many QoS attributes in this

context, only execution time and cost which are

considered the most important ones have been used.

Therefore, QoS(T, C) has been used.

B. The Proposed Algorithm

 The main objective of this research is the static

scheduling of workflows on the Cloud with especial

consideration on multi-core processor platforms.

 The increasing growth in the production of multi-

core processors, plus the vast usage of Cloud service

providers using this technology make the problem of

scheduling workflows in multi-core Cloud resources an

important challenge to be tackled. Considering the multi-

core platform adds a number of difficulties to the

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

A Clustering Approach to Scientific Workflow Scheduling on the Cloud with

Deadline and Cost Constraints

Vol. 46 - No. 1 - Spring 2014 23

scheduling problem. The main purpose of using these

processors is parallel computing. The data

communications and the precedence constraints between

the tasks and the clusters of the workflow make the

optimal scheduling problem of the workflow more

difficult to solve. Therefore, the workflow must be divided

into clusters that can be executed in parallel or series. The

concept of clustering, the workflow has been studied in

different scheduling algorithms [20]-[21]. An algorithm

has been proposed in this research which combines the

existing clusters with regard to certain criteria.

Moreover, the utilization of processing cores which are

used for the execution of the clusters should be

maximized.

The higher leasing cost of multi-core processors

compared to single cores significantly increases the

importance of cost in the multi-core Cloud. The higher

leasing prices increase the importance of the utilization of

the available cores. In addition, execution cost and

makespan in the Cloud environment have opposite effects.

This means that reducing the makespan needs higher

processing power resources which results in higher leasing

fees. On the other hand, resources with lower computing

capacity and lower leasing prices must be used that

increases the makespan in order to reduce the leasing cost.

Therefore, a proper trade-off between these two concepts

is very important.

The proposed algorithm consists of two main stages.

At first, a clustering algorithm divides the workflow into

primary clusters and schedules each cluster to a single

core processor for execution. In the next stage, the main

part of the algorithm is performed which combines these

primary clusters regarding multi-core processors. Hence,

after combining these clusters the algorithm decides where

it will be mapped for processing and the attributes of the

tasks and clusters such as EST and EFT will be

recalculated. Since the combination of two clusters can

reduce their inter cluster communications to zero, the

attributes must be recalculated after each cluster

combination phase.

Depending on the structure of the workflow, different

clustering algorithms can be applied in the primary phase.

Even each task can be considered as a cluster in the

primary clustering phase. In this way, the proposed

approach starts by combining these individual tasks and in

a way it acts as a clustering algorithm with especial

consideration of multi-core processing resources. The

default algorithm that is used in the primary clustering

phase is the algorithm proposed by Bittencourt and

Madeira [21]. By using this algorithm, each primary

cluster consists of nodes whose predecessors have already

been scheduled or are to be scheduled along with them. To

combine these clusters, some important issues must be

carefully considered. For instance, there exist clusters that

cannot be executed in parallel if they are combined

together. Therefore, mapping them onto a multi-core

processor for execution significantly increases the free

time gaps and is not beneficial in terms of time and cost.

The most important issue in the context of multi-core

processors is to maximize the parallel execution of

workflow clusters. The best case occurs when two or more

clusters that can be executed in parallel are combined

together and mapped onto a multi-core processor for

execution. In this case, the execution time of the workflow

is minimized and the inter-cluster communication time can

be considered to be zero. Reducing these communication

times to zero can have a great effect on the execution time.

In this research a Cluster Combining Algorithm (CCA)

has been proposed which uses a new concept called Time

Overlap. Time Overlap denotes the amount of time

intersection between the clusters. This concept is used to

decide whether to execute two combining clusters in series

or parallel. With each workflow, a deadline or Latest

Finish Time (LFT) is submitted

Fig. 1. : An example of serial execution

Fig. 2. : An example of parallel execution

by the user. By assigning zero to the Earliest Start Time

(EST) to the starting node of the workflow, its EST and

LFT can be computed for each task and cluster [1].

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

Arash Deldari, Mahmoud Naghibzadeh, Saeid Abrishami, and Amin Rezaeian

24 Vol. 46 - No. 1 - Spring 2014

An Earliest Finish Time (EFT) has also been

considered for each task. The EST and EFT of each

cluster can be computed as:

EFT (Ci) =Max (Tj.eft) s.t Tj Ci

EST (Ci) =Min (Tj.est) s.t Tj Ci

where Ci denotes the i-th cluster and Tj denotes the j-th

workflow task. Having computed the EST and EFT of

each cluster, the time overlap of two clusters can be

computed by considering EST as the beginning of the

clusters period and EFT as its end. By computing the time

period, the Time Overlap of these two clusters would be

the period of time between the maximum of their ESTs

and the minimum of their EFTs. Two clusters without any

time overlap should not be executed in parallel. Assume

the following example as shown in Figure 1. The numbers

that appear on the nodes are supposed to denote the

execution time of the tasks and the numbers on the edges

are supposed to define the communication time between

the tasks. At the first look, the two clusters seem that they

could be executed in parallel. However, the

communication between them affects the EST of the

bottom cluster and consequently affects the cluster time

overlap. This makes their parallel execution inappropriate.

Parallel execution of two clusters with a low Time

Overlap decreases the utilization of the cores of the

processor. This is because mapping clusters with a low

Time Overlap on multi-core resources increases the free

time gaps. Thus, the stress in this approach is to try to

execute these clusters in series. In contrast, executing two

clusters in series is only possible if the LFTs of all the

tasks in the combined clusters are met.

Executing two clusters may exceed one billing unit. In

this case the costs of executing them in series would

remain the same. To maximize the economic benefits in

serial execution, the free time gaps of the available

resources should be utilized.

This method increases the utilization of the processing

resources by minimizing free time gaps. Now suppose the

case with the two clusters shown in Figure 2. In this

example, the communication does not affect the clusters

EST and time overlap. Therefore, the Time Overlap for

the clusters in this example is the highest possible. The

proposed algorithm considers these two clusters to be

executed in parallel. Parallel execution of these two

clusters does not decrease the utilization of the cores of

each processor.

 In this research, a scoring approach is used to decide

how to execute two combining clusters. The score is the

ratio of the computation to the billing price of the resource

for that particular amount of computational weight.

Accordingly, achieving a higher score means more

computations should be completed with a lower leased

cost. In other words, the utilization of the processing

resource in a specific leased period should be increased in

order to increase the score. Therefore, a parallel score and

a serial score are computed. These scores are then used to

decide which twin clusters are the best instances to be

combined together. This combination of clusters is done if

the maximum score is improved by combining them. This

score is also used to decide whether to execute the

resulting cluster in parallel or in series. This means that if

the parallel score is higher than the serial score, the cluster

is executed in parallel and vice versa.

An α coefficient that shows whether execution time has

more importance or execution cost, it is considered

(0≤α≤1) in order to compute this score. The larger the

alpha coefficient is, the more important is the execution

time. A tradeoff between execution time and cost is made

when this coefficient is used. In cases in which execution

time has more importance, the general tendency is parallel

execution. Thus, in such cases even the clusters with low

time overlaps are considered to be run in parallel which

leads to more free time gaps in the resources and also to a

higher cost. In other words, these free time gaps impose a

higher execution cost on the workflow by leasing more

processing resources. On the other hand, in cases where

the emphasis is on execution cost, serial execution is

preferred. Serial execution does not need a new computing

instance. In this case, if there are free time gaps in the

rented period, the available instances are used for

execution. Otherwise, the instance should be rented for

another period. This means that the algorithm executes

clusters with low time overlaps in series. However, this is

only possible if the LFTs of the tasks are met. This method

maximizes the utilization of the rented time periods which

leads to a more economical cost.

This algorithm receives a workflow and its related

deadline as input. Based on the deadline, the EST and

LFT of all the workflow tasks are computed. In Line 1 the

primary clustering phase is executed. After the primary

clustering phase is executed the internal communications

of each cluster is zeroed in Line 2. The attributes of the

tasks and clusters are updated and the primary scheduling

phase is performed in Line 3. For each cluster pair the

parallel score and serial score are computed. Based on

these scores, the two clusters with the highest scores are

combined together. Two clusters with high time overlap

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

A Clustering Approach to Scientific Workflow Scheduling on the Cloud with

Deadline and Cost Constraints

Vol. 46 - No. 1 - Spring 2014 25

have a higher parallel score than serial score. On the other

hand, two clusters with a low time overlap have a higher

serial score. This combining clusters is continued until no

other combination is possible. This means that the

combination of the clusters is repeated until the

combination does not improve the maximum score.

When a pair of combining clusters is considered for

parallel operation, processors with more cores are used,

e.g. if the two clusters use dual core processors for

execution, after the combination phase a quad core

processor would be used for executing the resulting

clusters. Therefore, instead of leasing two dual core

processors a quad core processor would be rented. In

addition, more inter-cluster communications would be

reduced to zero, which leads to a better makespan.

Calculating the serial score of two clusters is only

possible if they use the same number of processing cores

for execution. The first issue in serial execution is to

decide which cluster should be executed first. Wrong

precedence in serial execution may lead to a deadlock in

workflow execution in some instances. Suppose cluster A

which its tasks have parents in cluster B. In this case

executing cluster A before cluster B in serial on the same

processor leads to a deadlock. Consider the example

shown in Figure 1. The correct order for the serial

execution of these two clusters is to execute the top cluster

before the bottom one. Otherwise, executing the bottom

cluster before the top one in serial execution leads to a

deadlock. In most cases, executing a cluster before the

other cluster imposes a delay to the second cluster.

Therefore, in this case serial execution is only possible if

the LFTs of all the tasks in the second cluster are met. The

general tendency in serial execution of the clusters is to

make maximum use of the rented time periods of the

processing resources.

Algorithm 1: Cluster Combining Algorithm

Compute EST and LFT of all the workflows tasks

Cluster the graph //Primary clustering algorithm

Update communications //zeroing internal

communications for each cluster

Compute EST and LFT for each cluster and assign a

single core processor to each cluster

While (cluster combination is feasible) do

begin

4-1- Bestscore = -inf; // Bestscore is –infinite at the

beginning

4-2- For i=1 to n do // n is the number of current

clusters

 begin

 For j=1 to i-1 do

 begin

 Pscore = Parallelscore (i , j);

 Sscore = Serialscore (i , j);

 Maxscore = Max (Pscore , Sscore);

 If (Bestscore < Maxscore) then

 begin

 Bestscore = Maxscore;

 ii = i;

 jj = j;

 end;

 end;

 end;

4-3- If (combining ii and jj is possible)

 Combine (ii , jj); //indices of clusters which

makes the // highest combination score

 Else

 Break;

end; // end of while

In instances where there is not much difference

between the parallel score and the serial score, the α

coefficient plays a vital role in deciding whether to

execute in parallel or in series.

In cases where the execution time has more

importance, the effect of the parallel score is more

significant. In contrast, serial execution leads to a better

leasing price which is effective in cases where cost is of

more importance. Of course, this is affected by the time

slots provided by the service provider.

The proposed algorithm has several features which

affect the execution time and cost of the workflow. The

parallel execution of the clusters with high Time Overlaps

and reducing the intercommunications of the combined

clusters to zero and also reducing the free time gaps in the

scheduling of the resources greatly reduces the makespan

and the execution cost of the workflow as well.

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

Arash Deldari, Mahmoud Naghibzadeh, Saeid Abrishami, and Amin Rezaeian

26 Vol. 46 - No. 1 - Spring 2014

4. PERFORMANCE EVALUATION

In this section the simulation results of the Cluster

Combining Algorithm are presented. To test the proposed

approach, five well known scientific workflows that have

been used as benchmarks by researchers [25] [26] were

used in order to evaluate the performance of the

scheduling algorithms.

Fig. 3. Scientific workflow DAGs (top row from left: Montage,

Epigenomics, LIGO. Bottom row from left: SIPHT,

CyberShake)

TABLE 1. : RESOURCE SPECIFICATIONS AND BILLING PRICES

Vcpu Memory (GiB)

Windows

Usage

(per hour)

M3.medium 1 3.75 $0.133

C3.large 2 3.75 $0.188

C3.Xlarge 4 7.5 $0.376

C3.2Xlarge 8 15 $0.752

C3.4Xlarge 16 30 $1.504

C3.8Xlarge 32 60 $3.008

These benchmarks are based on real scientific

workflows in different fields like physics, astronomy,

genetics, etc. that have different sizes (i.e. number of

tasks): LIGO, SIPHT, Montage, Epigenomics and

Cybershake. Figure 3 shows the related DAGs of small

samples or similar to these workflows.

Table I shows the computing resources and their

related leasing prices for 1-hour time slots that we have

assumed can be provided by the service provider. These

leasing prices are based on the Amazon Elastic Cloud2

(EC2) pricing policy. Therefore, one hour billing periods

were considered in the proposed scheduling algorithm.

To evaluate the CCA algorithm, a deadline must be

defined for each workflow. Therefore, we have assigned

the EFT of the exit task of the workflow as the workflows

deadline.

A deadline coefficient that is used to set different

deadlines for the workflows and is computed as α.EFTExit

is also considered.

The results of the experiments carried out in this study

show that the CCA algorithm schedules all the workflows

before the termination of their deadlines. To compute the

success rate of the proposed method, we have considered

deadline coefficients between 0.8 and 1.4 and the results

show that the success rate of the proposed method is 100%

and there are no deadline violations.

The proposed algorithm was also compared with the

PCP algorithm proposed by Abrishami et al. [1] and the

PCH algorithm proposed by Bittencourt and Madeira [20]

which are two of the most cited algorithms in this context.

The PCP algorithm divides the workflow into sequences

using the Partial Critical Path concept and maps these

sequences onto single core processing resources to be

executed in a parallel or serial manner. The authors of the

Path Clustering Heuristic (PCH) have also proposed a

clustering heuristic to divide the workflow into sequences

of tasks in such a way that all of the parents of each task in

the sequence have been or are to be scheduled with the

sequence. These sequences are then mapped onto single

core processing resources to be executed.

We have regarded different sizes of the workflows as

input and the results show that the proposed algorithm has

a superior performance in terms of both time and cost.

To ease the comparison with other methods we have

used the logarithmic function to scale the results. The first

four charts show the makespan of the method and the

other charts show the execution cost. The total billing

price of the processing resources to execute the workflow

is denoted as the execution cost. The virtual machine

specifications used in the implementation are according to

the Amazon EC2 service provider given in Table 1.

0

1

2

3

4

5

6

Lo
g(

se
co

n
d

s)

small medium large

CCA

PCP

PCH

Fig. 4. Makespan comparison on Cybershake workflow with 30, 50

and 100 nodes

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

A Clustering Approach to Scientific Workflow Scheduling on the Cloud with

Deadline and Cost Constraints

Vol. 46 - No. 1 - Spring 2014 27

0

1

2

3

4

5

6

Lo
g(

se
co

n
d

s)

small medium large

CCA

PCP

PCH

Fig. 5. Makespan comparison on Epigenomics workflow with 24, 46

and 100 nodes

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5

Lo
g(

se
co

n
d

s)

small medium large

CCA

PCP

PCH

Fig. 6. Makespan comparison on Inspiral workflow with 30, 50 and

100 nodes

0

1

2

3

4

5

6

7

Lo
g(

se
co

n
d

s)

small medium large

CCA

PCP

PCH

Fig. 7. Makespan comparison on Montage workflow with 25, 50 and

100 nodes

Lo
g(

$
)

small med ium large

CCA

PCP

PCH

Fig. 8. Execution cost comparison on Cybershake workflow

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 L
o

g(
$

)

small medium large

CCA

PCP

PCH

Fig. 9. Execution cost comparison on Epigenomics workflow

0

0.5

1

1.5

2

2.5

3

Lo
g(

$
)

small medium large

CCA

PCP

PCH

Fig. 10. Execution cost comparison on Inspiral workflow

0

0.5

1

1.5

2

2.5

3

3.5

Lo
g(

$
)

small medium large

CCA

PCP

PCH

Fig. 11. Execution cost comparison on Montage workflow

In most cases, the results show that the CCA algorithm

performs better in comparison with the two other methods.

In the small Epigenomics workflow, the CCA algorithm

considers the serial execution of this workflow because of

the structure of the workflow. This serial execution leads

to more free time gaps on the leased resources in the

scheduling of the tasks which causes a higher makespan

and execution cost. This problem has been overcome in

the medium and large Epigenomics workflows. This is

because in the medium and large cases, more tasks can be

parallelized using available leased resources. In other

words, other tasks can be scheduled on the free time gaps.

Therefore, more tasks can be scheduled on the available

time gaps. The structure of the Montage workflow shows

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

Arash Deldari, Mahmoud Naghibzadeh, Saeid Abrishami, and Amin Rezaeian

28 Vol. 46 - No. 1 - Spring 2014

that this workflow is made up of small clusters with low

Time Overlaps which increases the free time gaps in the

scheduling of the resources. Therefore, this increases the

makespan and the execution cost. This also increases the

number of resources that are needed for the execution of

the workflow in the proposed approach in comparison

with the PCP algorithm. However, the CCA algorithm

performs better compared to the PCH algorithm in this

case.

The main reason that the proposed workflow

scheduling approach yields superior results in makespan

and cost is that by scheduling multiple clusters on a multi-

core processor, the communication between these clusters

are reduced to zero, especially if resources with a higher

number of cores are used. Thus having processing

resources with more cores leads to more parallel execution

of the workflow’s clusters. In addition, mapping more

clusters onto the same resource leads to reducing more of

the communication between these clusters to zero, and this

has an important impact on the makespan. Therefore,

workflows with a higher number of tasks have more

clusters that can be parallelized and executed on

processors with a higher number of cores. As the number

of tasks increases, we can imply that this zeroing of

communication has a greater effect on the makespan of

bigger workflows. We have also tried to maximize the

utilization of the processing cores by reducing free time

gaps. This approach reduces the number of needed

resources to process the workflow.

5. CONCLUSION

Cloud Computing is considered to be a relevant

platform for executing HTC applications like workflows.

Thus scheduling workflows on the Cloud is considered to

be an important problem to be solved. Service providers

offer multi-core processing resources. Because of the

payment policy in the Cloud, cost and makespan are

important factors which must be carefully considered in

the scheduling algorithm. In this research, a new workflow

scheduling algorithm that considers multi-core processing

resources with especial attention to execution time and

cost was proposed. To execute the workflow on multi-

core processors, the workflow was divided into clusters

and was combined in such a way that can be executed in

parallel or in series. Therefore, a new concept called Time

Overlap has been presented in this study that was used to

combine the clusters as well as to decide the parallel or

serial execution of these clusters. Moreover, a scoring

approach has been proposed to combine the clusters.

Clusters with a high time overlap gain a high parallel score

and are executed in parallel and clusters with a low time

overlap gain a high serial score and are considered to be

run in series. The general tendency is to use resources with

a higher number of cores. This leads to more parallel

execution and less communication overhead. In cases

where the scheduling algorithm executes clusters in serial,

the general tendency is to use the available free time gaps.

The proposed approach has been compared with two

other well-known methods and the results showed that

especially in cases that the structure of the workflow has

better characteristics for parallel execution, this algorithm

has a superior performance in terms of time and cost.

These types of workflows are mapped onto processing

resources with a higher number of cores. Therefore, more

communication overhead will be reduced to zero which

greatly reduces the makespan of the workflow. The

general tendency in the proposed approach is to increase

the utilization of the processing resources by reducing the

free time gaps in the scheduling algorithm which leads to a

lower number of resources for the execution of the

workflow. Thus, this results in a reduction of the leasing

costs.

REFERENCES

[1] S. Abrishami, M. Naghibzadeh, and D. H. J.

Epema, “Cost-driven scheduling of grid workflows

using partial critical paths,” Parallel IEEE Trans.

on Distrib. Syst., vol. 23, no. 8, pp. 1400–1414,

2012.

[2] L. F. Bittencourt and E. R. M. Madeira, “HCOC: a

cost optimization algorithm for workflow

scheduling in hybrid clouds,” J. Internet Serv.

Appl., vol. 2, no. 3, pp. 207–227, 2011.

[3] R. G. Michael and S. J. David, “Computers and

intractability: a guide to the theory of NP-

completeness,” WH Free. Co., San Fr., 1979.

[4] A. Abraham, R. Buyya, B. Nath, and others,

“Nature’s heuristics for scheduling jobs on

computational grids,” in The 8th IEEE

international conference on advanced computing

and communications (ADCOM 2000), pp. 45–52,

2000.

[5] A. K. Aggarwal and R. D. Kent, “An adaptive

generalized scheduler for grid applications,” in

19th International Symposium on High

Performance Computing Systems and Applications,

HPCS 2005., pp. 188–194, 2005.

[6] M. Aggarwal, R. D. Kent, and A. Ngom, “Genetic

algorithm based scheduler for computational

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

A Clustering Approach to Scientific Workflow Scheduling on the Cloud with

Deadline and Cost Constraints

Vol. 46 - No. 1 - Spring 2014 29

grids,” in 19th International Symposium on High

Performance Computing Systems and Applications,

HPCS 2005., , pp. 209–215, 2005.

[7] A. H. Alhusaini, V. K. Prasanna, and C. S.

Raghavendra, “A unified resource scheduling

framework for heterogeneous computing

environments,” in Proceedings. Eighth

Heterogeneous Computing Workshop,

1999.(HCW’99), pp. 156–165, 1999.

[8] R. Bajaj and D. P. Agrawal, “Improving

scheduling of tasks in a heterogeneous

environment,” IEEE Trans.Parallel Distrib. Syst.,

vol. 15, no. 2, pp. 107–118, 2004.

[9] S. K. Garg, C. S. Yeo, A. Anandasivam, and R.

Buyya, “Environment-conscious scheduling of

HPC applications on distributed cloud-oriented

data centers,” J. Parallel Distrib. Comput., vol. 71,

no. 6, pp. 732–749, 2011.

[10] A. Beloglazov, J. Abawajy, and R. Buyya,

“Energy-aware resource allocation heuristics for

efficient management of data centers for cloud

computing,” Futur. Gener. Comput. Syst., vol. 28,

no. 5, pp. 755–768, 2012.

[11] A. J. Younge, G. Von Laszewski, L. Wang, S.

Lopez-Alarcon, and W. Carithers, “Efficient

resource management for cloud computing

environments,” in International Green Computing

Conference , pp. 357–364, 2010.

[12] A. Nathani, S. Chaudhary, and G. Somani, “Policy

based resource allocation in IaaS cloud,” Futur.

Gener. Comput. Syst., vol. 28, no. 1, pp. 94–103,

2012.

[13] W. Wang, G. Zeng, D. Tang, and J. Yao, “Cloud-

DLS: Dynamic trusted scheduling for Cloud

computing,” Expert Syst. Appl., vol. 39, no. 3, pp.

2321–2329, 2012.

[14] M. E. Frîncu, “Scheduling highly available

applications on cloud environments,” Futur. Gener.

Comput. Syst., vol. 32, pp. 138–153, 2014.

[15] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen,

and R. F. Freund, “Dynamic mapping of a class of

independent tasks onto heterogeneous computing

systems,” J. Parallel Distrib. Comput., vol. 59, no.

2, pp. 107–131, 1999.

[16] K. Etminani and M. Naghibzadeh, “A min-min

max-min selective algorihtm for grid task

scheduling,” in 3rd IEEE/IFIP International

Conference in Central Asia on Internet, ICI 2007.,

pp. 1–7, 2007.

[17] H. Topcuoglu, S. Hariri, and M. Wu,

“Performance-effective and low-complexity task

scheduling for heterogeneous computing,” IEEE

Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp.

260–274, 2002.

[18] T. Yang and A. Gerasoulis, “A fast static

scheduling algorithm for DAGs on an unbounded

number of processors,” in Proceedings of the 1991

ACM/IEEE conference on Supercomputing, pp.

633–642, 1991.

[19] V. Sarkar, Partitioning and scheduling parallel

programs for multiprocessors. MIT press, 1989.

[20] L. F. Bittencourt and E. R. M. Madeira, “A

performance-oriented adaptive scheduler for

dependent tasks on grids,” Concurr. Comput. Pract.

Exp., vol. 20, no. 9, pp. 1029–1049, 2008.

[21] L. F. Bittencourt and E. R. M. Madeira, “Towards

the scheduling of multiple workflows on

computational grids,” J. grid Comput., vol. 8, no. 3,

pp. 419–441, 2010.

[22] S. Abrishami, M. Naghibzadeh, and D. H. J.

Epema, “Deadline-constrained workflow

scheduling algorithms for Infrastructure as a

Service Clouds,” Futur. Gener. Comput. Syst., vol.

29, no. 1, pp. 158–169, 2013.

[23] D. Poola, S. K. Garg, R. Buyya, Y. Yang, and K.

Ramamohanarao, “Robust scheduling of scientific

workflows with deadline and budget constraints in

clouds,” in The 28th IEEE International

Conference on Advanced Information Networking

and Applications (AINA-2014), pp. 1–8, 2014.

[24] H. Kanemitsu, M. Hanada, T. Hoshiai, and H.

Nakazato, “Effective use of computational

resources in multi-core distributed systems,” in

16th International Conference on Advanced

Communication Technology (ICACT), 2014, pp.

305–314, 2014.

[25] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil,

C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman,

J. Good, and others, “Pegasus: A framework for

mapping complex scientific workflows onto

distributed systems,” Sci. Program., vol. 13, no. 3,

pp. 219–237, 2005.

[26] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta,

M.-H. Su, and K. Vahi, “Characterization of

scientific workflows,” in Third Workshop on

Workflows in Support of Large-Scale Science,

2008. WORKS 2008., pp. 1–10, 2008.

