[1] C. Audoin, B. Guinot, and others, “The measurement of time,” Time, Freq. At. Clock, New York, 2001.
[2] J. O. Dickey, “Earth rotation variations from hours to centuries,” Highlights Astron., vol. 10, pp. 17–44, 1995.
[3] W. Schlüter, A. Böer, R. Dassing, H. Hase, P. Sperber, and R. Kilger, “TIGO-Transportable Integrated Geodetic Observatory, status of the project,” Proc. Dyn. Solid Earth, Pasadena, 1995.
[4] R. A. Del Rio, “The influence of global warming in Earth rotation speed,” in Annales Geophysicae, 1999, vol. 17, no. 6, pp. 806–811.
[5] R. A. Del Rio, D. Gambis, and D. A. Salstein, “Interannual signals in length of day and atmospheric angular momentum,” in Annales Geophysicae, 2000, vol. 18, no. 3, pp. 347–364.
[6] R. Del Rio, D. Gambis, D. Salstein, P. Nelson, and A. Dai, “Solar activity and earth rotation variability,” J. Geodyn., vol. 36, pp. 423–443, 2003.
[7] R. G. Currie, “Detection of the 11-yr sunspot cycle signal in Earth rotation,” Geophys. J. Int., vol. 61, no. 1, pp. 131–140, 1980.
[8] H. Spencer Jones, “The rotation of the earth, and the secular accelerations of the sun, moon and planets,” Mon. Not. R. Astron. Soc., vol. 99, p. 541, 1939.
[9] A. R. Hakimi and S. Setayeshi, “A novel approach to delta-T from 1620 to 2010,” Mon. Not. R. Astron. Soc., vol. 417, no. 4, pp. 2714–2720, 2011, doi: 10.1111/j.1365-2966.2011.19435.x.
[10] J. Meeus and L. Simons, “Polynomial approximations to Delta T, 1620 (2000 AD,” J. Br. Astron. Assoc., vol. 110, 2000.
[11] F.-R. Stephenson and L. V Morrison, “Long-term changes in the rotation of the Earth: 700 BC to AD 1980,” Phil. Trans. R. Soc. Lond. A, vol. 313, no. 1524, pp. 47–70, 1984.
[12] J. M. Steele, “Predictions of eclipse times recorded in Chinese history,” J. Hist. Astron., vol. 29, no. 3, pp. 275–285, 1998.
[13] F.-R. Stephenson, “Book Review: Historical eclipses and Earth’s rotation/Cambridge U Press, 1997,” J. Br. Astron. Assoc., vol. 107, p. 220, 1997.
[14] F.-R. Stephenson and J. T. Baylis, “Early Chinese observations of occultations of planets by the Moon,” J. Hist. Astron., vol. 43, no. 4, pp. 455–477, 2012.
[15] F.-R. Stephenson and L. J. Fatoohi, “Accuracy of solar eclipse observations made by Jesuit astronomers in China,” J. Hist. Astron., vol. 26, no. 3, pp. 227–236, 1995.
[16] F.-R. Stephenson and L. J. Fatoohi, “The Babylonian unit of time,” J. Hist. Astron., vol. 25, no. 2, pp. 99–110, 1994.
[17] F.-R. Stephenson and M. A. Houlden, Atlas of Historical Eclipse Maps: East Asia 1500 BC-AD 1900. Cambridge University Press, 1986.
[18] D. F. Crouse, “An Overview of Major Terrestrial, Celestial, and Temporal Coordinate Systems for Target Tracking,” 2016.
[19] D. Gambis and B. Luzum, “Earth rotation monitoring, UT1 determination and prediction,” Metrologia, vol. 48, no. 4, p. S165, 2011.
[20] J. Meeus, “The effect of Delta T on astronomical calculations,” J. Br. Astron. Assoc., vol. 108, pp. 154–156, 1998.
[21] O. Montenbruck and T. Pfleger, Astronomy on the personal computer. Springer, 2013.
[22] S. Islam, M. Sadiq, and M. S. Qureshi, “ASSESSING POLYNOMIAL APPROXIMATION FOR ∆T,” J. Basic Appl. Sci., vol. 4, no. 1, pp. 1–4, 2008.
[23] F. Espenak and J. Meeus, “Five Millennium Catalog of Solar Eclipses:-1999 to+ 3000 (2000 BCE to 3000 CE)-Revised,” 2009.
[24] M. Khalid, M. Sultana, and F. Zaidi, “Delta: Polynomial Approximation of Time Period 1620--2013,” J. Astrophys., vol. 2014, 2014.
[25] A. Hakimi, S. A. Monadjemi, and S. Setayeshi, “An introduction of a reward-based time-series forecasting model and its application in predicting the dynamic and complicated behavior of the Earth rotation (Delta-T values)[Formula presented],” Appl. Soft Comput., vol. 113, 2021, doi: 10.1016/j.asoc.2021.107920.
[26] A. M. Yazdani, A. Mahmoudi, M. A. Movahed, P. Ghanooni, S. Mahmoudzadeh, and S. Buyamin, “Intelligent Speed Control of Hybrid Stepper Motor Considering Model Uncertainty Using Brain Emotional Learning,” Can. J. Electr. Comput. Eng., vol. 41, no. 2, pp. 95–104, 2018.
[27] M. Roshanaei, E. Vahedi, and C. Lucas, “Adaptive antenna applications by brain emotional learning based on intelligent controller,” IET microwaves, antennas Propag., vol. 4, no. 12, pp. 2247–2255, 2010.
[28] W. Fang, F. Chao, C.-M. Lin, L. Yang, C. Shang, and C. Zhou, “An Improved Fuzzy Brain Emotional Learning Model Network Controller for Humanoid Robots,” Front. Neurorobot., 2019.
[29] S. H. Fakhrmoosavy, S. Setayeshi, and A. Sharifi, “A modified brain emotional learning model for earthquake magnitude and fear prediction,” Eng. Comput., vol. 34, no. 2, pp. 261–276, 2018.
[30] E. Lotfi, O. Khazaei, and F. Khazaei, “Competitive brain emotional learning,” Neural Process. Lett., vol. 47, no. 2, pp. 745–764, 2018.
[31] Q. Wu et al., “Self-Organizing Brain Emotional Learning Controller Network for Intelligent Control System of Mobile Robots,” IEEE Access, vol. 6, pp. 59096–59108, 2018.
[32] S. Motamed, S. Setayeshi, and A. Rabiee, “Speech emotion recognition based on brain and mind emotional learning model,” J. Integr. Neurosci., no. Preprint, pp. 1–15, 2018.
[33] M. Moradi Zirkohi, “An Efficient Optimal Fractional Emotional Intelligent Controller for an AVR System in Power Systems,” J. AI Data Min., vol. 7, no. 1, pp. 191–200, 2019.
[34] R. Ayanzadeh, A. S. Z. Mousavi, and S. Setayeshi, “Fossil fuel consumption prediction using emotional learning in Amygdala,” in 2011 19th Iranian Conference on Electrical Engineering, 2011, pp. 1–6.
[35] Z. Farhoudi, S. Setayeshi, and A. Rabiee, “Using learning automata in brain emotional learning for speech emotion recognition,” Int. J. Speech Technol., vol. 20, no. 3, pp. 553–562, 2017.
[36] S. H. Fakhrmoosavy, S. Setayeshi, and A. Sharifi, “An intelligent method for generating artificial earthquake records based on hybrid PSO--parallel brain emotional learning inspired model,” Eng. Comput., vol. 34, no. 3, pp. 449–463, 2018.
[37] J. Zhao, C.-M. Lin, and F. Chao, “Wavelet Fuzzy Brain Emotional Learning Control System Design for MIMO Uncertain Nonlinear Systems,” Front. Neurosci., vol. 12, 2018.
[38] R. Adhikari and R. K. Agrawal, “An introductory study on time series modeling and forecasting,” arXiv Prepr. arXiv1302.6613, 2013.
[39] H. Schwenk and Y. Bengio, “Boosting neural networks,” Neural Comput., vol. 12, no. 8, pp. 1869–1887, 2000.
[40] R. Meir and G. Rätsch, “An introduction to boosting and leveraging,” in Advanced lectures on machine learning, Springer, 2003, pp. 118–183.
[41] M. G. Orozco-Del-Castillo, J. C. Ortiz-Alemán, C. Couder-Castañeda, J. J. Hernández-Gómez, and A. Solís-Santomé, High solar activity predictions through an artificial neural network, vol. 28, no. 6. 2017. doi: 10.1142/S0129183117500759.
[42] H. Iijima, H. Hotta, S. Imada, K. Kusano, and D. Shiota, “Improvement of solar-cycle prediction: Plateau of solar axial dipole moment,” Astron. Astrophys., vol. 607, p. L2, 2017.
[43] G. A. Krasinskii, E. I. Saramonova, M. L. Sveshnikov, and E. S. Sveshnikova, “Universal time, lunar tidal deceleration and relativistic effects from observations of transits, eclipses and occultations in the XYIII-XX centuries,” Astron. Astrophys., vol. 145, pp. 90–96, 1985.
[44] M.-F. Loutre, “Earth history: Sediments to planetary motion,” Nature, vol. 409, no. 6823, p. 991, 2001.
[45] S. Chandrasekhar, Newton’s Principia for the common reader. Oxford University Press, 2003.