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ABSTRACT: The issue of position/force control of collaborative robotic systems moving a payload is
proposed in this paper. The proposed approach must be able to maintain the orientation/position of the
payload on the reference trajectory while applying a limited force to the object through the robot’s end-
effector. With this in mind, linear/nonlinear PID control schemes have been proposed to achieve accurate
and robust tracking performance. Lyapunov’s stability analysis is utilized to confirm the stability of the
controlled system. It proves that the controlled system is stable, while the object’s orientation/position
tracking errors are uniformly ultimately bounded (UUB) in any bounded region of state space. It also
presents some conditions for proper selection of the linear/nonlinear PID controllers’ gains in the form
of two theorems. The proposed controllers apply to two coordinated 3DOF robotic arms that carry a
payload. The simulation results tested two types of trajectories, including simple and complex paths.
The results are also compared to those of a strong state-of-the-art approximator, the Chebyshev Neural
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Network (CNN).

Cooperative manipulators

1- Introduction

Human life has been profoundly impacted by the
development of robotic systems on both social and economic
levels. These systems are used in service centers, medical
clinics, and factory production lines because of their great
speed and precise operation. Many of these activities cannot
be completed by one robot and need a team of arms, mobile
robots, and unmanned aerial vehicles (UAVs) [1-5]. Packing,
assembling, painting, welding, and, handling, for example,
all necessitate the employment of several robot arms with
great precision and dexterity. Because of their significance,
a variety of model-based control mechanisms have emerged
for these robots [6-7].

Model-based control schemes are designed based on
precise system modeling. It is noteworthy that the dynamic
equations describing the behavior of collaborative robotic
systems are very complex and pose many challenges in their
use of them. This complexity is related to Inertia matrices,
the Coriolis and centrifugal matrices, and finally, the gravity
vectors that include the robot Jacobin matrices, inverse, and
their derivatives. This problem becomes hypersensitive,
especially to increasing degrees of freedom of collaborative
robotic systems. The existence of all these problems, along
with the unavailability of accurate parametric information
of the robotic system due to changes in load conditions,
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external disturbances, and measuring equipment, limits and
renders model-based techniques inefficient. This fact has led
researchers toward using neuro-fuzzy controllers [8].

To operate cooperative robotic arms, Hu et al. used neural
networks and a Markovian switching network to create
an adaptive controller [9]. It is assumed that the controlled
system is exponentially stable. A zeroing neural network
is employed in [10] to fulfill a cooperative path tracking
of mobile manipulators. Using an intelligent optimization
method, the controller is then optimized. To tackle the
cooperative arms tracking problem, Wu et al. suggested
a predictive controller using neural networks [11]. The
uncertainty is treated as a perturbation in this work, and
an extended observer is utilized to limit their impact. [12]
proposes a fuzzy sliding mode approach as a solution to the
problem of cooperating arms moving an item. In this study,
the cooperating system dynamics are decomposed using
the passive decomposition approach. Li et al., establish an
admission model for cooperating robotic manipulators that
carry an item [13]. Following that, to estimate the uncertainty,
an adaptive neural network is employed. The system stability
is also assured. The fuzzy adaptive control described in [14]
is meant to complete a task that requires the collaboration
of nonlinear planar robots without the risk of collision.
The controller-approximator structure is proposed so that
it compensates for the lumped uncertainties and fulfills the
cooperative task efficiently. The goal of [15] is to provide
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a distributed control approach for networked arms to
collaboratively move an un-modelled object without the need
for force measurements. In this study, an adaptive control
technique is developed using the wavelet neural network to
estimate unknown dynamics of the system, while keeping
the controlled system stable. In [16], a decentralized control
approach for a large object movement using a team of robots
is proposed. A deep Q-network controller is designed to
equip each robot. A function approximator is developed for
the system based on neural networks, which takes continuous
states into account and provides a robust system performance.

While fuzzy systems and neural networks may estimate
multiple functions based on their universal approximation
characteristic, they suffer limitations that turn their design
and construction into a difficult problem [17-18]. In fuzzy
logic-based approximators, various parameters such as types
and numerical ranges of membership functions, methods of
fuzzification/defuzzification, the inference system, and the
rule database, should be chosen properly to fulfill the design
objectives. In neural network-based approximators, factors
such as the network structure, number of hidden layers/
neurons, and activation function type should be selected
properly. All of these factors need significant design expertise,
and their complicated structure causes difficulty in applying
them, increasing the system’s computational load.

Considering literature on the field of robust control
dealing with uncertainty has a great deal of importance.
Hence, several studies have been dedicated to this field of
research [19-25]. Nasiri et al. proposed an observer-based
robust suboptimal controller in a State-Dependent Riccati
Equation (SDRE) framework to deal with parametric
uncertainty and external disturbances for robot manipulators
[19]. In [20], a combination of SDRE with Fourier
series is presented to deal with lumped uncertainties and
disturbances [20]. A robust optimal scheme is applied to
Electrical Flexible-Joint Robots (EFJRs) based on utilizing
SDRE in designing the sliding surface of SMC [21]. To
handle uncertainty and disturbances an uncertain psudeo-
linear structure is proposed for robust optimal schemes and
applied to cooperative manipulators [22]. A robust H-infinity
controller is proposed in [23] for cooperative manipulators. A
novel PID controller is introduced in [24] to solve (globally)
the position and orientation consensus-based formation
problem of multiple nonholonomic vehicles modeled as
differential drive robots affected by external disturbances.
PID and Fractional Order PID (FOPID) controllers are used
to obtain a robust controller for the system of the Pioneer-3
Mobile Robot as a complex non-linear system [25].

As a simple controller that is easy to design and
implement, PID controllers are very favorite and widely
used in the industry. However, high-performance control
under changes in environmental parameters and operating
conditions is beyond the capabilities of these controllers.
Therefore, many scientists are trying to modify the robustness
of these controllers [31-32]. Nonlinear PID controllers can be
seen as an attempt to modify the efficiency of conventional
PID controllers. Reference [33] proposed a FeedForward
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nonlinear PID control strategy for the performance
improvement of the flexure-based micromanipulator systems
using a Preisach hysteresis compensator. The mentioned
control strategy has been composed of three components:
a nonlinearity tracking differentiator, an extended state
observer, and finally a nonlinear state error feedback.
A nonlinear PID control strategy has been proposed to
improve the control performance of a manipulator actuated
by a pneumatic muscle actuator [34]. However, no stability
analysis has been provided in either of the above-mentioned
control strategies. Fuzzy systems and neural networks have
been utilized to adjust the gains of nonlinear PID controllers
[35]. However, they increase the computational load of the
controller whereas they have many parameters that should be
tuned. In addition to this, there exist some other problems as
mentioned in [17].

Reviewing the literature on previously published papers
on neural networks, fuzzy, and PID controllers there is no
doubt that simple PID design for the complicated cooperative
manipulators dynamics is a great challenge to be dealt with.
Some of the PID strategies can be mentioned as PID for
n-link rigid robot manipulators under payload variations [36],
nonlinear PID based on hypersensitivity criteria for aircraft
control [37], adaptive PID with gains tuned based on deep
deterministic policy for rigid robot [38], using reinforcement
learning in conjunction with PID to position/force control of
rigid manipulators [39] and so on.

The current study presents linear/nonlinear robust PID
control schemes for cooperating robots. There are two
approaches to cope with the complexity introduced by the
dynamics of cooperative robot manipulators [40]:

1) Computing control gains independently for each
robotic arm.

2) Obtaining control gains for the entire system.

As mentioned in [40], the second case is more complicated
and is recommended for at most four cooperative arms.
However, the first case is superior for more than four arms
because of its experimental implementation capability. The
reason for superiority in experimental implementation is
that failure of one controller does not ruin the performance
of all systems to preserve more safety for the system. As
mentioned in [40] in ordinary situations, both methods
provide the same output but with different computation
times. In singularity points, the first case only quits the
singular-situated manipulator, though the second case in the
same event shuts down the entire work [40]. However, in this
paper, this situation is predicted and handled by considering
simultaneously working all the manipulators connected to
a payload. The benefits of the proposed linear/nonlinear
robust PID techniques over neuro-fuzzy and dynamic model-
based methodologies make them appropriate candidates for
confronting disturbances and uncertainty. The most important
benefits are: (1) Variations in model-based controller
parameters may have a considerable effect on system
efficiency. In contrast, proposed control approaches do not
rely on the system’s model except for the upper and lower
bound of the system parameters. (2) Projection techniques are
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Fig. 1. Different coordinate frames of the system

employed in neuro-fuzzy techniques to keep the parameter
values within a specified bound, which increases the system’s
computational load. The proposed approach is innocent of
this issue. (3) Unlike recently mentioned methods, which
often require the use of a compensator term including a lot of
adjustable parameters in their structure, there exist few control
parameters in the proposed linear/nonlinear PID controllers.
Consequently, the complexity of the proposed approach is
significantly less than other fuzzy or neural network-based
approaches.

Based on these discussed advantages, the aim of this paper
is linear/nonlinear PID controller design for cooperative
manipulators. The stability evaluation is made utilizing the
Lyapunov lemma to validate the signals’ boundedness. It
proves that the controlled system is stable, while the object’s
orientation/position tracking errors are Uniformly Ultimately
Bounded (UUB) in any bounded region of state space. It also
retains a constructive algorithm for the proper selection of the
linear/nonlinear PID controllers’ gains. Finally, the suggested
control approaches are used to operate a cooperating robotic
system with two arms carrying a rigid load. The simulation
results tested two types of trajectories, including simple and
complex paths.

The paper sections are arranged as: Section 2 describes
the robot dynamic model. It also summarizes the useful
properties of the robot dynamics equations. The Linear PID
controller design and its stability analysis are presented in
Section 3. The proposed nonlinear PID controller structure is
discussed in Section 4. Moreover, Section 4 gives a thorough
stability evaluation of the controlled system. Section 5
gives the discussions and results, and Section 6 clarifies the
significant concluding remarks.
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In this paper, R" , R™" ,and R denote the n-dimensional
vector space, the nxn real matrix space, and the real number
set, respectively. The norm of matrix AeR™ and that of
vector z € R" are defined as |A] =4, (A 4) and |lz] =7z
, respectively. 4 . (s) and A, (+) are the maximum and the
minimum eigenvalue of matrix (s). 0, and I, are the nxn
zero and the identity matrices, respectively.

2- Dynamics of Robotic System
2- 1- Preliminaries

Assume m robotic arms with n-degree of freedom (n-DOF)
in the workspace are handling a typical item. Fig. 1 shows the
various coordinate systems considered for obtaining system
dynamics. The OXYZcalled base frame is established to
indicate the gripper and object locations, as well as their
orientations. 0,X,Y.Z, is the object’s coordination frame,
which is located at the object’s mass center. 0,X,Y.Z,
represents the ith robot coordinate frame and is located at its
grasp point. The system’s dynamic model is supposed to be
developed using the following assumptions [26-27].

Assumption 1: The dimensions of the workspace and
DOF of each robot are equivalent for all manipulators,
indicating that they are non-redundant.

Assumption 2: There is no relative motion between the
payload and the robot. i.e. a tight connection between them
is considered.

Assumption 3: The manipulator kinematics are known
exactly. In addition, the manipulator works to avoid the
kinematic singularity. This means that, for each arm, the
Jacobian matrix is full-rank and known.

Assumption 4: Due to the rigidity of the payload, exerting
forces on the object by grippers does not distort its shape.



A. Izadbakhsh et al., AUT J. Model. Simul., 55(1) (2023) 71-98, DOI: 10.22060/miscj.2023.21867.5305

2- 2- Robot Model
For the ith robot, the dynamics are modeled as follows in
the joint space [28]

D.(q,)4; +C,(q;.4,)4;
+J:i (q,)F, +G,(q,) =1, T )

i=1,2,...m

In Equation (1), q, eR" is the generalized coordinate
vector of the manipulator. D, (q,) e R"" denotes the positive
definite symmetric inertia matrix. C,(q;,q,)q, eR"™" is the
vector of centrifugal and Coriolis forces. G,(q,)eR" stands
for the vector of gravity forces obtained as the gradient of the
robot’s potential energy due to gravity. 7; € R" is the vector
of controls’ torques, 7, ; represents the external disturbance,
J,.(q;) R denotes the Jacobian matrix, and finally
F, € R" denotes the force applied on the item by the ith
robot gripper. The concise modeling of the dynamics of the m
manipulator is represented as follows

D(q)q + G(q) + C(q, q)q + JZ: (q)Fg =T+ Td (2)
where
T T " mn
q = [ql cen qm :| (S m
T=|:1'1T ‘rﬂrei}{”’"
T, = [TZ;’I Tg,m ]T e R™
D(q) =blockdiag [D1 (q,),.-.D, (q, )] < "

C(q,q) =blockdiag [C] 9,.9,),--.C,(q,-4q, )] < R
G@=[G@) ... G,@,)] eR"

F =[F, F, ] ew

J,(q) =blockdiag [Jel(ql),...,Jem (q, )] < jmmxmn

Without loss of generality, all the kinematic pairs of
the robot are assumed further on to be revolute. Also, the
following inequality holds:

ol 2D(@), VqeR™ )

& lalz[<q.9)

» Vq,qeR™ (%)
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& > sup |G(q)|

vqeR™" (6)
O < gJe ,min < ||Je (q)” < éJe ,max (7)
vl <& ®)

in which &, =A_. (£51,&p5,-,Ep, ) 18 a positive
scalar constant with &, denoting the maximum eigenvalue

of D.(q,) for i=1,.,m; T e R™ ™ is the identity matrix,
1 m . ..

&= gfmax (Exys&rgneiniry )is a positive scalar constant

Wiﬂ.l & denoting the maximum eigenvalue of C,(q,,q;)

for i=1,..,m; éJe ,min /1min (é:Je],min ’ §J82,min 2°**99J,,, ,min

and1 & max = e (& g & ep s & ,max)dare posmze
scalar constants wit - an enoting the
Joi ,min J i »max g

minimum and maximum eigenvalue of J, (q,) for i=l,..,m,
respectively. Finally é’G and é‘f are positive scalar constants.

2- 3- Modeling the Object Movement
The payload movement is modeled as [26]

Do (Xo )io + Cn (Xn > Xa )Xo + Gn (Xn ) = E) (9)

where x, e R" indicates the orientation/position vector of
the payload frame 0,X,Y,Z, relative to the reference frame
OXYZ. D,(x,)eR"™" is the positive-definite and symmetric
payload inertial matrix. G, (x,)e®R" and C,(x,,x,)eR"
are the gravitational vector and the Coriolis/centrifugal forces
matrix, respectively. F, e R" indicates the force applied to
the object’s mass center and J (x,)1s defined as

S (Xo)]T e R (10)

J,(x,)=[J],(x,)

Here, J , (x,) e R"" represents the Jacobian matrix of the
payload frame 0,X,Y,Z, relative to the ith arm gripper frame
0.X.Y.Z..So, F, is obtained as

ei“ el ~eiel

F, =J (x,)F, (11)

By known consequent F,, the force F,, satisfying (11),
is decomposed into two parts. These parts are orthogonal and
correspond to the internal force production and the object
displacement as (12) [26-27].
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F =F +(J’ (x,))'F, (12)

where the pseudo-inverse of Jf (x,) is calculated as
(37 (x, )" =, (x,)J] (x,)3,(x,)) " eR""" . Internal force
F, e R™ is described in the Jf (x,) null space. In other
words, it fulfills (13).

J, (%,)F, =0 (13)
Integration of (12) and (9) leads to
F, =F, +(J! (x,)'(G,(x,)+C,(x,.%,)%, +D,(x,)X,) (14)

The dynamic equation (9) has the following properties,
which are useful for subsequent control development and
analysis.

o, 1, 2D,(x,), VX, eR’ (15)

&% [1ZIC, (x,.%,)], Vx,.x, e R (16)

&, 2 sup |G, (x,) a7
vx, eR”

0< 0 (I, X)) I, (x,)]| £ 0,0 (I, (x,)) (18)

in which &p, ', & . and &g are known positive scalar
constants. Moreover, o . (J, (x,)) and o _ (J, (x,)) are
positive scalar constants representing the minimum and
maximum singular value of J (x, ), respectively.

2- 4- Modeling the Overall System

There are (m+1)n position variables in (2) and (9), and
n of them are not dependent, because the path of each robot
joint is determined uniquely given a certain load path based
on Assumptions 1 and 2. Due to the dependency of position
variables, equations (2) and (9) are not suitable for studying
system dynamics. Therefore, the independent object position

X, is utilized to reformulate (2), to describe the overall
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system behavior.

The ith robot end-effector position/orientation vector is
indicated by x,; € R" . The Jacobian J , (q,)is then utilized
to establish the equation between X, and q; as (19).

X, = Jei (qi )ql (19)

and Eq. (20) shows the relationship between x,, and X, .

Xe' = Joi (Xo )Xo

1

(20)

Combining Equations (19) and (20) yields the following
equation linking the joint velocity of the ith arm to the
payload velocity:

qi = J;zl (ql )Joi (Xo )Xo (21)

Since the arms move in a non-singular space, there is the
inverse matrix of J  (q,)- The robots are supposed to act on
the payload at the same time. That’s why,

q=J."(@J,(x,)%, (22)
Differentiating (22) leads to
- o . d .
q=Jd. (@, (%)%, +— - @I, (x,))X, (23)

Now, utilizing equations (14), (22), and (23), the dynamic
model (2) is reformulated as follows

D(@)J, (@), (x,)X,
+I; (@ (x,)'(G, (x,)
+D, (x,)X, +C, (X,,%,)X,)

+C(q,4)J. (@)J, (x,)%,
+D(q)j—t<J:<q)Jo (x,))X,

+G(q) =1-J (Q)F, +1,

24

Multiplying both sides of Equation (24) by J7 (x )J." (q)
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, and using the fact that J7 (x )F, =0, the overall dynamics
of the robotic system consisting of the payload and multiple
arms, is rewritten as

M, (x)%X, +G,(x,)+C.(x,,X, )X =u (25)

where

M, (x,)=D,(x,)+

Iy (x,)J." (@D(@)J; (), (x,) e R"™
CC(XO’X()) :CO(X(;’X,;)

T (x0T (q)(D(q)j—t(J: (@4, (x,))

+C(q.4)J." (@), (x,)) € R™
G.(x,)=G,(x,)

+J5 (x, 3.7 (@(G(@) —7,) R’
u=J (). (@reR

Below, the useful properties of Equation (25) are
summarized which will be utilized for designing the controller.

Property 1: M (x,)is positive-definite, which is also
symmetric regarding all values of X_. It is also bounded
from above and below, i.e., £ 1 <M, (x,)<¢&,1,, Where the
positive constants &, and &,, are belong to R .

Property 2: wm_(x,)-2C,(x,,x,) satisfies the subsequent
skew-symmetric equality [29].

g(Mc (Xo ) - 2Cc (Xo > X0 ))g = O’ vg € ER

3- Linear PID Controller Design
3- 1- Control Law and Error Dynamics

According to (25), the mathematical model of cooperative
robots contains complicated matrices that will impose
difficulties on the control system and reduce its capabilities.
Moreover, increasing the number of collaborative robots and
their relevant degree of freedom, make the above difficulty
more hypersensitive. Therefore, the control objective is to
adjust the object’s mass center to track a predefined trajectory
in the presence of external disturbances and without any
knowledge of the system’s dynamic. Let us introduce the
object orientation/position and its velocity tracking error as
(26) with x_,(¢) € R" denoting the vector of the desired
orientation/position trajectory of the object.
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e,)=x,,0)-x,0),

(26)
e,(t)=%,,(t)-%x,)

Assumption 5: The desired trajectory signals % ,(z) and
X,, (¢) are limited by 4, andy, , respectively, i.e.,

AM = Sup”iiod (t) s VM = Sup”Xod (t )” (27)
t t
The control input is now introduced as:
t
() =k,&, () +x e, () +x, [e,(s)ds (28)
0

where the nxn matrices K,, K, and x, are diagonal
and positive definite. Substituting Eq. (28) into the robot
dynamic model (25), adding M_ (x,)%,, to both sides of the
resulted equation, using definition (26), and reorganizing
with some manipulation; the closed-loop error equation of
the robotic system can be shown as follows

6,(0)=-M'(x, )k, &, (1)
M (x, )K€, (0)

_M;l (Xo )Kl ].eo (S )dS
+M'(x, )(C, (x,,X%,)X,
+G, (x,) + M, (x,)X,,)

29)

Introducing the variable y(¢) as

y(z){jeZ(s) () &) R G0

The state-space representation of the dynamical equation
(29) can be obtained as follows

y@) = A(x, )y () +B(x,)A®) €2

where the nonlinear time-varying matrices A(x,) and
B(x,) are defined as
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0'[ In 07!
A(x,)= 0, 0, I, e R,
-M'(x,)k, -M'(x,)k, -M.'(x,)k
N ! ’ ! (32)
B(x,)= 0, e R3mn
| M.'(x,)

with
At)=G,(x,)+C.(x,,x,)X, +M_ (x,)X, €R" (33)

indicating the lumped sum of nonlinearities.

Remark 1: It is considerable that the actual control input
applied for controlling the system is the torque vector 7 .
The control rule (28) should be then presented as (34) to
achieve this goal.

I @T=F, +J (x,)'u (34)

where F,, e ™" indicates the internal force control law,
given by

F1c = K/ (Fld _F1 )+F1d (35)

where the gain matrix 0<K, e R"""" is in diagonal
form. Note that F, isin J’ (x,) null space, and so is F,-

3- 2- Stability analysis
Define

V(y)=y Py (36)

where

MK, ok, + M, s, R+ M, M,
p :E s, K+ M, K, tK, +M, uM, | e R (37)
HM 1M M

c c c

For the convenience of further considerations, the
argument of M_has been omitted. The Lyapunov function
(36) is positive definite if the matrix P is positive definite. A
proof that (37) is positive definite is given as follows. Assume
that the PID controller parameters are as follows.

— 7 nxn
K, =diag(K,,....k,,) € R"™",

K] :diag(’(ll"“ﬁl([n)ES’Rnxn’ (38)
K, =diag (K;,....K,;,) € R

The following lemma concludes the positive definiteness
of matrix P.
Lemma 1: Assume the following inequalities hold

0<pu<0.5 (39)

8 = 1 Ain (K,) = A (€)= 1) = (1= 1) A, (6, ) > 0 (40)

S2 :/Imin(Kp)_lugM _ﬂ’max(KI)>0 (41)

Hence, the matrix P is positive definite satisfying the
following inequality:

2

Zoe PY* =¥ Py > A, (P)]y] (42)

Where

142, s, 8
Ao (P)= =, 43
max( ) max{ 2 éM 2 2} ( )
. 1=2u . s, s
A (P)= e L2 44
J(P)=min{-—F ¢ 2y (@)
and
83 = (14 1) Ay () + 5)

Ui (1€, ) A (1)) + (L4 20 115,

S4 = A (K,) + 204, ()

(46)
F o (€)) + A+ 20) &,

Proof: see Appendix I.
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Differentiating (36) and utilizing (31), one obtains

V (y)=y (A" P+ PA)y+2y PBA(t)+y Py 47)

Substituting P from (37) into (47) and considering

property 2 one obtains

V(y)=-y Hy+
M., 0 O,
yTQl 0n Mc On y+
0, 0 M,
1
¥ |, |AG)
In
ML,
+y' |, |C(x, %) [, ]y
IV[
where
/’IK[ On On
H=| 0, (um,-uk,~x;) 0, |eR"™" (49
On On Kd
0, 41, 1,
Qf% @£, 2R, (Pl [e R (50)
WL+l 24,
Equation (48) can also be represented as follows
. 2 2
V(¥) <A Y] + A0 QDS [¥]
2 .
QY[ C. (x,.%,) D
4 A Q) Y] AC)]
in which
)75 W7 B §
Q,=| w1, w1, ul, |eR"" (52)
pb,pl, 1

The last term of inequality (51) is

investigated in the

remaining part of this proof. It is straightforward to show that
the inequality (53) is held (see Appendix II).

IA@ < By + 2L oy [y + Lo [y©)|] (53)

where we have utilized the inequality ||é0 (¢ )” < ||y(t )"
and

X, )| <V, +|y@)| (54)
laf < w %, (1) (55)

Replacing (53), (54), and (B3) into (51) with some further
manipulation, } (y) is bounded as

V W) <yl —wi v+ ¥ (56)
in which
V/Z = //l’max (QZ )LO + Iuilﬂ’max (QZ )LO
V= /1min (H)- ﬂ’max (Ql )GZM
(57)

A QLY =247 LY 3 20 (Q,)
l/IO = /u_l/lmax (QZ )ﬂO

The following theorem formulates our main result.

Theorem 1: Consider the robotic system (25). The
control input is designed as (28). Therefore, the controlled
system error signals with the initial condition Yy, are assured
to be uniformly ultimately bounded with respect to (0, @)
, provided that

v > 2\, (58)
A (P
'//12 T4 l//lz -4y, > 2y, (1 + %J (59)

78



A. Izadbakhsh et al., AUT J. Model. Simul., 55(1) (2023) 71-98, DOI: 10.22060/miscj.2023.21867.5305

k.

Fig. 2. Input-output characteristic of k(e )

A (P
vt \/‘//12 =4y, > 2y, ||YO|| lm%XEP; (60)

and

v, A (P)

o= L 61
l//1+\/'//12_4‘;”0‘//2 Ain (P) ©h

Proof: The proof is straightforward according to Lemma
3.5 of ref [30], (42), and (56). It is important to note that,
increasing y,, by proper selection of the PID control
coefficients guarantees the intended conditions (58) to (60),
and this completes the proof.

The boundedness of y implies boundedness of e, (¢)
, €,(t), and the control signal W. Utilizing Assumption 5;
X, () and X, (¢) are also bounded. These results combined
with (29) obtain boundedness of X, (). The subsequent
equation, achieved from (24), (25), and (34) presents that
errors of internal force are also limited.

(F,-F,)=—~(,+K,)"

{35 )7 (G. (x,) M. (x,)%, (62)
—u+C(X,,%,)%,)}

The force error is obvious to be limited and inversely
proportional to (I, +K,). By choosing a sufficiently large
gain K, , the error of internal forces can be diminished to a
desired small amount.

4- Nonlinear PID Controller Design
4- 1- Control law and Error Dynamics

A simple nonlinear PID controller consisting of a
linear fixed PID controller in cascade with a sector-limited
nonlinear gain is proposed in this paper. The control input is
now introduced as

— _ _d
u(t)=K,g(t)+K, Ig(s)ds +K, Eg(t) (63)
0

where g(t)=k(e,)e, (1) eR" is called the scaled
position error, e (¢) is defined as (26), and

K, =diag (K, ....K;,), (64)

represent the positive constant and diagonal gain matrices.

Remark 2: The matrix k(e )eR"™ is diagonal
and represents any sector bounded nonlinear function
satisfying 0 <k(e,) <k, I,- Fig. 2 shows the input-output
characteristics of k(e,) ; showing that the output g(¢) lies
within the shaded area k. ||e0 (t)|| > ||g(;)|| >0.

Remark 3: Assume that, the nonlinear gain k(eo)iS a
hyperbolic secant function with respect to the object’s mass

center position errore, (¢), i.€.,

k(e,) =k, +k, {I, —sech(e,)} (65)
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where K, and K, are the nxn constant and positive

diagonal matrices; sech(e, ) = diag (sech(e, ,),...,sech(e, ,))
2

exple,,; ) +exp(-e, ;)
i=1,..,n.Asaresult, k(e ) islimitedby k . =k +k, from
above with k, and &, denoting the maximum eigenvalues of
k, and K, , respectively. The lower bound of the gain matrix
k(e,) isalso givenby k, when e, =0.

Substituting (63) into (25), using definitions g(z), (26),
(30), and (65), and rearranging with some manipulation leads
to

e °R for

with sech(e, ;) = and e,

i

¥(©) = A(x,)y()+B(x,)A®) (66)
in which
o, I, 0
A(x,) = 0, 0, I, e R,
-M'(x,)r, -M]'(x,)r, -M](x,)r,
- (67)
0n
B(x,)=| 0, |eR™
_Mcfl(xo)
with

A@)={M,(x,)%,, +G,(x,)+C,(x,,%, )X, +K Kk, sech(e, e,

+R, K, [ sech(e, (s))e, ()ds +K K, sech(e, )¢, (68)
0

—K,k, tanh(e, )sech(e, )o(z)e, }

denoting the lumped sum of nonlinearities belong to R"
} 5(t)=diag €, ¢, ,...¢,,) e R"™ ; tanh(e,) =diag (tanh(e, ),
exp(ea,i ) _exp(_en,i ) fOI' eu,,- ceR

exple, ;) +exp(-e, )
2T, =R, (ko +h)s T, =k (ko +k,) a0 T, =&, (k +k,)-

..,tanh(e, ) € R™" by tanh(e,,) =

Remark 4: The matrices sec/(e,) and tanh(e,) have
maximum eigenvalues equal to one, for all e, € R", i.e. [41].

4- 2- Stability analysis

The following lemma is required in the following stability
analysis.

Lemma 2: Letfand Wbe two continuous functions on [a,b]
and assume Wis positive. Then, Jh F W (o)ds=f (&) J "w (Mg
for some & in [a,b]. ’ ’

A Lyapunov function candidate is suggested as follows to
enable the closed-loop system stability analysis.

80

V(y)=y Py (69)

where

AT, +Ar, + i°M,
13:E OT, +T, + I'M,
ﬁMC

AU, +T, + M, M,
AT, +T,+ 7'M, M, |e R (70)
M, M

¢ 4

The Lyapunov function (69) is positive definite if the
matrix P be positive definite. A proof that the matrix P is
positive definite is the same as those done in section 3.2. In
other words, by choosing the control parameters as

r, =diag(T,,...T",,),
r, =diag(T,,,....[,), (71)
I, =diag(l',,,....I',)

and assuming the following definitions and inequalities

0<u<0.5 (72)
85, = B4y (T) = A () = (A= 1D A, (T)) — 1), >0 (73)
‘STZZA’mjn(rp)_ﬂ’max(rl)_ﬁgM >0 (74)
Sy =+ ) A, (T)) 5
i (0,) + A (T )+ (14272, 7
LST4 = j'max (Fp ) + 2Mmdx (Fd )

(76)

+ A (T + (121D 115,

It can be concluded the positive definiteness of matrix P
satisfying the inequality below

A P 2y Py 2 2, ®)|y[f (77)

in which
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ﬂ’min (I_)) = mln{
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[A| < By + 4Ly + A (R VA O} [

424, 5, 8,
a_a_} 78
2 éM 2 2 ( ) +{2LOVM +/1max(]_(p)/1max(kl) (85)
+/1max (l_(d )ﬂ‘max (kl)
-2z, 5 5, b s (B ) A (&) ¥ )]
2 7272 )
By replacing (85), (B3), and (54) into (81), and some

further simplifications, (81) is reduced to

Proof: the roof is the same as those done in Appendix I.

Differentiating (69) with respect to time along the

trajectories of the uncertain system (66) gives . _ _ )
VW <yl @ - |yl +w. v (86)
V (y)=y (A" P+ PA)y+2y PBA(t)+y Py (80) o hich
Substituting P from (70) into (80), utilizing the same vy=u"'2(Q,)p
ipulati tion 3.2, btai _ = A
manipulation as section one obtains 7 =4 (H)-4_(Q)E,
. — 2 — 2 _ﬂ'max (QZ )LOVM
VA(¥) S —Auin (H)||y|| + A (Q1) S "yu QLY + A ('_(p )2, (K,)
87
(8 1) +ﬂ’max (]_(d )ﬂ’max (kl) ( )

o QI . (x,.%,)]
+/'_l_1/1max (QZ ) ”y"

where

Ar,
H=| 0, (ar,-
0!’1

and

sz

0}1
7,
7,

a1,
71,
ﬁln

e (R, ) A (KDY 20 (Q,)

AQ)|
v, ={L,(1+ 1)
+/1max (]_(d );i’max (kl )}ﬁil/lmax (Q2 )
0}1 On . .
T T 0 I The following theorem formulates our main result.
A, =T,) 0, 1€ (82) Theorem 2: Consider the robotic system (25). The control

0 L, input is designed as (63). Therefore, the controlled system
error signals under initial condition y,, is assured to be UUB

with respect to region O(0,@) provided that

ﬁzln ﬁZIn
281, (B +L, [eRT (83 I
@+l 2l W, > 2w, (88)

[T A Ao (P
wf+w1\/wf—4wow2>2wow{1+ ;“—(f,)] (89)
7 B | in (P)
£, e R (84)

ﬁIn In
P+ =437, > 207, | ) (90)

According to (53), using ||5 ( )” < ||y|| and lemma 2, it can

be shown that

and

81
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qﬂ;! )b i q"
B m ]
iy S, X
| W% ¥
Y4 /
J /| dl
M1, L, It
},7
0 x
Z
d>

Fig. 3. Two 3-DOF cooperative manipulators [42]

- 7 —avw. \ A (P) o1
¥ +\/'//1 — 4, \ Minin
Proof: the proof is straightforward according to

Lemma 3.5 of ref [30], (77), and (86). It is useful to note
that, increasing Y/, by proper selection of the PID control
coefficients guarantees the intended conditions (88) to (90),
and this completes the proof.

5- Results and Discussion

A cooperating robotic system composed of two 3-DOF
arms transporting an item is studied in order to apply the
developed controllers (Fig 3). [37] provides details of
the system modeling information (e.g., the robots’ Jacobian,
matrices of Coriolis and centripetal, inertia and vector of
gravity terms). Throughout the simulation, the indices i=1, 2
indicates the two arms . Assume that the base frame is just in
the middle of arms. Robot parameters are numerically set to
Ly,=1,,=2.05m, I,,=1,,=2.05m, and [,;=1,;,=0.5m
showing  each  link  length. m, =m,, =lkg,
m,=m,,=1kg, and m y=m,,=03kg denote the
link masses. I, =1, = 0.7kgm?, I,,=1I,= 0.5kgm*, and
1,5=1,=03kgm’ are moments of inertia of the links.
Equation (9) gives the object dynamics, where

82

D, (x,) =blockdiag(m, ,m,,1 ),
92)
G,(x,)=[0 mg o]

with [, and m, denoting the object’s inertia and mass,
respectively. Equation (10) presents the grasp matrix with

lil Sin(xo3)
—l, cos(x, ;) |, 1=1,2

1

1 0
1,(x,)=0 1 ©3)
0 0

In the last equation, [/, stands for the distance from
the ith robot gripper to the object’s mass center. The
values of [/, and m, parameters are chosen as 0.lkgm?
and 0.2kg, respectively. The designing parameters for the
PID and the nonlinear PID controllers have been chosen as
Kk, =k, =diag (800,800,800) , k; =k, =diag(100,100,100)
, Kk, =k, =diag(2,2,2)x10> , Kk, =diag(20,20,20)
k, =diag (2,2,2)x10%, and K, =diag (10%,10>,10?,10%,10>,10%) .

The proposed controllers’ performance is compared to
the Chebyshev neural network-based (CNN) uncertainty
approximator presented in [43]. The controller is given as
follows
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=W}, Z, V() + WL Z. V() + WS Z, + W' Z_~ K, A, (Q)s(t)

r i 94)
+J, (F, ) +K, J (F, (@)-F, (@))d @)
where
eo(t)zxo(t)_xod(t) (95)
s(t)=(e,(t)+Ae,(t)) eR" (96)
and the adaption laws are in the form of
v =—Qu (Z,, ¥()s" A} (@) +0, W,,)
W, =—Q. (Zv()s" Al (@)+ 0. W) o

W, =-Q (Z,s" AL (q)+0,W;)
W, =-Q;'(Z,s" A} (q)+0,W,)

The detailed description of CNN and its approximation
properties can be found in [44]. The values of the controller
parameters are similar to those presented in [43]. The first
term of the Chebyshev polynomials is picked to construct the

basis functions for the neural network. The initial weights
of the CNN are taken to be zero. As introduced in [43], the
required basis functions for nonlinear function approximation
are Z,, € R, Z. e RIS Z, e R* and Z, e R
Suppose that the external disturbance (98) is injected to each
robot manipulator.

T, (t)=[2+cos(2) sin(r)+cos(t) 2+2sin(2t)]T > 98)
=12

To study the controller response, two different desired
trajectories are defined in the following cases.
Case 1: Consider the following path

0.5cos(t +4)
1+sin’(¢)

0.5cos(t)sin(¢)
1+sin(t +4)sin(t)

X, (t) :{ +1.65 0} (99)

The desired value of F,, (t) is set to zero.
The initial speeds of two 3-DOF manipulators
are zero for both robots and initial values of ( is
q(O):[—0.2272 -2.2961 2.5233 -2.5233 2.2961 3.3688]T
. Fig. 4 shows the desired and actual coordination of the
object’s mass center. As can be seen, the suggested nonlinear
PID controller and Chebyshev neural network-based
controller are successful in tracking the reference trajectory;
while the linear PID controller fails to track the reference

2.8

y coordinate (m)
- N N N
© N N N (o))

N
[}

Desired trajectory
14 / === | inear PID

------- Nonlinear PID
= == Chebyshev neural network

-0.4 -0.3 -0.2 -0.1

0 0.1 0.2 0.3 0.4

x coordinate (m)

Fig. 4. Object trajectory tracking in the x-y plane
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Table 1. The required parameters for implementing of three controllers

Adjustable parameters

PID controller

Kp,KI,Kd,KI

Nonlinear PID Ep, I_CI, I_Cd, K[, ko, k]
controller
126x126
ALK, K, Q) eR :
The Chebyshev
neural network-based
234x234 42x42 42x42
controller Q. R , Qs eN , Q. eNR
0.02
===== | inear PID
—~ | remmem Nonlinear PID
©
@ 0.01 = = Chebyshev neural network
§ .
@
c 0
el
S
_5 -0.01
IS}
-0.02
0.05

-0.1

y coordinate error (m)

0.02

-0.04

-0.06

x coordinate error (m)

Fig. 5. Errors of orientation/position tracking

trajectory (99), under the same controller settings, initial
conditions, and external disturbances. Being a single-layer
neural network, the computational complexity of CNN is less
intensive as compared to multi-layered perceptron (MLP)
and can be used for online learning [45]. However, the
proposed nonlinear PID control scheme is much simpler and
less computational than CNN, since it has few tuning control
parameters with low dimensions.

Table 1 compares the required controller parameters for
implementing of three controllers. Fig. 5 demonstrates small

84

and UUB tacking errors in the Xy coordinates and orientation.
The joint angles for both robots are given in Figs. 6 and 7. The
relative control inputs applied to the robots are illustrated in
Figs. 8 and 9. The results are acceptable given that the signal
oscillations are diminished very quickly, and chattering does
not appear in the signals. Moreover, the boundedness of the
signals is maintained.

Finally, tracking of the internal force are given by Figs.
10 and 11.
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Robot manipulator 1

%‘“ 1 (L- T T T
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Sost y AN fk‘
E 0f o N N |
g el I I I I ‘.-"I'-'“""_H"P"—
0 1 2 3 4 5 6
Time(sec)
fann) _2 T T T T T
E ,ﬁ‘*ﬁiﬁ*m‘q‘_ o g
~ [, —~— Linear PID it
=251 ~, YRR Nonlinear PID .
'§J &"."' = = Chebyshev neural network | ) ,
0 1 2 3 4 5 6
Time(sec)
%‘“ T T T T T g r—
S M . !
E; ‘5 J m“—'“"m-—ﬂﬂ"ﬂ 'R'»:":
E 2 ‘I‘jf 1 1 1 1 1
0 1 2 3 4 5 6
Time(sec)
Fig. 6. First arm joints’ angles
Robot manipulator 2
-c T T T T T T
@
g 2f A ]
- am— m— ﬂr
R= - t.._.-_..__
QJ 25 p 1 1 1 I 1 --....___T___
0 1 2 3 4 5 6
Time(sec)
? ,-*""‘s. === inear PID V\\ ' '
257 ’,/ | [ Nonlinear PID \ 1
= e = = Chebyshev neural network . s
_j'D 2 I o o . B I I I I
0 1 2 3 4 5 6
Time(sec)
E 35 ._“ T T T T "I'__'__*I-‘;
= ~ T — 7
o 3 L \\ “\\ f 4
.g 25 L \Ibf 1 1 1 ; 1 1 ]
=
0 1 2 3 4 5 6
Time(sec)

Fig. 7. Second arm joints’ angles
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Robot manipulator 1
100 T T T T T T
_ S "‘;
% 0 —TN 'f —==— Linear PID L fr e e s e =t
= Wi [ Nonlinear PID v ;!
= 4 STA
— = Chebyshev neural network
_»1 DD 1 1 1
0 1 2 3 4 5 6
Time(sec)
20 T T T T T T
_ %
E o0 V4 £ ¥ .
<20 \, ]
_40 i i i i i i
0 1 2 3 4 5 6
Time(sec)
10 T T T T T T
E e TR
l—-m
_1 D i i i i i i
0 1 2 3 4 5 6
Time(sec)
Fig. 8. Control signals applied to the first robot
Robot manipulator 2
. 5D T T T T T T ]
E : 5
A
E 0 L et \_-“—-___.—--ﬂ-‘g !7'?‘ -
= ‘ T -'
-50 t I!' I I 1 t{f I [
0 1 2 3 4 5 6
Time(sec)
40 T T T T T T
E £~ 7~
=z 20 -""""\\ [ S s o s s ]|
- 0 Pt \v;’[[ i
D 1 2 3 —— Linear PID
Time(sec)|”™" Nonlinear PID
— = Chebyshev neural network
E 20 T T T T T T ]
E 0 '—_""W‘-'——-—-—_———-——'—"—""—“‘b‘th-—-u-—-———-——-u
l‘m _2[} 1 1 1 1 1 1 ]
0 1 2 3 4 5 6
Time(sec)

Fig. 9. Control signals applied to the second robot
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Robot manipulator 1

.10 T T T T
=
< 0 N s P o e s
I.I.E
_.10 1 1 1 L - 1 L
0 1 2 3 =====| inear PID
Time(sec)| ™™™ Nonlinear PID
= = Chebyshev neural network
— 20 T T T T T T
<
:.‘. () Plo o o e s Pincs g g
I.I.E
_2[} 1 1 1 1 1 1
0 1 2 3 4 5 6
Time(sec)
— 10 T T T T T T
=
U_E
_.1[} i i i i i i
0 1 2 3 4 5 6
Time(sec)

Fig. 10. First robot’s internal force tracking

Case2: Consider the following desired trajectory

0.125sin(11t)+0.125sin (2t

X, (¢) = 0.125sin (11 +1.6)+2+0.125sin (21 +1.6) (100)
0
In this simulation, assume that we have

q(0)=[2.5607 -1.9798 —0.5809 0.5809 1.9798 0.5809]T- In
this trajectory fast and complicated interactions among various
dynamics of the system are inevitable. All control parameters’
values are the same as before. Fig. 12 demonstrates the load’s
tracking in the x-y coordinate. Based on the obtained results,
the proposed nonlinear PID controller and Chebyshev neural
network-based controller fulfill acceptable performance for
the dual-arm robotic system compared with the linear PID
controller. The tracking errors along the x-y coordinate and
the orientation error are illustrated in Fig. 13. The angular
positions for both arms are given in Fig. 14 and Fig. 15.
Control signals for this case are presented in Fig. 16 and Fig.
17. As can be seen in these figures, the control signals are
limited and smooth.

or the internal forces, the tracking performances are
presented in Fig. 18 and Fig. 19.

&7

To compare the results more accurately, three performance
indices are considered. The first index is the integral of
squared error (ISE),

t
ISE =IO e (ﬂ)||2d13 (101)
The second performance index is
t
IAE =IO e, (0)|d¢ (102)
Finally, the third index is described as
t
ITAE = (e, (0)]d ¢ (103)
where ¢ is the final time defined for the simulation.

Equations (101)-(103) are usual performance indices in
control engineering. Based on these outcomes, the proposed
nonlinear PID controller and Chebyshev neural network-
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Robot manipulator 2

10 T T T T
0 g 2™ — ‘ﬁﬁ"\—-—-—-— ______
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0 1 2 3 =====| inear PID
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Fig. 11. Second robot’s internal force tracking
2.3 T T T - -
Desired trajectory
=== Linear PID
221
21 r
i
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‘
191
1.8
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1 7 1 1 1 === 1 1
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x coordinate (m)

Fig. 12. Object trajectory tracking in the x-y plane
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====Linear PID
------- Nonlinear PID
= == Chebyshev neural network

Joint 1 (rad)

Joint 2 (rad)

0.4}
05
0.6

Joint 3 (rad)

-0.02

-0.02  -0.04

x coordinate error (m)
y coordinate error (m)

Fig. 13. Errors of orientation/position tracking

Robot manipulator 1

~ ,.\ y SV, S Ve VA4 '\‘/\\/\_‘
. 1 2' \,'3 = Linear PID |
Time(sec) __ ’(\l:ﬁzlti);zs;:iural network
7 \
\/"\,«\ ’\,1\ Vﬁ /\/'\/\//
0 1 2 3 ’
Time(sec)
/\/ \/ \/ ~n N/ ’\ \/\
YAV "/\/\"
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Fig. 14. First robot’s joint angles while tracking the complicated trajectory
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Robot manlpulator 2
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Fig. 15. Second robot’s joint angles while tracking the complicated trajectory

Robot manlpulator 1
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Fig. 16. First robot’s control signals
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Robot manlpulator 2
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Fig. 17. Second robot’s control signals
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Fig. 18. First robot’s internal force
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Fig. 19. The second robot’s internal force

Table 2. Comparison of three performance indices

Performance criterion

Control approach ISE IAE ITAE
The linear PID controller 0.006854 0.1952 0.5843
The nonlinear PID 1.654%107° 0.009621 0.0187
Controller
The Chebyshev neural 7.68x107 0.001887 0.005779

network-based approach

based approach reduce all three indices, and the smallest
values for these indexes are obtained by both schemes.
However, in contrast to the Chebyshev neural network-
based approach, there are very few tuning parameters in the
nonlinear PID controller. The results have been summarized
in Table 2.
6- Conclusion

This paper discusses the issue of managing the force-
position of a load handled by numerous cooperative robots
in the existence of unknown external perturbations and
uncertainties. To address the problem, first, the system’s
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dynamics, which include the robots and the carried load,
were developed. Then, a linear and a nonlinear PID control
structure was presented by allowing the payload to track the
desired pose well. The internal force tracking problem is also
taken into account by adding related terms to the control
signal, such that stable load carrying is guaranteed. The UUB
stability of all error signals is established by introducing an
appropriate Lyapunov function. To examine the functioning
of the proposed control scheme, it has been applied to
two 3-DOF arms that carry an object cooperatively. Two
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experiments involving simple and complex path tracking are
considered, and both control structures are implemented in
the system. The results indicate that despite the uncertainties
and external perturbations, the nonlinear PID-controlled
system has been able to track the desired internal force and
position successfully. Therefore, the proposed nonlinear
PID controller can be an effective choice for cooperative
robotic systems. The results are also compared to those of a
strong state-of-the-art approximator, the Chebyshev Neural
Network.
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Proof is similar to that reference [30] and based on Gershgorin theorem, when o, =, = . Let T be a

transformation such that

M, =T'AT

(A1)

where A =diag(a,,a,,...,a,) and the g, ’s are the point-wise eigenvalues of M, . It follows that:

T' 0, 0, T 0, 0
o0 T' 0 |[PlO, T 0,
0,0 0, T'| [0, 0, T

(A2)

HK, 40, +EA ik, K, A pA
ALY + 1Ak, R, A A e R

UA

UA A

By the Gershgorin theorem, it can be easily shown that the eaigenvalues N ; for j=1,...,n, of the matrix

(A2) satisfy the following inequalities

1
N, _E(ﬂxﬁ + pK,; + pa;)

1
Nrm _E(ﬂKdi +Kpi +/u2ai)

1
< 5 (purcy + K, +(1+ ) pa,)
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Or equivalently

/’t(Kpt —K;)t(u—Dr,; —pa, <IN, <(1+ )k, + p(x,; + ;) +(1+20) pa,
Kpi _Il’tai _Kli Sz&nﬂ S Kpi +2ﬂKdi +KIi +ﬂai (2/“1-"_1) (A4)
0 (1-21) 2%, <a,(1+20)

Now, considering the

inequalities &, <a <¢&,, Aumin (K,) <K, S A0, (K,)
Ain(€) <K, <A (K,),and A4, (K,)<Kk, <A (k,) fori=1,2,..nand the proof is completed.m

Appendix II:
1- Derivation of (50)

Using the definitions of M. (X, ), and G, (X, ), it is straightforward to present that

T U,(%,)

M D T6Sp, ~Sm
M, (x,) 3 Sp +Sp, =6,

(B1)

|G. (x,)

PN ARCNCS)

£ (& +¢.) (B2)

where we have utilized inequalities (4), (6), (7), (8), (15), (17), and (18). Furthermore, using inequalities

4), (5), (7), (16), (18), (55), definition of C_(xX,,X, ), and based on the same manipulation as before, it is
clear that

C.(x,,Xx,))

<L,

XO

(B3)
where

PR CNC) P OGP T R - C NE)
fow T B Bm) B T

and (7), (18), and (55) have been utilized. Then, inequality (B4) can be easily obtain by considering (B1),
(B2), (B3), (27), (33), and some mathematical calculation

[A@)] <M, (x,)]4, +]G. (x,)

<guy + TN G 1) vg, v L,
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2 (B4)
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Using the definitions of (54), and some simplification, inequality (53) is derived in which

L A R (B5)
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