[1] Kallu, K. D. , Jie, W., and Lee, M. C., 2018, “Sensorless reaction force estimation of the end effector of a dual-arm robot manipulator using sliding mode control with a sliding perturbation observer”. International Journal of Control, Automation and Systems, 16(3), pp. 1367-1378.
[2] Kim, H. H., Lee, M. C., Kyung, J. H., and Do, H. M., 2021, “Evaluation of Force Estimation Method Based on Sliding Perturbation Observer for Dual-arm Robot System”. International Journal of Control, Automation and Systems, 19(1), pp. 1-10.
[3] Eid, J. J., and Oleynikov, D., 2021, “Cooperative and Miniature Robotics: Potential Applications in Surgery”. In Digital Surgery, pp. 269-273, Springer, Cham. https://doi.org/10.1007/978-3-030-49100-0_20
[4] Poudel, L., Zhou, W., and Sha, Z. 2021, “Resource-Constrained Scheduling for Multi-Robot Cooperative 3D Printing”. Journal of Mechanical Design, pp. 1-29. https://doi.org/10.1115/1.4050380
[5] Makris, S., 2021, Cooperative Manipulation-The Case of Dual Arm Robots”. In Cooperating Robots for Flexible Manufacturing, Springer, Cham, pp. 123-132. https://doi.org/10.1007/978-3-030-51591-1_5
[6] Azizzadeh, H., Menhaj, M.B., and Talebi, H.A., 2019, “Model-based force/position control of cooperative manipulation systems”. Automatica, 60 (1), pp. 113-123.
[7] Pizetta, I.H.B., Brandão, A.S., and Sarcinelli-Filho, M., 2019, ”Avoiding obstacles in cooperative load transportation”. ISA Transactions, 91, pp. 253-261.
[8] Chen, Y., and Lin, Y., 2020, “Combining model-based and model-free methods for stochastic control of distributed energy resources”. Appl. Energy. 283: 116204 (2020)
[9] Hu, B., Guan, Z.H., Lewis, F.L., and Chen, C.P., 2020, “Adaptive tracking control of cooperative robot manipulators with markovian switched couplings”. IEEE Transactions on Industrial Electronics, 68(3), pp. 2427-2436.
[10] Khan, A.T., Li, S., and Cao, X., 2021, “Control framework for cooperative robots in smart home using bio-inspired neural network”. Measurement, 167, 108253.
[11] Wu, J., Jin, Z., Liu, A., and Yu, L., 2020, “Vision-based neural predictive tracking control for multi-manipulator systems with parametric uncertainty”. ISA Transactions, 110, pp. 247-257
[12] Farahmandrad, M., Ganjefar, S., Talebi, H.A., and Bayati, M., 2019, “Fuzzy sliding mode controller design for a cooperative robotic system with uncertainty for handling an object”. Journal of Dynamic Systems Measurements and Control, 141(6), pp. 1-8.
[13] Li, Y., Yang, C., Yan, W., Cui, R., and Annamalai, A., 2019, “Admittance-based adaptive cooperative control for multiple manipulators with output constraints”. IEEE Transactions on Neural Networks Learning Systems, 30(12), pp. 3621-3632
[14] Hwang, C. L., Abebe, H. B., Chen, B. S., and Wu, F., 2020, “Fuzzy adaptive finite-time cooperative control with input saturation for nonlinear multiagent systems and its application”. IEEE Access, 8, pp.105507-105520.
[15] Ngo, V. T., and Liu, Y. C., 2020, “Object transportation with force-sensorless control and event-triggered synchronization for networked uncertain manipulators”. IEEE Transactions on Industrial Electronics, 68(1), pp. 902-912.
[16] Zhang, L., Sun, Y., Barth, A., and Ma, O., 2020, “Decentralized control of multi-robot system in cooperative object transportation using deep reinforcement learning”. IEEE Access, 8, pp. 184109-184119.
[17] Izadbakhsh, A., Kalat, A. A. and Nikdel, N., 2022, “FAT-based robust adaptive controller design for electrically direct driven robots using Phillips q-Bernstein operators”. Robotica, 40(10), pp. 3415–3434
[18] Izadbakhsh, A., Zamani, I., and Khorashadizadeh, S., 2021, “Szász–Mirakyan‐based adaptive controller design for chaotic synchronization”. International Journal of Robust and Nonlinear Control, 31(5), pp.1689-1703, https://doi.org/10.1002/rnc.5380
[19] Nasiri, N., Fakharian A., and Menhaj M.B., 2020, “Observer-based robust control for flexible-joint robot manipulators: A state-dependent Riccati equation-based approach”. Transactions of the institute of measurement and control, 42(16), pp. 3135-3155.
[20] Nasiri, N., Fakharian, A., and Menhaj, M.B., 2021, “A novel controller for nonlinear uncertain systems using a combination of SDRE and function approximation technique: Regulation and tracking of flexible-joint manipulators”. Journal of the Franklin Institute, 358 (10), pp. 5185-5212.
[21] Nasiri, N., and Lademakhi, N. Y., 2021, “Nonlinear combined SMC-SDRE control versus SMC and SDRE approaches for electrical flexible-joint robots based on optimal observer”. 9th RSI International Conference on Robotics and Mechatronics (ICRoM), pp. 568-573, doi: 10.1109/ICRoM54204.2021.9663514.
[22] Nasiri, N., Fakharian A., and Menhaj, M. B., 2022, “An Uncertain Optimal Factorization of Cooperative Manipulators for Robust Optimal Control Schemes”. 30th International Conference on Electrical Engineering (ICEE), pp. 582-586, doi: 10.1109/ICEE55646.2022.9827024.
[23] Azar, A.T., Serrano, F.E., Hameed, I.A., and Kamal, N.A., 2020, “Vaidyanathan, S., Robust H-Infinity Decentralized Control for Industrial Cooperative Robots”. In: Hassanien, A., Shaalan, K., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019.. Advances in Intelligent Systems and Computing, 1058, Springer, Cham, https://doi.org/10.1007/978-3-030-31129-2_24
[24] Jose Guadalupe Romero, Emmanuel Nuño., and Carlos I. Aldana, 2021, “Robust PID consensus-based formation control of nonholonomic mobile robots affected by disturbances”.
International Journal of Control, DOI:
10.1080/00207179.2021.2015541.
[25] Ammar, H.H., and Azar, A.T., 2019,” Robust Path Tracking of Mobile Robot Using Fractional Order PID Controller”. In: Hassanien, A., Azar, A., Gaber, T., Bhatnagar, R., F. Tolba, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019). Advances in Intelligent Systems and Computing, 921. Springer, Cham. https://doi.org/10.1007/978-3-030-14118-9_37
[26] Deylami A., and Izadbakhsh A., 2022, “FAT-based robust adaptive control of cooperative multiple manipulators without velocity measurement”. Robotica, 40 (6), pp.1732-1762, doi:10.1017/S0263574721001338.
[27] Izadbakhsh A, 2022, “An observer-based output tracking controller for electrically driven cooperative multiple manipulators with adaptive Bernstein-type approximator”. Robotica, 40(7), pp. 2295-2319.
[28] Izadbakhsh, A., and Khorashadizadeh, S., 2021, “Polynomial-Based Robust Adaptive Impedance Control of Electrically Driven Robots”. Robotica, 39(7), pp. 1181-1201.
[29] woon, L. C., Ge, S. S., Chen, X. Q., and Zhang, C., 1999, “Adaptive neural network control of coordinated manipulators”. Journal of Robotic Systems, 16(4), pp.195-211.
[30] Qu. Z, and Dawson. D. M, 1996, “Robust tracking control of robot manipulators”. IEEE Press, Inc., New York.
[32] Izadbakhsh, A., 2017, “A note on the "nonlinear control of electrical flexible-joint robots”. Nonlinear Dynamics, 89, pp. 2753-2767.
[33] Tang H., and Li, Y., 2015, “Feedforward nonlinear PID control of a novel micromanipulator using Preisach hysteresis compensator”. Robotics and Computer-Integrated Manufacturing, 34, pp. 124-132.
[34] Zhong, J., Fan, J., Zhu, Y., Zhao, J., and Zhai, W., 2014, “One nonlinear PID control to improve the control performance of a manipulator actuated by a pneumatic muscle actuator”. Advances in Mechanical Engineering, 6, pp. 1727-1782.
[35] Diep Cong Thanh TU., and Ahn, K. K., 2006, "Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network". Mechatronics, 16, pp. 577–587.
[36] Lee, J., Chang, P. H. , Yu B., and Jin, M., 2020, “An Adaptive PID Control for Robot Manipulators Under Substantial Payload Variations”. IEEE Access, 8, pp. 162261-162270.
[37] Maddi, A., Guessoum, A., and Berkani D., 2014, “Design of Nonlinear PID Controllers Based on Hyper-Stability Criteria”. 15th international conference on science and techniques of automatic control and computer engineering, pp. 736-741.
[38]
Ghediri, A.,
Lamamra, K.,
Ait Kaki, A., and
Vaidyanathan, S., 2022, “Adaptive PID computed-torque control of robot manipulators based on DDPG reinforcement learning”.
International Journal of Modelling, Identification and Control, 41(3), pp.173-182
[39] Perrusquia, A., Yu, W., and Soria, A., 2019, “Position/Force control of Robot Manipulators Using Reinforcement Learning”. Industrial Robot, 46 (2), pp. 267-280.
[40] Korayem, M. H., and Nekoo, S. R., 2018, “Controller design of Cooperative Manipulators using state-dependent Ricatti equation”. Robotica, 36(4), pp. 484-515.
[41] Kelly, R., Santibanez, V., and Loria, A., 2005, “Control of Robot Manipulators in Joint Space”. Springer-Verlag London Limited.
[42] Izadbakhsh, A., Nikdel, N., and Deylami, A., 2021, “Cooperative and robust object handling by multiple manipulators based on the differential equation approximator”.
ISA Transaction, 128, Part B, pp. 68-80.
[43] Izadbakhsh, A., and Nikdel, N., 2022, “Robust adaptive control of cooperative multiple manipulators based on the Stancu-Chlodowsky universal approximator”.
Communications in Nonlinear Science and Numerical Simulation, 111, 106471,
https://doi.org/10.1016/j.cnsns.2022.106471
[44] Patra, J. C., and Kot, A. C., 2002, “Nonlinear dynamic system identification using chebyshev functional link artificial neural networks”. IEEE Transactions On Systems, man and Cybernetics, Part B, 32, pp. 505-511.
[45] Purwar, S., Kar, I. N., and Jha, A. N., 2008, “Adaptive output feedback tracking control of robot manipulators using position measurements only”. Expert systems with Applications, 34,pp. 2789-2798.