[1] Q. Mei, J. She, Z.-T. Liu, Disturbance rejection and control system design based on a high-order equivalent-input-disturbance estimator, J. Franklin Inst., 358 (2021) 8736-8753.
[2] Y. Du, W. Cao, J. She, M. Wu, M. Fang, Disturbance rejection via feedforward compensation using an enhanced equivalent-input-disturbance approach, J. Franklin Inst., 357 (2020) 10977-10996.
[3] I.M.L.Pataro, J.D. Gil, M.V.A. da Costa, J.L. Guzmán, M. Berenguel, A stabilizing predictive controller with implicit feedforward compensation for stable and time-delayed systems, J. Process Control, 115 (2022) 12-26.
[4] F. García-añas, J.L. Guzmán, F. Rodríguez, M. Berenguel, T. Hägglund, Experimental evaluation of feedforward tuning rules, Control Eng. Pract., 114 (2021) 104877.
[5] W.L. Luyben, Comparison of additive and multiplicative feedforward control, J. Process Control, 111 (2022) 1-7.
[6] Y. Hamada, Flight test results of disturbance attenuation using preview feedforward compensation, IFAC-PapersOnLine, 50 (2017) 14188-14193.
[7] D. Carnevale, S. Galeani, M. Sassano, Transient optimization in output regulation via feedforward selection and regulator state initialization, IFACPapersOnLine, 50 (2017) 2405-8963.
[8] Y. Du, W. Cao, J. She, M. Wu, M. Fang, Disturbance rejection via feedforward compensation using an enhanced equivalent-input-disturbance approach, J. Franklin Inst., 357 (2020) 10977-10996.
[9] S. Liu, G. Shi, and D. Li, Active Disturbance Rejection Control Based on Feedforward Inverse System for Turbofan Engines, IFACPapersOnLine, 54 (2021) 376-381.
[10] D. Tena, I. Peñarrocha-Alós, R. Sanchis, Performance, robustness and noise amplification trade-offs in Disturbance Observer Control design, Eur. J. Control, 65 (2022) 100630.
[11] Y. Ashida, M. Obika, Performance, Data-driven Design of a Feed-forward Controller for Rejecting Measurable Disturbance, Comput. Aided Chem. Eng, 49 (2022) 415-420.
[12] S. Wang, Z. Wu, Z.-G. Wu, Performance, Trajectory tracking and disturbance rejection control of random linear systems, Comput. J. Franklin Inst., 359 (2022) 4433-4448.
[13] G. Shi, S. Liu, D. Li, Y. Ding, Y.Q. Chen, A Controller Synthesis Method to Achieve Independent Reference Tracking Performance and Disturbance Rejection Performance, ACS Omega, 7 (2022) 16164–16186.
[14] Z. Wu, Y. Liu, D. Li, Y.Q. Chen, Multivariable active disturbance rejection control for compression liquid chiller system, Energy, in press (2022) 125344.
[15] Z. Xu, C. Sun, M. Yang, Q. Liu, Active disturbance rejection control for hydraulic systems with full-state constraints and input saturation, Energy, 16 (2022) 1127-1136.
[16] L. Liu, S. Tian, D. Xue, et al, Industrial feedforward control technology: a review, J. Intell. Manuf., 30 (2019) 2819–2833.
[17] S. Tofighi, F. Merrikh-Bayat, A benchmark system to investigate the non-minimum phase behaviour of multi-input multi-output systems, Journal of Control and Decision, 5 (2018) 300-317.
[18] F. Zheng, Q.G. Wang, T.H. Lee, On the design of multivariable PID controllers via LMI approach, Automatica, 38 (2002) 517-526.
[19] S. Boyd, M. Hast, K.J. Astrom, MIMO PID tuning via iterated LMI restriction, Int. J. Robust Nonlinear Control, 26 (2016) 1718-1731.
[20] B. Huang, B. Lu, R. Nagamune, Q. Li, LMI-based linear parameter varying PID control design and its application to an aircraft control system, Aerosp. Syst., 5 (2022) 309–321.
[21] M.N.A. Parlakci, E.M. Jafarov, A robust delay-dependent guaranteed cost PID multivariable output feedback controller design for time-varying delayed systems: An LMI optimization approach, Eur J Control, 61 (2021) 68-79.
[22] Z.Y. Feng, H. Guo, J. She, L. Xu, Weighted sensitivity design of multivariable PID controllers via a new iterative LMI approach, J. Process Control, 110 (2022) 24-34.
[23] J. Sabatier, M. Moze, C.Farges, LMI stability conditions for fractional order systems, Comput. Math Appl., 59 (2010) 1594-1609.
[24] A. Dehak, A.-T. Nguyen, A. Dequidt, L. Vermeiren, M. Dambrine, Reduced-Complexity LMI Conditions for Admissibility Analysis and Control Design of Singular Nonlinear Systems, IEEE Trans. Fuzzy Syst., in press (2022) 1-14.
[25] S. Skogestad, I. Postlethwaite, Multivariable feedback control: analysis and design, 2nd ed., Wiley, New York, 2005.
[26] T. He, G.G. Zhu, X. Chen, A Two-step LMI Scheme for H2- H∞ Control Design, American Control Conference (ACC), Denver, CO, USA, 2020, 1545-1550.
[27] Q. Tran Dinh, S. Gumussoy, W. Michiels, et al, Combining convex-concave decompositions and linearization approaches for solving BMIs, with application to static output feedback, IEEE Trans. Autom. Control, 57 (2012) 1377-1390.
[28] S. Tofighi, F. Merrikh-Bayat, F. Bayat, Robust feedback linearization of an isothermal continuous stirred tank reactor: H∞ mixed-sensitivity synthesis and DK-iteration approaches, Transactions of the Institute of Measurement and Control, 39 (2017) 344-351.
[29] S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, Linear matrix inequalities in system and control theory, 5th ed., SIAM, Philadelphia, 1994.
[30] M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.0 beta, http://cvxr.com/ (2013, accessed March 2022).
[31] R.H. Tutuncu, K. C. Toh, M.J. Todd, Solving semidefinite-quadratic-linear programs using SDPT3, Math Program, 95 (2003) 189-217.
[32] R. Wood, M. Berry, Terminal composition control of a binary distillation column, Chem. Eng. Sci., 28 (1973) 1707-1717.
[33] M. Hovd, M. Skogestad, Simple frequency tools for control system analysis, structure selection, and design, Automatica, 28 (1992) 989–996.
[34] F. Merrikh-Bayat, An iterative LMI approach for H∞ synthesis of multivariable PI/PD controllers for stable and unstable processes, Chem. Eng. Res. Des., 132 (2018) 606–615.