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ABSTRACT: An iterative tuning method is presented to obtain the multi-input multi-output (MIMO) 
feedforward controller coefficients to improve disturbance rejection in non-minimum phase (NMP) 
MIMO systems. In the NMP systems, eliminating the effect of disturbances may cause instability and 
also can impose extra costs to control the entire system. For this purpose, a simple feedforward controller 
structure is proposed. The unknown variables of the feedforward controller are calculated using LMIs 
such that the H∞ norm of the transfer function matrix from disturbance to output is minimized. By 
taking advantage of the frequency sampling techniques into account and using some iterative algorithms, 
a new tractable method is constructed to solve the problem. Also, a condition based on the right half 
plane (RHP) zero direction for the NMP system has been proposed to improve the disturbance rejection 
property of these systems. To obtain optimal coefficients, the algorithm is repeated several times to reach 
the best answer. The method employs convex techniques and CVX software to perform calculations. The 
efficiency of the method is shown in various practical examples using different performance indicators 
such as integral of absolute error (IAE), integral of squared error (ISE), integral of time multiplied by 
absolute error (ITAE), integral of time multiplied by squared error (ITSE).
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1- Introduction
Non-minimum phase behavior may appear in many 

industrial processes. Also, these systems often exhibit 
strong couplings between non-related inputs and outputs. 
Designing a feedforward controller could be a possible 
solution to reach control objectives. Disturbance rejection 
and control system design based on a high-order equivalent-
input-disturbance estimator is presented in [1]. Disturbance 
rejection via feedforward compensation using an enhanced 
equivalent-input-disturbance approach is proposed in 
[2]. A stabilizing predictive controller with feedforward 
compensation for stable and time-delayed systems is given 
in [3]. An experimental evaluation of feedforward tuning 
rules is presented in [4]. In [5] comparison of additive and 
multiplicative feedforward control is presented. Disturbance 
attenuation using feedforward compensation for flight test 
results is studied in [6]. Transient response optimization in 
output regulation using feedforward selection is proposed 
in [7]. Disturbance rejection via feedforward compensation 
using an enhanced equivalent input disturbance approach is 
studied in [8]. Active disturbance rejection control based on a 
feedforward inverse system for turbofan engines is proposed 
in [9]. Performance, robustness, and noise amplification 
trade-offs in disturbance observer control design are 
presented in [10]. Data-driven design of a feedforward 

controller for rejecting measurable disturbance is studied in 
[11]. In [12] trajectory tracking and disturbance rejection 
control of random linear systems are presented. A controller 
synthesis method to achieve independent reference tracking 
performance and disturbance rejection performance is 
proposed in [13]. Also, the feedforward control technique 
has shown some applications in industries. Multivariable 
active disturbance rejection control for compression liquid 
chiller system is proposed in [14]. In [15] active disturbance 
rejection control for hydraulic systems with full-state 
constraints and input saturation is presented. In [16] a review 
of industrial feedforward control technology is given. Also, a 
new benchmark model for testing NMP systems is proposed 
in [17].

Linear matrix inequalities (LMI) are a way to solve many 
optimization and control problems and have been addressed 
in many studies. Designing MIMO controllers via LMIs 
especially for designing PIDs is the subject of many studies; 
see for example [18-22]. An important advantage of LMIs is 
that they are convex, and consequently, can be solved very 
effectively by using software/algorithms in polynomial time. 
Many problems in the field of control theory like stability 
analysis [23, 24], and calculating the H∞ norm of a linear 
system transfer function [25], calculating the upper bound 
on μ [25], can be formulated using the LMI approach. An 
H2/ H∞ control design using LMI is presented in [26]. On 
the other hand, many other problems are non-convex and 
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cannot be represented by LMIs. Hence, a large effort is 
made to cope with the non-convexity of these problems and 
to find approximate solutions using LMIs. Convex-concave 
decomposition and linearization methods are proposed in 
[27] to transform non-convex and bilinear matrix inequalities 
(BMI) into LMIs. For the first time, tuning of MIMO PIDs 
using the LMI approach is introduced in [18]. The main idea 
of this paper is to transform a MIMO PID controller design 
problem into static output feedback whose solution via the 
LMI approach was already known. Another considerable 
work in this field is [19]. In this paper, the MIMO PID 
controller is obtained by minimizing the low-frequency gain 
of the open-loop system subject to constraints on infinity 
norms of closed-loop transfer functions. In [22] the weighted 
sensitivity design of multivariable PID controllers for MIMO 
processes is presented. The main idea of this paper is to 
formulate the PID reference tracking problem into an H∞ PID 
control problem by using the weighted sensitivity synthesis. 
Then, an iterative LMI algorithm has been developed to 
locally solve the optimal control problem.

In this paper, designing and tuning a MIMO feedforward 
controller is proposed to improve the disturbance rejection of 
NMP MIMO systems. The architecture consists of a MIMO 
feedforward controller from disturbance to the input of the 
plant. Each entry of the feedforward controller contains the 
first-order statement. These entries are considered to be stable 
and since the closed-loop system is stable, the entire system 
will be stable. This deals with the simple implementation 
of the feedforward controller. The unknown variables are 
calculated using LMIs such that the H∞-norm of the transfer 
function matrix from disturbance to output is minimized. 
The proposed formulation to solve the problem is essentially 
non-convex and non-linear. By taking the advantage of 
the frequency sampling techniques into account and using 
some iterative algorithms such as a matrix extension of 
convex-concave decomposition, a new tractable method 
is constructed to solve the problem. We form the design 
problem with LMI restrictions in the frequency domain, 
and then we solve the problem to obtain the updated values 
of the variables. This method has an iterative nature which 

means that an initial point is required to begin the search. 
The search for the optimal or sub-optimal solution should 
begin with a stabilizing solution. This solution could be 
obtained from different methods or controllers proposed in 
papers. In each iteration, we replace the objective function 
and each constraint function with updated results to solve the 
minimization problem. The computations were carried out 
using the Matlab-based convex modeling framework CVX 
and iterated to convergence. Moreover, there may be problems 
that are not in the form of the constraints of this method, 
so finding a solution, if one exists, is not guaranteed. The 
proposed feedforward method could be extended to nonlinear 
systems using the method proposed in [28]. Also, to cope 
with the NMP effect of the system, an additional constraint 
is designed based on the RHP zero direction of the NMP 
system to improve the disturbance rejection property of these 
systems. Finally, some practical examples are performed to 
show the efficiency of the proposed feedforward method by 
comparing different performance indicators.

2- Proposed Control Structure
The proposed feedforward architecture of the closed-loop 

system is shown in Figure 1, where ( )r t  is the reference 
input, ( )e t  is the error, and d is a measurable output-referred 
plant disturbance. Signals ( )u t  and ( )y t  are the plant input 
and output, respectively. The plant, denoted as ( )P s , is linear 
time-invariant and has m  inputs (actuators) and p  outputs 
(sensors). Also, there are at least as many actuators as plant 
outputs, which means that p m≤ . The system is considered 
to be non-singular. The controller, ( )C s , could be designed 
using any method. But this controller should guarantee 
stability and have a good set-point tracking performance. 
Also, this controller could partly reject disturbances. The 
feedforward controller is shown with F(s).

A new structure for the MIMO feedforward controller is 
proposed in this paper. In this structure, each entry is considered 
a first-order transfer function. This is due to simplifying the 
tuning and implementation of the feedforward controller and 
also eliminating further complexity in computations. The 
structure of the feedforward controller is proposed as follows,

 

Fig 1. The closed-loop system with a feedforward controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The closed-loop system with a feedforward controller.
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where W  is a weight function and a function of the 

Laplace variable, s , X  is an unstructured matrix variable 
,and V  is a structured matrix variable. They are denoted for 
a two-input and two-output system in the following matrices,
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Thus, the feedforward controller is obtained in the 
following form
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The advantage of choosing first-order architecture is that 

investigating stability is easy for these systems since the 
closed-loop system is stable and if the feedforward controller 
is stable, the entire system stability is guaranteed. Also, the 
first-order feedforward controllers usually work well in 
practice.

3- Feedforward MIMO Controller Design
Designing a MIMO feedforward controller is proposed 

in this section to improve disturbance rejection property. For 
this purpose, the LMI method is employed to reach optimal 
satisfactory controllers. Consider Figure 1, the error of the 
system is in the following form,
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here, consider Gd(s)=I, and 1( )S I PC −= +  is the 

sensitivity function. According to Eq. (4), for disturbance 
rejection, we should minimize [ ( )]S I PFσ − . Therefore, our 

design problem is denoted in the following manner,
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Disturbance acts in low frequencies so our objective 
here is to minimize Eq. (5. b). Minimizing S , sensitivity 
function, in low frequencies leads to a peak of S  in 
high frequencies. Also, the peak of S  implies to 
overshoot in the time-domain response of the system. 
So, we minimize S  such that the overshoot does not 
exceed the specified amount. Hence, the constraint of 
Eq. (5. c) is imposed on the design problem to limit the 
overshoot in the time-domain response of the system 
and also guarantee the whole system’s stability. On the 
other hand, The PID controller, C, at low and near zero 
frequencies behaves like an integrator term, KI.

The problem statement has some difficulties. This problem 
is not convex because the cost function and constraints are 
not affine expressions of the co-efficient. Also, it is not linear 
since matrix variables, X  and V  are multiplied by each 
other. Therefore, this problem statement is not in the form of 
LMI expression so we use a trick to approximately convert 
the problem to LMI form.

Also, consider 1[ ( ( ) )] maxS I PWX WV Sσ −− <  for 
all ω’s. This statement consists of an infinite number of 
constraints and this implies a semi-infinite constraint. Semi-
infinite constraints could be handled by replacing them with 
a finite set of constraints at each of the given frequencies. For 
example, we use ( )k maxS i Sω

∞
≤ , 1, ,k N= 

  instead of 
constraint maxS S

∞
≤  in Eq. (5. b). We will use subscripts 

to denote a transfer function evaluated at frequency ks iω=
. For example for a given complex matrix, the notation 

( )k kP P iω=  is used. The sampled problem is then obtained 
in the following form,
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then to convert obtained sampled problem into LMI 
form, we should eliminate non-convexity and non-linearity 
difficulties. For this purpose, we defined the procedure in two 
steps.

Step 1: Constraint function 1
In the first step, the constraint function of Eq. (6. b) should 

be converted to an LMI form. Rearranging Eq. (6. b) gives,
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hence, we have,
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where for a complex matrix p qZ C ×∈ , Z ∗  is its 
(Hermitian) conjugate transpose. We used the notation 

* * 1(Z )Z − −= . The matrix inequality symbol 0Z   
means that Z is Hermitian and negative semidefinite. 
Consider 1 ( (0) - (0) (0) )Z S W V P W X=  and 
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results in the following form,
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we could write Eq. (10) in the following form,
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the term *( (0) ) ( (0) )W V W V  is non-linear. Therefore, 

by simple manipulation and rearrangement of Eq. (11), 
we reach the following form,
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to linearize non-linear terms according 
to the approximate linearization of quadratic 
matrix inequalities (QMI) from [19], we can write
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. Where V  is an arbitrary matrix of suitable dimension. 

Therefore, by manipulating and rearranging Eq. (12) 
we have 
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The constraint function is now in the form of an LMI. 
Because 1Φ   is real and does not have an imaginary part, we 
can directly use Eq. (13) in simulation.

Step 2: Constraint function 2
In this step, the constraint function shown by Eq. (6. c) 

should be converted into LMI form by making non-convex 
terms into convex expressions and linearizing non-linear 
terms. Rearranging Eq. (6. c) gives,
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then, we have,
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consider 2 ( )k k k kZ S W V P W X= −  and 1 *
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. Rearranging Eq. (15) results in the following form,
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by using the Schur complement lemma we have,
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Eq. (17) can be written in the following form,
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the term *

1 1( ) ( )k kW V W V  is nonlinear. So, by simple 
rearrangement of Eq. (18), we have,
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as mentioned before the non-linear term 
of Eq. (19) should be linearized. To do this 

* * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )k k k k k k k kW V W V W V W V W V W V W V W V≥ + −      could 
be used. Therefore, simple manipulation gives,
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since Eq. (20) has imaginary terms, we should use 

the following form to use obtained results in simulation,
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so, we can use Eq. (21) directly in simulation.
Again, consider our design problem denoted by Eq. (5. b) 

and Eq. (5. c). We could restate this design problem using the 
LMI form obtained in Eq. (13) and Eq. (21). Therefore, the 
design problem is obtained in the following form,
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Now we can directly use Eq. (22. b) and Eq. (22. c) 

in simulations to find an optimal feedforward controller 
to improve disturbance rejection of the system. 

4- Feedforward controller design for NMP systems
In this section, designing an additional constraint for 

the design problem of Eq. (22) is proposed to improve the 
disturbance rejection property of NMP MIMO systems. 
For this purpose, a matrix of disturbances denoted with, 

dG , is considered here; where each vector of this matrix 
is a scalar disturbance. Considering Fig. 1 and Eq. (4), 
the relation between e to d by factoring dG  is as follows
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so, the performance objective is then satisfied if 
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The disturbance direction is defined as 

1

2d d dy G G−=  [25]. By using this definition and 
some manipulation we have:
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Eq. (25) and Eq. (26) are equivalent. Also, Eq. (26) 
shows that S  must be less than 1

2dG −  only in the 
direction of dy . Where dy  is the disturbance output 

d dy G d= . 
Now, if the system has an RHP zero at s z=  then 

the performance may be poor when the disturbance is 
aligned with the output direction of this zero. To see this 
use ( )H H

z zy S z y=  and apply the maximum modulus 
principle to ( ) H

z df s y SG= . Also, by considering 
ˆ

d d dG S G= ; the following relation could be obtained, 
which will be used in designing a condition to improve 
disturbance rejection for NMP MIMO systems 
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where, zy  is the direction of the RHP zero and H

zy  
denotes its Hermitian. To satisfy ˆ 1dSG

∞
< , we must 

have at least the following requirement for a given 
disturbance d     
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Now, we should consider the obtained condition of 

Eq. (28) in designing a feedforward controller. For this 
purpose, consider ( ) 1F WX WV −= . So, we have
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Eq. (29) shows the effect of a scalar disturbance on the 

outputs. Again consider Eq. (28), where ˆ
d dG G PF= −

. Then we have   
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Our aim here is to convert the condition of Eq. (28) 

into the proper form of a LMI function. Eq. (28) could 
be written in the following form
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consider ˆ ( ) 1H

z dy G z < , to convert into LMI form
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hence, we have
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by multiplying ( )WV  into both sides of the non-

equality of Eq. (33), we get
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so, we have
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Eq. (35) is multiplied by H

zy , 
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Also, condition ˆ ( ) 1H

z dy G z− <  in Eq. (31), could be 
converted into LMI form using a similar procedure.

By applying the condition of Eq. (36) to the feedforward 
design problem shown by Eq. (22), we can improve the 
disturbance rejection property of NMP MIMO systems. The 
efficiency of implementing the proposed method for NMP 
MIMO systems is investigated in the simulations. 

5- Numerical examples
In this section, two numerical examples are performed 

to show the efficiency of the proposed feedforward method 
designed to improve disturbance rejection of NMP systems. 
The computations were carried out using the Matlab-based 
convex modeling framework CVX [30] using the SDPT3 
4.0 software [31] for solving the semidefinite program 
(SDP). Here, we used a Corei5 laptop with 4GB RAM for 
computations.

Example 1: The plant considered here is a simplified 
model of the classic two-input two-output Woodberry binary 
distillation column described in [32]. The plant transfer 
function is in the following form,
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Each entry in this plant is a first-order transfer 

function. The dynamics are quite coupled, so finding 
a good MIMO PID controller is not simple. The main 
controller used here is a PID controller obtained in the 
following form using the method proposed in [19],
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by considering obtained PID controller, the MIMO 

feedforward controller transfer function derived using 
the proposed LMI approach is obtained in the following 
form,
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System results in 22 iterations and a total CPU time of 

11.97 s. According to the obtained results, the proposed 
feedforward controller acts satisfactorily. As could be 
observed in Figure 2, disturbance rejection and tracking 
are significantly improved. Also, control signals and 
root mean square (RMS) of the control signal is derived 
in Figure 3, 4, and 5, respectively. Table 1 is performed 
to compare the efficiency of the proposed method using 
different performance indices. This table is performed to 
investigate its efficiency for disturbance rejection. Also, 
to compare results different performance parameters are 
considered in Table 1. For the error signal, the common 
integral performance function types IAE, ISE, ITAE, 
and ITSE are used to compare results in each channel, 
separately. The results of Table 1 verify that our method 
works well for the considered objectives.

Example 2: Consider the following non-minimum phase 
system,
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Fig. 2. Comparison between the closed-loop step response from r to y for the MIMO system without feedforward 
controller (red line) and with feedforward controller (blue line). 
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Fig. 2. Comparison between the closed-loop step response from r to y for the MIMO system 
without feedforward controller (red line) and with feedforward controller (blue line).

 

Fig. 3. Control signals without (red line) and with (blue line) employing the feedforward controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Control signals without (red line) and with (blue line) employing the feedforward 
controllers.
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Fig. 4. Comparison between RMS of control signals for the NMP MIMO system with feedforward controller (blue line) 
and without feedforward controller (red line) for channel 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison between RMS of control signals for the NMP MIMO system with feedforward con-
troller (blue line) and without feedforward controller (red line) for channel 1.

 

 

Fig. 5. Comparison between RMS of control signals for the NMP MIMO system with feedforward controller (blue line) 
and without feedforward controller (red line) for channel 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Comparison between RMS of control signals for the NMP MIMO system with feedforward con-
troller (blue line) and without feedforward controller (red line) for channel 2.
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This system has an RHP zero at s =7.078. The main 

controller used here is a PID controller obtained in the 
following form using the method proposed in [19],
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the output zero direction for this system is 
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which shows that the RHP zero mostly affects the second 
channel of the system. By considering obtained PID controller, 
the feedforward MIMO controller transfer function derived 
using the LMI approach is obtained in the following form,
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This system results in 26 iterations and total CPU 

time 8.26 s. As it could be observed in Figure 6 
and Figure 7, disturbance rejection is significantly 
improved. Control signals are derived in Figure 8, and 
9 and the RMS of control signals are given in Figure 

10 and 11. Also, comparison between singular values 
of the NMP system with and without feedforward 
controller is shown in Figure 12. To compare results, 
ISE performance parameter is considered in Figure 13 
to compare results in each channel, separately. Results 
of Figure 13 verify that our method works well for the 
considered objectives.

Example 3: The following transfer matrix was proposed 
in [33] as a benchmark system whose appropriate input-
output pairing cannot be determined effectively using the 
relative gain array (RGA):
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This transfer matrix has three NMP transmission zeros at 

s = 1. The gains of the MIMO PI controller are obtained as 
follows [34]
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Assuming the above PI controller in the loop and 

considering the initial condition as follows
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The proposed design procedure results in the following 

Table 1. Comparison between closed-loop performance indices with and without using the proposed feedforward 
controller for disturbance rejection property.

Table 1: Comparison between closed-loop performance indices with and without using the proposed 
feedforward controller for disturbance rejection property. 

System Error No. IAE ISE ITAE ITSE 

With Feedforward e1 1.87 0.11 3.74×102 0.2104×104 
Without Feedforward e1 21.38 5.98 39.88×102 13.775×104 

With Feedforward e2 2.15 0.13 3.77×102 0.5442×104 
Without Feedforward e2 16.96 5.30 40.07×102 29.156×104 
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Fig. 6. Comparison between disturbance rejection for the NMP MIMO system with feedforward controller (blue line) and 
without feedforward controller (dashed-dotted red line) for channel 1. 
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Fig. 6. Comparison between disturbance rejection for the NMP MIMO system with feedforward con-
troller (blue line) and without feedforward controller (dashed-dotted red line) for channel 1.

 

Fig. 7. Comparison between disturbance rejection for the NMP MIMO system with feedforward controller (blue line) and 
without feedforward controller (dashed-dotted red line) for channel 2. 
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Fig. 7. Comparison between disturbance rejection for the NMP MIMO system with feedforward con-
troller (blue line) and without feedforward controller (dashed-dotted red line) for channel 2.
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Fig. 8. Comparison between control signals for the NMP MIMO system with feedforward controller (blue line) and 
without feedforward controller (dashed-dotted red line) for channel 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Comparison between control signals for the NMP MIMO system with feedforward controller 
(blue line) and without feedforward controller (dashed-dotted red line) for channel 1.

 

Fig. 9. Comparison between control signals for the NMP MIMO system with feedforward controller (blue line) and 
without feedforward controller (dashed-dotted red line) for channel 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Comparison between RMS of control signals for the NMP MIMO system with feedforward con-
troller (blue line) and without feedforward controller (red line) for channel 2.
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Fig. 10. Comparison between RMS of control signals for the NMP MIMO system with feedforward controller (blue line) 

and without feedforward controller (dashed-dotted red line) for channel 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Comparison between RMS of control signals for the NMP MIMO system with feedforward con-
troller (blue line) and without feedforward controller (dashed-dotted red line) for channel 1.

 
Fig. 11. Comparison between RMS of control signals for the NMP MIMO system with feedforward controller (blue line) 

and without feedforward controller (dashed-dotted red line) for channel 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Comparison between RMS of control signals for the NMP MIMO system with feedforward con-
troller (blue line) and without feedforward controller (dashed-dotted red line) for channel 2.
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Fig. 12. Comparison between singular values of NMP MIMO system with feedforward controller (blue line) and without 
feedforward controller (red line). 
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Fig. 12. Comparison between singular values of NMP MIMO system with feedforward controller (blue 
line) and without feedforward controller (red line).

 

 

Fig. 13. Comparison between closed-loop performance indices (ISE criterion) with feedforward (blue line) and without 
feedforward (red line). 
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Fig. 13. Comparison between closed-loop performance indices (ISE criterion) with feedforward (blue 
line) and without feedforward (red line).
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feedforward MIMO controllers
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This system results in 23 iterations and a total CPU time 

of 13.44 s. As could be observed in Figure 14, disturbance 
rejection and set-point tracking are improved by exerting the 
feedforward controllers. In this figure, the closed-loop step 
response of the system with and without the dual-feedforward 
MIMO method is considered. Also, the results of Table 2 
confirm that our method acts well for disturbance rejection. 
Figure 15 shows the disturbance rejection property of each 
channel separately with and without feedforward controllers. 
Also, the disturbance rejection property of the proposed 
method for three different feedforward controllers obtained 
by using three different initial conditions is shown in Figure 
16. In this figure, the blue, black, and red plots correspond 

to the controllers obtained by using the initial conditions 
1 1y y=  , 2 5y y=  and 3 10y y=  , respectively. Also, 

control signals are derived in Figure 17. The RMS of control 
signals is given in Figures 18, 19, and 20 for channels 1 to 
3, respectively. The results show that our proposed method 
converges with different initial conditions and it is not very 
sensitive to the initial condition used for controller design. 

 
6- Conclusion

In this paper, we introduced a feedforward controller 
for NMP MIMO systems to improve disturbance rejection 
properties. For this purpose, an LMI approximation is 
proposed for generally non-convex systems. This method 
is naturally iterative and the results show that it works well 
for the considered objectives. Structured and unstructured 
variable matrices are used in designing the feedforward 
controller. Also, to cope with the NMP effect of the system, a 
condition is designed based on the RHP zero direction of the 
NMP system to improve the disturbance rejection property. 
Finally, the simulations revealed that the proposed method 
shows satisfactory results. Therefore, it is expected that this 
leads to satisfactory results in dealing with a wide variety of 
problems.

 

Fig. 14. Closed-loop step responses without (red line) and with (blue line) employing the feedforward controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Closed-loop step responses without (red line) and with (blue line) employing the feedforward 
controllers
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Fig. 15. Disturbance rejection property of the MIMO system without (red line) and with (blue line) feedforward 
controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Disturbance rejection property of the MIMO system without (red line) and with (blue line) feedfor-
ward controllers

  

Fig. 16. Disturbance rejection of the system with the feedforward controllers designed using three different initial 
conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Disturbance rejection of the system with the feedforward controllers designed using three different 
initial conditions.
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Fig. 17. Control signals without (black line) and with (blue line) employing the feedforward controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Control signals without (black line) and with (blue line) employing the feedforward controllers.

 
Fig. 18. Comparison between RMS of control signals for the NMP MIMO system with feedforward controller (blue line) 

and without feedforward controller (red line) for channel 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Comparison between RMS of control signals for the NMP MIMO system with feedforward control-
ler (blue line) and without feedforward controller (red line) for channel 1.
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Fig. 19. Comparison between RMS of control signals for the NMP MIMO system with feedforward controller (blue line) 

and without feedforward controller (red line) for channel 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. Comparison between RMS of control signals for the NMP MIMO system with feedforward control-
ler (blue line) and without feedforward controller (red line) for channel 2.

 
Fig. 20. Comparison between RMS of control signals for the NMP MIMO system with feedforward controller (blue line) 

and without feedforward controller (red line) for channel 3. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Comparison between RMS of control signals for the NMP MIMO system with feedforward control-
ler (blue line) and without feedforward controller (red line) for channel 3.
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