
AUT Journal of Modeling and Simulation

AUT J. Model. Simul., 54(2) (2022) 173-184
DOI: 10.22060/miscj.2023.21110.5271

Modeling of the Earth’s rotation variations using a novel approach inspired by the 
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ABSTRACT: DT is a quantity that converts universal time (UT; defined by the Earth’s rotation) to 
terrestrial time (TT; independent of Earth’s rotation). The DT values during the time show the Earth’s 
rotation variations. Solar activities and the gravitational force of major solar system components are 
known as astronomical-based factors that can provide these variations. Recently, several models have 
been proposed to interpolate and forecast the DT values. Structurally, all mentioned methods have just 
used past DT values for modeling. In this paper, we propose a novel approach for modeling DT based on 
the brain’s emotional learning with respect to astronomical-origin-based factors effective on the Earth’s 
rotation as the emotional input signals. This model, which employs memory units in the amygdala and 
orbitofrontal parts, can be named Memory-Based Brain Emotional Learning (MBBEL). MBBEL was 
run using the data from 1900 to 2000 and 2000 to 2019 as training and testing stages, respectively. After 
the modeling process, the mean absolute error (MSE) and maximum absolute error (MaxAE) of the train 
and test stages were 0.011, 0.051, 0.10, and 0.295, respectively. Comparing the MBBEL results against 
those of eight prior models revealed that MBBEL results considerably improved compared to those of 
the previous models.
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1- Introduction
Time measurement in human life is ordinary. Just look 

at the clock! However, it can be intricate for astronomers. 
Verily, time scales are based on astronomical phenomena. 
Two different kinds of time scales have been used in modern 
astronomy. The first one is based on the Earth’s rotation (ER) 
and typified by Universal Time (UT), and the second one 
relies on the revolution of Earth in its orbit around the Sun. 
This concept was implemented in Ephemeris Time (ET) [1]. 

The rotation of the Earth as the base of UT is somewhat 
irregular, and several factors can cause this irregularity [2]. 
These factors can be categorized into geophysical, loading, 
angular momentum, and gravitational force factors, along 
with solar activities as a new known factor [3-8]. According 
to the mentioned studies, geophysical factors include plate 
tectonics, regional tectonics, Earth’s interior, convection, 
volcanism, and earthquakes. In addition, loading factors 
are oceans, atmosphere, glaciers, and groundwater. Further, 
oceanic, atmospheric, and Earth’s liquid core are among 
the angular momentum factors. Finally, gravitational force 
factors encompass Earth tides, precession, and mutation. 
However, the type and extent of the effect of these factors 
on each other and ER are not fully understood yet. In this 
respect, solar activities and the gravitational force of the sun, 
the moon, and solar system planets can differ from the others 

due to their astronomical origin.
As UT is moderately irregular in its rate, astronomers 

presented ET; it is the independent variable of time in Simon 
Newcomb’s Tables of the Sun, which formed the basis of all 
astronomical ephemerides from 1900 through 1983. In 1984, 
ET was replaced by Terrestrial Dynamical Time (TDT) as the 
independent argument for apparent geocentric ephemerides. 
The unit of TDT is a day of 86400 SI seconds at mean sea 
level. In 1991, TDT was renamed Terrestrial Time (TT), 
which is considered to be a uniform time-scale and used as 
the time logic for the predictions of astronomical events in 
dynamical theories [9]. 

Eclipse predictions are computed in TT. To convert TT 
predictions to UT, we must know the difference between TT 
and UT. This parameter is known as DT (Delta T, delta-T, 
deltaT, or ΔT) and can be expressed by Eq. (1) as follows 
[10]: 

DT TT UT                                                                        (1) 
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The time series of DT values shows the variations in the 
ER and the length of the day [9]. These values are estimated 
by investigating hundreds of eclipse observations (both solar 
and lunar) before 1600 CE, recorded in early European, 
Middle Eastern, and Chinese annals, manuscripts, and canons 
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according to previous research [11-17]. Despite their relatively 
low precision, these data represent the only evidence of the 
DT value for this period. DT values were reported after using 
telescopes to observe the lunar occultation of stars. Then, 
quasars’ atomic clocks and radio observations were used to 
determine these values [3-19]. Therefore, the precise DT 
values have been available since 1620. Fig. 1 illustrates these 
values from 1620 to 2018. As shown, the length of the day 
increases highly gradually. In fact, ER has been slowed over 
the last century.

As mentioned earlier, DT is applied as a correction 
parameter in a variety of astronomical calculations and 
predictions. Thus, modeling and forecasting this parameter 
are important for astronomers and astronomical simulator 
software (e.g., Starry Night, Stellarium, and the like). Several 
models have been proposed to interpolate and forecast DT 
values. Due to the complex behavior of ER, the presented 
models have significant errors in predicting the future 
values of DT. Structurally, all mentioned methods have just 
employed previous DT values for modeling. The weakness of 
these models is probably the use of the DT parameter alone 
in the modeling process. In this study, a novel approach was 
proposed to model and forecast DT values with respect to 
astronomical-origin-based effective factors in the ER. The 
remaining parts of the article are organized as follows:

Related works are presented in Section 2. In addition, 
Section 3 discusses introducing and implementing the 
proposed method for modeling DT values. The results and 
discussion are provided in Sections 4 and 5, respectively, and 
Section 6 presents the conclusion.

2- Related works
As mentioned before, DT values are needed to convert 

between TT and UT. To this end, researchers must be able to 

forecast or interpolate DT values. In the recent past, several 
models have been proposed to interpolate and forecast DT 
values. Table 1 represents these models along with their 
structures. As shown in Table 1, most of the models are 
polynomial-based. 

Jean Meeus proposed two 9th/10th order polynomials 
covering the time span 1800 to 1997 with a Maximum 
Absolute Errors (MaxAE1) of 1.04 s [20] in the second 
edition of his Astronomical Algorithms (1998). Two years 
later, Jean Meeus and Larry Simons introduced eight 4th order 
polynomials to cover the period between 1620 and 2000 
with a MaxAE of 3.2 s [10]. In Astronomy on the Personal 
Computer, seven 3rd-order polynomials were applied to cover 
the period between 1825 and 2000 with a MaxAE of 2.16 SI 
s [21]. Islam, Sadiq, and Shahid-Qureshi (2018), like Meeus 
and Simons, used eight 4th order polynomials to model DT 
values. Their work covers the period between 1620 and 2000 
with a MaxAE of 0.84 SI s [22]. One year later, Fred Espenak 
and Jean Meeus used one 2nd-order polynomials in their work 
with a MaxAE of 6.97 s [23]. The last polynomial-based 
model was reported in 2014 with nine 4th-order polynomials 
and MaxAE of 0.6 SI s [24].

Hakimi et.al in 2011 applied a feedforward multilayer 
perceptron with two hidden layers to model and forecast DT 
values for the time span 1620 to 2010. This architecture has 
29 Artificial Neurons (ANs) for the first hidden layer, 16 
for the second hidden layer, and 1 for the output layer. The 
MaxAE of this model was reported at about 0.55 s [9]. The 

1  
( ) ( )( )max i iMaxAE Target Output= − , where |.| is the absolute 

operator.

 
Fig. 1. Time series diagram of DT values (time difference obtained by subtracting universal time from the terrestrial 

time) from 1620 to 2018 
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Fig. 1. Time series diagram of DT values (time difference obtained by subtracting 
universal time from the terrestrial time) from 1620 to 2018
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last method is an RBTM-based model proposed by Hakimi 
et.al in 2021. RBTM uses a Knowledge Base (KB) to select 
a proper reward value for each step time. The next value is 
generated using this reward and the prior DT values. The 
MaxAE of RBTM is about 0.58 [25].

3-  DT modeling based on brain emotional learning 
The human brain is a complex system with the ability 

to simultaneously receive input from the five senses, make 
decisions, and command different body muscles. In recent 
years, several efforts have been made to understand how the 
human brain works with this level of complexity. Accordingly, 
various computational models have been inspired by the 
human brain. One of these important models is the amygdala-
orbitofrontal subsystem model. The amygdala-orbitofrontal 

subsystem, which is the main basis of many computational 
models, has a simple structure. Fig. 2 shows the components of 
this subsystem. This subsystem consists of four parts interacting 
to form connections between conditioned and unconditioned 
stimuli. Besides, it uses a simplified computational method 
inspired by brain emotional learning. Various architectures 
of the amygdala-orbitofrontal system have been presented 
and used in applications such as forecasting (especially 
forecasting of chaotic time series) [26]–[37]. 

 This paper suggests Memory-Based Brain Emotional 
Learning (MBBEL) as a novel approach to the amygdala-
orbitofrontal system along with specialized memory for 
amygdala and orbitofrontal parts to model Earth’s rotation 
variations. This model employs the time series of DT values 
(as the principal input signal) and time series related to solar 

Table 1. The structure of prior models for the interpolation and prediction of DT valuesTable 1. The structure of prior models for the interpolation and prediction of DT values 

Model Structure of the Model 

  
[20] One 9th and one10th-order polynomials 
[10] Eight 4th-order polynomials 
[22] Eight 4th-order polynomials 
[23] One 2th-order polynomials 
[9] MLP with two hidden layers 
[21] Seven 3th-order polynomials 
[24] Nine 4th-order polynomials 
[25] RBTM (N=69 and LR=4) 

  
Note. MLP: Multilayer perception 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Fig. 2. Components diagram of the amygdala-orbitofrontal subsystem 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Components diagram of the amygdala-orbitofrontal subsystem
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activities and the gravitational force of the sun, the moon, and 
solar system planets (as the emotional input signals).

3- 1-  Memory-Based Brain Emotional Learning (MBBEL) 
Fig. 3 shows the architecture of MBBEL. Based on 

this figure, MBBEL consists of five main parts: Sensory 
Input (SI), Thalamus (TH), Sensory Cortex (SC), Amygdala 
(AMIG), and Orbitofrontal cortex (ORBI). Table 2 depicts a 
brief description of parts and their connections in MBBEL. To 
describe MBBEL’s architecture, we used machine-learning 
terminology instead of neuro-scientific terms. 

In MBBEL, SI receives principal and emotional input 
signals (time series) and labels them as shown in Eq. (2). 
Here, ( )

p
tSI  and ( )

.e
tSI  are related to the principal and 

emotional input signals, respectively.
DT TT UT                                                                        (1) 
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Stationarizing a time series through differencing is an 
integral part of fitting some forecasting models [38]. TH 

receives the principal and emotional signals from SI and 
converts them to stationary ones (where needed1) using 
Eq. (3). The outputs of TH are sent to the SC. Besides, TH 
conveys a copy of the principal input to the AMIG. 

DT TT UT                                                                        (1) 
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SC generates input-target pairs of training and testing data 
based on Eq. (4) and Eq. (5) and conveys ( )

p
tSC  and ( )

e
tSC  

to ORBI and AMIG, respectively. 

DT TT UT                                                                        (1) 
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1 - Augmented Dickey-Fuller test is a useful statistical test to deter-
mine a time series is stationary or non-stationary.
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Fig. 3. Architecture diagram of the proposed model (MBBEL) 
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where pTH  and 
( )jeTH  are related to the principal 

signal and jth emotional signal, respectively. 
ORBI is divided into two subparts: MO (Memory related 

to the ORBI) and O (Output of the ORBI). On the other 
hand, AMIG has three subparts:  MA (Memory related to the 
AMIG), A (Output of AMIG), and F (Fusion of the outputs of 
A and O as the output of the MBBEL). 

MO consists of several memory units (MO(1) to MO(k)) 
receiving input-target pairs with different lengths from the CS. 
Each memory unit has more than one MultiLayer Perceptron 
(MLP) model combined based on boosting method (Eq. 6). 
Boosting is a general method for improving the performance 
of learning algorithms and tends to be robust to overfitting 
[39], [40]. The outputs of memory units are sent to the O. 
Afterward, these outputs are combined using Eq. (7) and are 
conveyed to A as the ORBI feedback. 

Like MO, MA has several memory units with different 
input-target pairs from the MO. These units are modeled by 
Eq. (8), and their outputs are sent to the A. These outputs 
are combined using Eq. (9) and sent to the O as the AMIG 
feedback. 

The number of MLP models and their architecture can 
differ in MO and MA units. After the training stage, MO and 
MA play the role of LongTerm and ShortTerm memories 
of ORBI and AMIG, respectively. On the other hand, based 
on different input-target pairs related to the principal and 
emotional input signals, MO and MA can be considered as 
the logical and emotional memory of MBBEL, respectively.
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O and A receives inputs from memory units and calculate 
the output of ORBI and AMIG using Eq. (10) and Eq. (11), 
respectively.
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In node F, the outputs of A and O are fused and then 
converted to the principal input domain using Eq. (12) and 
Eq. (13), respectively.  
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3- 2- Used Data 
3- 2- 1- DT Values

In this study, we use time series of DT from 1900 to 2018 
with a yearly time interval. The values are accessible each 
year in the Astronomical  Almanac (pp. K8-K9), published 
annually by the Nautical  Almanac Offices of the US Naval 
Observatory (Washington DC) and the Rutherford Appleton 
Laboratory (Cambridge) [9]. Fig. 1 shows DT values from 
1620 to 2018. 

3- 2- 2- Solar Activities
The sun is a magnetic variable star that fluctuates on 

different time scales. The changes in the Sun cause effects 
in space, in the atmosphere, and on the Earth’s surface [6]-
[8]. Sunspots are dark regions that appear on the surface 
of the sun. Sunspots during the time reflect the intensity 
and weakness of solar activity [41]. The time series of the 
yearly mean Sunspot Number (SSN) can be obtained from 
http://sidc.oma.be/silso/datafiles. This time series is used 
for modeling and forecasting solar cycles and evaluating 
different forecasting models [42]. Fig. 4 shows the values of 
SSN from 1900 to 2018 used in this study. 
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Table 2. A brief description of the role and interaction of the components of the EMBBEL modelTable 2. A brief description of the role and interaction of the components of the EMBBEL model 

Main Part Subparts Role Inputs Output Equation 
Number 

Sensory 
Input 
(SC) 

--- 
Getting of the 
principal and 

emotional signals 
DT, SSN and MF 𝑆𝑆𝑆𝑆(𝑡𝑡)𝑆𝑆  Eq. (2) 

Thalamus 
(TH) --- 

Conversion of 
signals to stationary 

ones 
𝑆𝑆𝑆𝑆(𝑡𝑡)𝑆𝑆  and 𝑆𝑆𝑆𝑆(𝑡𝑡−1)𝑆𝑆  𝑇𝑇𝑇𝑇(𝑡𝑡)

𝑆𝑆  Eq. (3) 

Sensory 
Cortex (SC) --- 

Generation and 
distribution of 

input-target pairs 
𝑇𝑇𝑇𝑇(𝑡𝑡)

𝑆𝑆  
𝑆𝑆𝑆𝑆(t)

𝑝𝑝  Eq. (4) 

𝑆𝑆𝑆𝑆(t)𝑒𝑒  Eq. (5) 

Orbitofrontal 
Cortex 
(ORBI) 

MO(i) ith unit of principal 
memory 𝑆𝑆𝑆𝑆(t)

𝑝𝑝  𝑀𝑀𝑀𝑀𝑀𝑀(t)
(𝑖𝑖) Eq. (6) 

MO Memory related to 
ORBI 𝑀𝑀𝑀𝑀𝑀𝑀(t)

(1)to 𝑀𝑀𝑀𝑀𝑀𝑀(t)
(𝑘𝑘) 𝑀𝑀𝑀𝑀(𝑡𝑡) Eq. (7) 

O Generation of 
output of the ORBI 

𝑀𝑀𝑀𝑀𝑀𝑀(t)
(1)to 𝑀𝑀𝑀𝑀𝑀𝑀(t)

(𝑘𝑘)  and 
𝑀𝑀𝑀𝑀(𝑡𝑡) 

𝑀𝑀(𝑡𝑡) Eq. (10) 

Amygdala 
(AMIG) 

MA(j) jth unit of emotional 
memory 𝑆𝑆𝑆𝑆(t)𝑒𝑒  𝑀𝑀𝑀𝑀𝑀𝑀(t)

(𝑗𝑗) Eq. (8) 

MA Memory related to 
AMIG 𝑀𝑀𝑀𝑀𝑀𝑀(t)

(1)to 𝑀𝑀𝑀𝑀𝑀𝑀(t)
(ℎ) 𝑀𝑀𝑀𝑀(𝑡𝑡) Eq. (9) 

A Output of the 
AMIG 

𝑀𝑀𝑀𝑀𝑀𝑀(t)
(1)to 𝑀𝑀𝑀𝑀𝑀𝑀(t)

(ℎ)  and 
𝑀𝑀𝑀𝑀(𝑡𝑡) 

𝑀𝑀(𝑡𝑡) Eq. (11) 

F 
Fusion of the 

AMIG and ORBI 
outputs 

𝑇𝑇𝑇𝑇(𝑡𝑡)
1 , 𝑀𝑀(𝑡𝑡) and 𝑀𝑀(𝑡𝑡) 𝐹𝐹𝑀𝑀(𝑡𝑡) Eq. (12) 

 𝑆𝑆𝑆𝑆(𝑡𝑡−1)
p  and 𝑀𝑀𝑂𝑂𝑂𝑂(𝑡𝑡) 𝐹𝐹(t) Eq. (13) 

 

 

 

 

 

 

 

 

 

 

 

  
Fig. 4. Time series diagram of yearly mean sunspot number from 1900 to 2018 
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3- 2- 3- Gravitational force of the sun, the moon, and solar 
system planets on the Earth

Every planetary body (including the Earth) is surrounded 
by its own gravitational field. This field can be conceptualized 
by Newtonian physics as exerting an attractive force on 
all objects. The most known effects of the Gravitational 
Force (GF) of solar system objects on ER are the Earth 
tides, precession, and nutation [43], [44]. The effect of the 
gravitational force is related to the distance of the center of 
these objects from the center of the Earth and the mass of 
each of them. Besides, the total gravitational force to the 
Earth is related to their position in space [45]. 

In this study, we calculated the time series of yearly mean 
GF values from 1900 to 2018. At first, the mass, distance, and 
position of the Sun, Moon, Mercury, Venus, Mars, Jupiter, 
Saturn, Uranus, and Neptune were obtained relative to the 
center of the Earth using Starry Night 6 Pro Plus software. 
Next, their gravitational force was calculated using Newton’s 
law of universal gravitation formula. Finally, the yearly mean 
of the total gravitational force was computed and named MF. 
It is of note that the MF scale is Zettanewton1 (Zn). Fig. 5 
represents this time series.

3- 3- Implementation of MBBEL
We implemented MBBEL using IBM SPSS Modeler 18.0 

software. The values of variables from 1900 to 2018 were 
divided into two parts: 1) The data from 1900 to 2000 were 
selected for the training stage. 2) The residuals (2000 to 
2018) were applied to evaluate the accuracy of forecasting 
DT values by MBBEL.

1  Zetta is a decimal unit prefix in the metric system denoting a fac-
tor of 1021 or 1,000,000,000,000,000,000,000. The prefix, denoted 
by the symbol Z, was added as an SI prefix to the International Sys-
tem of Units (SI) in 1991.

In implemented MBBEL, SI gets DT (as the principal 
input signal), SSN, and MF (as emotional input signals). 
Eq. (14) shows labels of SI. Table 3 depicts the used input-
target pairs of memory units and fusion parts along with the 
structure of the boosting method. 
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Used models in MO, MA, and F must be trained offline 
separately. At first, memory units of MO and MA were 
trained. Then, the model related to the F was trained using the 
outputs of A and O. 

4- Results 
4- 1- MBBEL results

The MBBEL was implemented, and its output results 
were determined accordingly. The mean absolute error 
(MAE) and MaxAE of the training stage were 0.011 and 
0.051, respectively. Further, MAE and MaxAE in the test 
stages were 0.1 and 0.295, respectively. 

The proposed model consisted of AMIG, ORBI, and 
F parts, which are responsible for memorizing and making 
decisions against new input signals. The AMIG and ORBI 
parts make emotional and logical decisions, respectively. 
AMIG and ORBI outputs are received as input, and the 
final output of MBBEL is produced in the F part. Therefore, 
checking the accuracy of the operation of each of these 
three sections allows for identifying which part performs 
better. Furthermore, it can be inferred whether the fusion of 
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the results in F is effective. To review this issue, the results 
were checked more closely by calculating the error of 
each main part of MBBEL in the form of a box chart (Fig. 
6). Based on data in Fig. 6, the F, AMIG, and ORBI parts 
perform better, respectively. Table 4 provides the accuracy 
of memory units and the fusion part of MBBEL and reports 
the order of effective input elements in the modeling process. 
The importance value of each input element is stated just 
below the name of the corresponding element. Here, a larger 
number means more importance of the element in the input 
vector. According to Table 4, F, memory units of AMIG, and 

memory units of ORBI perform better, respectively. Thus, 
it can be claimed that the fusion of results in F is effective, 
and the overall performance is better than that of AMIG and 
ORBI, separately.

4- 2- MBBEL results against prior models
To evaluate the results of MBBEL, the error of the training 

and testing stages was compared with that of previous 
models. Table 5 presents this comparison. Moreover, Fig. 7 
compares the errors of the forecasted DT values from 2000 to 
2018 using all the models. Based on data in Table 5 and Fig. 

Table 3. Structure of input-target vectors and boosting method used in different components of MBBELTable 3. Structure of input-target vectors and boosting method used in different components of MBBEL 

 Label Inputs Target Structure of Boosting 
method 

Memory 
units related 

to ORBI 

𝑆𝑆𝑆𝑆(𝑡𝑡)
1  𝐷𝐷𝐷𝐷(𝑖𝑖) & 𝐷𝐷𝐷𝐷(𝑖𝑖−1) & 𝐷𝐷𝐷𝐷(𝑖𝑖−2) 𝐷𝐷𝐷𝐷(𝑖𝑖+1) Base Models: MLP 

 
Hidden Layers: 

 [15, 5] 
 

The number of base 
models: 150 

 
Combining rule: 

Mean 

𝑆𝑆𝑆𝑆(𝑡𝑡)
2  𝐷𝐷𝐷𝐷(𝑖𝑖) & 𝐷𝐷𝐷𝐷(𝑖𝑖−1) & 𝐷𝐷𝐷𝐷(𝑖𝑖−2) & 𝐷𝐷𝐷𝐷(𝑖𝑖−3) 𝐷𝐷𝐷𝐷(𝑖𝑖+1) 

𝑆𝑆𝑆𝑆(𝑡𝑡)
3  𝐷𝐷𝐷𝐷(𝑖𝑖) & 𝐷𝐷𝐷𝐷(𝑖𝑖−1) & 𝐷𝐷𝐷𝐷(𝑖𝑖−2) & 𝐷𝐷𝐷𝐷(𝑖𝑖−3) & 𝐷𝐷𝐷𝐷(𝑖𝑖−4) 𝐷𝐷𝐷𝐷(𝑖𝑖+1) 

Memory 
units related 

to AMIG 

𝑆𝑆𝑆𝑆(𝑡𝑡)
4  𝐷𝐷𝐷𝐷(𝑖𝑖) & 𝐷𝐷𝐷𝐷(𝑖𝑖−1) & 𝐷𝐷𝐷𝐷(𝑖𝑖−2) & 𝑀𝑀𝑀𝑀(𝑖𝑖−3) & 𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖−4) 𝐷𝐷𝐷𝐷(𝑖𝑖+1) 

𝑆𝑆𝑆𝑆(𝑡𝑡)
5  𝐷𝐷𝐷𝐷(𝑖𝑖) & 𝐷𝐷𝐷𝐷(𝑖𝑖−1) & 𝐷𝐷𝐷𝐷(𝑖𝑖−2) & 𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖−3) & 𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖−4) 𝐷𝐷𝐷𝐷(𝑖𝑖+1) 

𝑆𝑆𝑆𝑆(𝑡𝑡)
6  𝐷𝐷𝐷𝐷(𝑖𝑖) & 𝐷𝐷𝐷𝐷(𝑖𝑖−1) & 𝐷𝐷𝐷𝐷(𝑖𝑖−2) & 𝑀𝑀𝑀𝑀(𝑖𝑖) & 𝑀𝑀𝑀𝑀(𝑖𝑖−1) 𝐷𝐷𝐷𝐷(𝑖𝑖+1) 

𝑆𝑆𝑆𝑆(𝑡𝑡)
7  𝐷𝐷𝐷𝐷(𝑖𝑖) & 𝐷𝐷𝐷𝐷(𝑖𝑖−1) & 𝐷𝐷𝐷𝐷(𝑖𝑖−2) & 𝑀𝑀𝑀𝑀(𝑖𝑖−3) & 𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖−3) 𝐷𝐷𝐷𝐷(𝑖𝑖+1) 

Fusion 
model 𝑀𝑀𝑀𝑀(𝑡𝑡) 𝑂𝑂(𝑡𝑡) & 𝐴𝐴(𝑡𝑡) 𝐷𝐷𝐷𝐷(𝑖𝑖+1) 
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7, errors in the train and test stages of MBBEL significantly 
decreased compared to the results of previous models. 

5- Discussion
Table 5 and Figure 7 show that the error of the MBBEL 

in modeling and forecasting DT values   has been significantly 
reduced compared to all previously presented methods. 
Although previous methods were successful in modeling, 
their forecasting error increased exponentially over time. 
The models [10, 20-24] are structurally different in terms 
of order and number of polynomial equations. Based on the 
data in Table 5, they are mainly suitable for interpolation. 
Model [9] uses a two-layer artificial neural network structure, 
and this structure allows this model to forecast the future 
values   of DT. However, due to the complex nature of the 
problem, the forecasting error of this method is also high. 
The overfitting problem may be a reason for this decrease in 
generalization. In any case, the last presented method used 
the RBTM architecture, which was employed for complex 
system modeling [25]. RBTM applies no learning algorithm 
and the number of its parameters is slight. Due to the use of 

its own rule-base, RBTM has provided an extremely lower 
forecasting error than other previous methods. 

The examination of the structure and error of previous 
models revealed that better results have been obtained with the 
methods with the ability to model complex systems. However, 
these methods only utilized DT values to model the complex 
behavior of ER. In this research, the data of factors affecting 
the ER (SSN and MF), along with its descriptive factor of 
ER (DT), was first used for modeling and forecasting by the 
MBBEL method. MBBEL is a new architecture based on the 
amygdala-orbitofrontal subsystem with a completely different 
inference method. It introduces logical and emotional memory 
units with different input vector lengths (e.g., short-term and 
medium-term). Additionally, it applies the boosting method to 
reduce bias, as well as the variance of memory units and the 
fusion of logical and emotional decision-making units. Based 
on Fig. 7, MBBEL could control the final output and keep 
the forecasting errors close to zero by using emotional and 
logical parts and their fusion. The findings of this research 
demonstrated that using auxiliary variables (SSN and MF), 
along with the main variable (DT) can increase the accuracy 

Table 4. Accuracy of memory units and fusion part of the MBBEL predictor, along with importance values 
of each variable in the modeling process

Table 4. Accuracy of memory units and fusion part of the MBBEL predictor, along with importance values of each 

variable in the modeling process 

MBBEL Parts 
The order of effective variables in the modeling process 

Accuracy in 
percent First 

PIV* 
Second 

PIV* 
Third 
PIV* 

Forth 
PIV* 

Fifth 
PIV* 

ORBI 

MO(1) 𝐷𝐷𝐷𝐷(𝑖𝑖−1) 
0.3679 

𝐷𝐷𝐷𝐷(𝑖𝑖−2) 
0.3397 

𝐷𝐷𝐷𝐷(𝑖𝑖) 
0.2923 --- --- 97.0 

MO(2) 𝐷𝐷𝐷𝐷(𝑖𝑖−1) 
0.2790 

𝐷𝐷𝐷𝐷(𝑖𝑖−2) 
0.2725 

𝐷𝐷𝐷𝐷(𝑖𝑖) 
0.2317 

𝐷𝐷𝐷𝐷(𝑖𝑖−3) 
0.2168 --- 98.2 

MO(3) 𝐷𝐷𝐷𝐷(𝑖𝑖−1) 
0.2432 

𝐷𝐷𝐷𝐷(𝑖𝑖−2) 
0.2340 

𝐷𝐷𝐷𝐷(𝑖𝑖) 
0.2109 

𝐷𝐷𝐷𝐷(𝑖𝑖−3) 
0.1889 

𝐷𝐷𝐷𝐷(𝑖𝑖−4) 
0.1229 98.7 

AMIG 

MA(1) 𝐷𝐷𝐷𝐷(𝑖𝑖−1) 
0.3555 

𝐷𝐷𝐷𝐷(𝑖𝑖−2) 
0.3336 

𝐷𝐷𝐷𝐷(𝑖𝑖) 
0.3074 

𝑀𝑀𝑀𝑀(𝑖𝑖−3) 
0.0031 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖−3) 
0.0004 99.7 

MA(2) 𝐷𝐷𝐷𝐷(𝑖𝑖−1) 
0.3640 

𝐷𝐷𝐷𝐷(𝑖𝑖−2) 
0.3292 

𝐷𝐷𝐷𝐷(𝑖𝑖) 
0.3050 

𝑀𝑀𝑀𝑀(𝑖𝑖) 
0.0011 

𝑀𝑀𝑀𝑀(𝑖𝑖−1) 
0.0007 99.5 

MA(3) 𝐷𝐷𝐷𝐷(𝑖𝑖−1) 
0.3600 

𝐷𝐷𝐷𝐷(𝑖𝑖−2) 
0.3378 

𝐷𝐷𝐷𝐷(𝑖𝑖) 
0.3015 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖−3) 
0.0007 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖−4) 
0.00008 

99.7 

MA(4) 𝐷𝐷𝐷𝐷(𝑖𝑖−1) 
0.3476 

𝐷𝐷𝐷𝐷(𝑖𝑖−2) 
0.3368 

𝐷𝐷𝐷𝐷(𝑖𝑖) 
0.3101 

𝑀𝑀𝑀𝑀(𝑖𝑖−3) 
0.0052 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖−4) 
0.0003 99.7 

F AMIG 
0.5553 

ORBI 
0.4447 --- --- --- 99.9 

Note. *PIV: Predictor importance value in the modeling process 
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Table 5. Comparison between the MBBEL’s error and previous models in the training and testing stagesTable 5. Comparison between the MBBEL's error and previous models in the training and testing stages 

Model 
Train/Modeling  Test/forecasting 

Duration of modeling MAE     MaxAE 
(Seconds)  Duration of Forecasting MAE     MaxAE 

(Seconds) 
        

[20] 1800 - 1998 0.40 1.04  2000-2018 236.78 841.09 
[10] 1620 - 2000 0.87 3.20  2000-2018 17.97 58.49 
[22] 1620 - 2000 0.25 0.84  2000-2018 18.39 60.76 
[23] 1986 - 2010 2.17 6.97  2000-2018 6.33 11.05 
[9] 1620 - 2011 0.11 0.55  2011-2018 18.10 40.89 
[21] 1825 - 2000 0.23 2.16  2000-2018 20.28 47.52 
[24] 1620 - 2014 0.21 0.60  2014-2018 2.00 3.92 
[25] 1800 - 2000 0.17 0.58  2000-2018 1.04 1.40 

MBBEL 1900 - 2000 0.01 0.01  2000-2018 0.10 0.29 
        

 

 

 

 

 

 

 

 
Fig. 7. Error diagram of the forecasted DT values from 2000 to 2018 using MBBEL and prior models 
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Fig. 7. Error diagram of the forecasted DT values from 2000 to 2018 using MBBEL and prior models
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of modeling the main variable.
Limited access to the data of other factors affecting ER 

has made it difficult to model and forecast DT values. Future 
studies can obtain and use the data of these factors and can 
apply the other methods of modeling complex systems.

6- Conclusion
This paper introduced MBBEL as a novel approach to the 

amygdala-orbitofrontal system along with specific memory 
for amygdala and orbitofrontal parts for modeling DT values 
(as the principal input signal) with respect to SSN and MF 
(as the emotional input signals). SSN and MF are two known 
astronomical-origin-based effective factors on the Earth’s 
rotation. In the modeling process, the data from 1900 to 
2000 and 2000 to 2018 were used for training and testing, 
respectively. For evaluation of MBBEL, their results were 
compared against those of eight prior models. As shown in 
Table 5 and Fig. 7, the MBBEL results considerably improved 
compared to the previous models. This research showed that 
using auxiliary variables along with the main variable can 
enhance the accuracy of modeling the main variable.
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