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ABSTRACT: An iterative tuning method is presented to obtain the multi-input multi-output (MIMO)
feedforward controller coefficients to improve disturbance rejection in non-minimum phase (NMP)
MIMO systems. In the NMP systems, eliminating the effect of disturbances may cause instability and
also can impose extra costs to control the entire system. For this purpose, a simple feedforward controller
structure is proposed. The unknown variables of the feedforward controller are calculated using LMIs
such that the Hoo norm of the transfer function matrix from disturbance to output is minimized. By
taking advantage of the frequency sampling techniques into account and using some iterative algorithms,
a new tractable method is constructed to solve the problem. Also, a condition based on the right half
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plane (RHP) zero direction for the NMP system has been proposed to improve the disturbance rejection

property of these systems. To obtain optimal coefficients, the algorithm is repeated several times to reach
the best answer. The method employs convex techniques and CVX software to perform calculations. The
efficiency of the method is shown in various practical examples using different performance indicators

disturbance rejection
feedforward controller

linear matrix inequality

such as integral of absolute error (IAE), integral of squared error (ISE), integral of time multiplied by CVX
absolute error (ITAE), integral of time multiplied by squared error (ITSE).

1- Introduction

Non-minimum phase behavior may appear in many
industrial processes. Also, these systems often exhibit
strong couplings between non-related inputs and outputs.
Designing a feedforward controller could be a possible
solution to reach control objectives. Disturbance rejection
and control system design based on a high-order equivalent-
input-disturbance estimator is presented in [1]. Disturbance
rejection via feedforward compensation using an enhanced
equivalent-input-disturbance approach is proposed in
[2]. A stabilizing predictive controller with feedforward
compensation for stable and time-delayed systems is given
in [3]. An experimental evaluation of feedforward tuning
rules is presented in [4]. In [5] comparison of additive and
multiplicative feedforward control is presented. Disturbance
attenuation using feedforward compensation for flight test
results is studied in [6]. Transient response optimization in
output regulation using feedforward selection is proposed
in [7]. Disturbance rejection via feedforward compensation
using an enhanced equivalent input disturbance approach is
studied in [8]. Active disturbance rejection control based on a
feedforward inverse system for turbofan engines is proposed
in [9]. Performance, robustness, and noise amplification
trade-offs in disturbance observer control design are
presented in [10]. Data-driven design of a feedforward
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controller for rejecting measurable disturbance is studied in
[11]. In [12] trajectory tracking and disturbance rejection
control of random linear systems are presented. A controller
synthesis method to achieve independent reference tracking
performance and disturbance rejection performance is
proposed in [13]. Also, the feedforward control technique
has shown some applications in industries. Multivariable
active disturbance rejection control for compression liquid
chiller system is proposed in [14]. In [15] active disturbance
rejection control for hydraulic systems with full-state
constraints and input saturation is presented. In [16] a review
of industrial feedforward control technology is given. Also, a
new benchmark model for testing NMP systems is proposed
in [17].

Linear matrix inequalities (LMI) are a way to solve many
optimization and control problems and have been addressed
in many studies. Designing MIMO controllers via LMIs
especially for designing PIDs is the subject of many studies;
see for example [18-22]. An important advantage of LMIs is
that they are convex, and consequently, can be solved very
effectively by using software/algorithms in polynomial time.
Many problems in the field of control theory like stability
analysis [23, 24], and calculating the H_ norm of a linear
system transfer function [25], calculating the upper bound
on u [25], can be formulated using the LMI approach. An
H,/ H_ control design using LMI is presented in [26]. On
the other hand, many other problems are non-convex and
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Fig. 1. The closed-loop system with a feedforward controller.

cannot be represented by LMIs. Hence, a large effort is
made to cope with the non-convexity of these problems and
to find approximate solutions using LMIs. Convex-concave
decomposition and linearization methods are proposed in
[27] to transform non-convex and bilinear matrix inequalities
(BMI) into LMIs. For the first time, tuning of MIMO PIDs
using the LMI approach is introduced in [18]. The main idea
of this paper is to transform a MIMO PID controller design
problem into static output feedback whose solution via the
LMI approach was already known. Another considerable
work in this field is [19]. In this paper, the MIMO PID
controller is obtained by minimizing the low-frequency gain
of the open-loop system subject to constraints on infinity
norms of closed-loop transfer functions. In [22] the weighted
sensitivity design of multivariable PID controllers for MIMO
processes is presented. The main idea of this paper is to
formulate the PID reference tracking problem into an H_PID
control problem by using the weighted sensitivity synthesis.
Then, an iterative LMI algorithm has been developed to
locally solve the optimal control problem.

In this paper, designing and tuning a MIMO feedforward
controller is proposed to improve the disturbance rejection of
NMP MIMO systems. The architecture consists of a MIMO
feedforward controller from disturbance to the input of the
plant. Each entry of the feedforward controller contains the
first-order statement. These entries are considered to be stable
and since the closed-loop system is stable, the entire system
will be stable. This deals with the simple implementation
of the feedforward controller. The unknown variables are
calculated using LMIs such that the H -norm of the transfer
function matrix from disturbance to output is minimized.
The proposed formulation to solve the problem is essentially
non-convex and non-linear. By taking the advantage of
the frequency sampling techniques into account and using
some iterative algorithms such as a matrix extension of
convex-concave decomposition, a new tractable method
is constructed to solve the problem. We form the design
problem with LMI restrictions in the frequency domain,
and then we solve the problem to obtain the updated values
of the variables. This method has an iterative nature which
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means that an initial point is required to begin the search.
The search for the optimal or sub-optimal solution should
begin with a stabilizing solution. This solution could be
obtained from different methods or controllers proposed in
papers. In each iteration, we replace the objective function
and each constraint function with updated results to solve the
minimization problem. The computations were carried out
using the Matlab-based convex modeling framework CVX
and iterated to convergence. Moreover, there may be problems
that are not in the form of the constraints of this method,
so finding a solution, if one exists, is not guaranteed. The
proposed feedforward method could be extended to nonlinear
systems using the method proposed in [28]. Also, to cope
with the NMP effect of the system, an additional constraint
is designed based on the RHP zero direction of the NMP
system to improve the disturbance rejection property of these
systems. Finally, some practical examples are performed to
show the efficiency of the proposed feedforward method by
comparing different performance indicators.

2- Proposed Control Structure

The proposed feedforward architecture of the closed-loop
system is shown in Figure 1, where r(¢) is the reference
input, e(t) is the error, and d is a measurable output-referred
plant disturbance. Signals u(t) and y (¢) are the plant input
and output, respectively. The plant, denoted as P(s), is linear
time-invariant and has m inputs (actuators) and p outputs
(sensors). Also, there are at least as many actuators as plant
outputs, which means that p <m . The system is considered
to be non-singular. The controller, C (s ), could be designed
using any method. But this controller should guarantee
stability and have a good set-point tracking performance.
Also, this controller could partly reject disturbances. The
feedforward controller is shown with F{(s).

A new structure for the MIMO feedforward controller is
proposed in this paper. In this structure, each entry is considered
a first-order transfer function. This is due to simplifying the
tuning and implementation of the feedforward controller and
also eliminating further complexity in computations. The
structure of the feedforward controller is proposed as follows,
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F=WXxXWwv)"', (1)

where W is a weight function and a function of the
Laplace variable, s , X is an unstructured matrix variable
,and V' is a structured matrix variable. They are denoted for
a two-input and two-output system in the following matrices,

X X
w =|® 100,X=x21 xzz,
0 0 s 1 Xy Xy
Xg X @
v, O
- vy, 0
0 vy |
0 v,

Thus, the feedforward controller is obtained in the
following form

XS +X, X8 +X,,
v.,.s+v VS +v
18 TV 28 Ve
F(s)= . 3)
XS ¥ Xy XpS+Xy
VStV Vi3S +V 4

The advantage of choosing first-order architecture is that
investigating stability is easy for these systems since the
closed-loop system is stable and if the feedforward controller
is stable, the entire system stability is guaranteed. Also, the
first-order feedforward controllers usually work well in
practice.

3- Feedforward MIMO Controller Design

Designing a MIMO feedforward controller is proposed
in this section to improve disturbance rejection property. For
this purpose, the LMI method is employed to reach optimal
satisfactory controllers. Consider Figure 1, the error of the
system is in the following form,

E=-(I+PC)'PCR+(I+PC) ' (G,~PF)D, (4)

here, consider G(s)=/, and S =(I +PC )"' is the
sensitivity function. According to Eq. (4), for disturbance
rejection, we should minimize &[S (I —PF')]. Therefore, our

design problem is denoted in the following manner,

mint, (a)
st1. &[T +POK, ) (I ~POW )X (7 OF ) )<z, (b) (5)

GISU-PWX WV )Y)<S Vo ©

max >

Disturbance acts in low frequencies so our objective
here is to minimize Eq. (5. b). Minimizing § , sensitivity
function, in low frequencies leads to a peak of § in
high frequencies. Also, the peak of § implies to
overshoot in the time-domain response of the system.
So, we minimize S§ such that the overshoot does not
exceed the specified amount. Hence, the constraint of
Eq. (5. ¢) is imposed on the design problem to limit the
overshoot in the time-domain response of the system
and also guarantee the whole system’s stability. On the
other hand, The PID controller, C, at low and near zero
frequencies behaves like an integrator term, K.

The problem statement has some difficulties. This problem
is not convex because the cost function and constraints are
not affine expressions of the co-efficient. Also, it is not linear
since matrix variables, X and )/ are multiplied by each
other. Therefore, this problem statement is not in the form of
LMI expression so we use a trick to approximately convert
the problem to LMI form.

Also, consider &[S(I -PWX WV )")]<S,, for
all @’s. This statement consists of an infinite number of
constraints and this implies a semi-infinite constraint. Semi-
infinite constraints could be handled by replacing them with
a finite set of constraints at each of the given frequencies. For
example, we use |S (i) <S, .- k=1-N instead of
constraint ||S ||w <§, . in Eq. (5. b). We will use subscripts
to denote a transfer function evaluated at frequency s =i @,
. For example for a given complex matrix, the notation
P, =P(iw,) is used. The sampled problem is then obtained
in the following form,

mint, (a)
st. &I +P(O)K,)' U —POW ()X @ (0W ))]<t,  (b) (6)
oIS, I -PW . XWVY<S,, ., k=1--N. (©)

then to convert obtained sampled problem into LMI
form, we should eliminate non-convexity and non-linearity
difficulties. For this purpose, we defined the procedure in two
steps.

Step 1: Constraint function 1
In the first step, the constraint function of Eq. (6. b) should
be converted to an LMI form. Rearranging Eq. (6. b) gives,
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&l +P(0)K,)™
W 0y —P 0y (0)X)
w0y )'1<t,

(7

hence, we have,

S Oy -POW (0)X);
o oy )" o oy )7
{7 (O —POW (0)X )'S"}<t’I,

®)

*

where for a complex matrix Z eC?”, Z* is its
(Hermitian) conjugate transpose. We used the notation
Z7 =(Z')". The matrix inequality symbol Z =<0
means that Z is Hermitian and negative semidefinite.
Consider Z, =SW (0 -POW (0)X) and
A =W (OW )0 (OW )"; so, rearranging Eq. (8)
results in the following form,

~t’1 -Z,(-A4,)Z, <0, ©)

therefore, using the Schur complement lemma we

have,

2
i <o,

Zl

we could write Eq. (10) in the following form,

Zl

10
e (10)

SW Oy —POW (0)X)

<0,
—W (OW ) & (O ) } (b

2]
LW Oy —POW (0)X)'S”

the term @ (O )*(W (0 ) is non-linear. Therefore,
by simple manipulation and rearrangement of Eq. (11),
we reach the following form,

{ -’ S Oy -POW (0)X )} <
-P X)'S” B
W Oy —P@OW (0)X) S 0 (12)
o worsoron)
0 @ ©Oy)YwOy)]
to linearize non-linear terms  according
to the  approximate linearization  of  quadratic
matrix inequalities (QMI) from [19], we can write

WO ) W QW )= O ) W (OF )+ OF) @ (O )—@ (OF ) & (0W)
. Where V' is an arbitrary matrix of suitable dimension.
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Therefore, by manipulating and rearranging Eq. (12)

we have
T[Sy POy 0X)
- oy ) (W ©Oy)
= . v <0
Sl oy —pow ox)'sTL oy ) woy) |° (13)
o) (w op)

The constraint function is now in the form of an LMI.
Because @, is real and does not have an imaginary part, we
can directly use Eq. (13) in simulation.

Step 2: Constraint function 2

In this step, the constraint function shown by Eq. (6. c)
should be converted into LMI form by making non-convex
terms into convex expressions and linearizing non-linear
terms. Rearranging Eq. (6. c) gives,

GS Wy —PW X)W ) |<S,., (14)
then, we have,
{s,wy —pw X {wy ) wy)| -

(wy —PkaX)*S,f}SSjW],

consider Z, =S, W,V —PW X)yand 4, =W V)Y W V)"
. Rearranging Eq. (15) results in the following form,

—Spal —Z,(-4,)Z,; <0, (16)
by using the Schur complement lemma we have,
-S:. I Z
{ e 2_1} <0, (17)
Z 2 _Az
Eq. (17) can be written in the following form,
-S2.1 * S, wy iPkaX) <o, as)
wy -pwx)s  -wy)wy)

the term @ V)’ ®,7,) is nonlinear. So, by simple
rearrangement of Eq. (18), we have,
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[ -S2 I A A '¢ )] 3
WV -PW.X)S" 0 B
( k 7k ) (19)

0 0
o oo |

as mentioned before the non-linecar term
of Eq. (19) should be linearized. To do this

WYY WY)W )W )+ YW )-wyywy) could
be used. Therefore, simple manipulation gives,

-S2.1

S,V —RIX)

LYYW - Y YWY <0, (20)
YWY

©, = Wy -PW.X)S

since Eq. (20) has imaginary terms, we should use
the following form to use obtained results in simulation,

<0 21

[[Re(®,)  Im(®,)
Y| -Im(®,) Re(®,)

so, we can use Eq. (21) directly in simulation.

Again, consider our design problem denoted by Eq. (5. b)
and Eq. (5. ¢). We could restate this design problem using the
LMI form obtained in Eq. (13) and Eq. (21). Therefore, the
design problem is obtained in the following form,

mint, (€)
st.  ®© <t, (b) (22)
®, <0, k=L--N (¢

Now we can directly use Eq. (22. b) and Eq. (22. ¢)
in simulations to find an optimal feedforward controller
to improve disturbance rejection of the system.

4- Feedforward controller design for NMP systems

In this section, designing an additional constraint for
the design problem of Eq. (22) is proposed to improve the
disturbance rejection property of NMP MIMO systems.
For this purpose, a matrix of disturbances denoted with,
G, , is considered here; where each vector of this matrix
is a scalar disturbance. Considering Fig. 1 and Eq. (4),
the relation between e to d by factoring G, is as follows

E =S[I-PFG,'|G,D (23)

by considering g, = L] _PFG 51] ; Eq. (23) could be
written in the following form

E =5S,G,D (24)

so, the performance objective is then satisfied if

I85,G, [, =5(S5,G,) <1 Vo & |$5,G,|. <1 (25

The dilsturbance direction is defined as
v, :”Gd ”; G, [25]. By using this definition and
some manipulation we have:

||Sded||2 <@, ";1 Vo (26)

Eq. (25) and Eq. (26) are equivalent. Also, Eq. (26)
shows that § must be less than "G y "; only in the
direction of y . Where y is the disturbance output
Vv, =G, .

Now, if the system has an RHP zero at s =z then
the performance may be poor when the disturbance is
aligned with the output direction of this zero. To see this
use y ZH Siz)=y ZH and apply the maximum modulus
p}'inciple to f(s)= yZHSGd. Also, by considering
G, =S,G,; the following relation could be obtained,
which will be used in designing a condition to improve
disturbance rejection for NMP MIMO systems

Isc.]. =

G, @)=y 6., 27)

where, v, is the direction of the RHP zero and y f
denotes its Hermitian. To satisfy G . H <1, we must
have at least the following requirement for a given
disturbance 4

VG, @) <1 (28)

Now, we should consider the obtained condition of
Eq. (28) in designing a feedforward controller. For this
purpose, consider F —wx wv )’1 . So, we have

Yar | _ d, _ d,
|:yd2:|_Gd|:d2:|_[gdl gd2]|:d2:| (29)

Eq. (29) shows the effect of'a scalar disturbance on the
outputs. Again consider Eq. (28), where G, =G, — PF
. Then we have
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G,=G,-Pwxwvy'] (30)

Our aim here is to convert the condition of Eq. (28)
into the proper form of a LMI function. Eq. (28) could
be written in the following form

G (z)<1
{yz (2)< 31)

_yzHéd(Z)<1

consider y G ,(z) <1, to convert into LMI form

G,—-PF <1 (32)
hence, we have
G,-PWXWVv)'<l (33)

by multiplying (WV) into both sides of the non-
equality of Eq. (33), we get

G,WV)-PWX <WV (34)
so, we have

G,WV)-PWX -WV <0 (35)
Eq. (35) is multiplied by y 7,

yIG,wV)-PWX WV <0 (36)

Also, condition —y "G, (z)<1 in Eq. (31), could be
converted into LMI form using a similar procedure.

By applying the condition of Eq. (36) to the feedforward
design problem shown by Eq. (22), we can improve the
disturbance rejection property of NMP MIMO systems. The
efficiency of implementing the proposed method for NMP
MIMO systems is investigated in the simulations.

5- Numerical examples

In this section, two numerical examples are performed
to show the efficiency of the proposed feedforward method
designed to improve disturbance rejection of NMP systems.
The computations were carried out using the Matlab-based
convex modeling framework CVX [30] using the SDPT3
4.0 software [31] for solving the semidefinite program
(SDP). Here, we used a Corei5 laptop with 4GB RAM for
computations.
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Example 1: The plant considered here is a simplified
model of the classic two-input two-output Woodberry binary
distillation column described in [32]. The plant transfer
function is in the following form,

128  -189
1675 +1 215 +1
P(s)= , 37
= e o4 37)
109s 11 1425 +1

Each entry in this plant is a first-order transfer
function. The dynamics are quite coupled, so finding
a good MIMO PID controller is not simple. The main
controller used here is a PID controller obtained in the
following form using the method proposed in [19],

© _[0.4401 —0.4787}
7102105 -0.2829
Ki{o.oo99 —0.0097} (38)
0.0031 —0.0068
© _[-0.0007 0.0058}
¢ 10.0005 —0.0040 |’

by considering obtained PID controller, the MIMO
feedforward controller transfer function derived using
the proposed LMI approach is obtained in the following
form,

19.72s +0.9617 —10.62s —0.8911
F(s)= s +6.126 s +5.826 ’ (39)
9.019s +0.3272 -9.022s —0.6035
5 +6.126 5 +5.826

System results in 22 iterations and a total CPU time of
11.97 s. According to the obtained results, the proposed
feedforward controller acts satisfactorily. As could be
observed in Figure 2, disturbance rejection and tracking
are significantly improved. Also, control signals and
root mean square (RMS) of the control signal is derived
in Figure 3, 4, and 5, respectively. Table 1 is performed
to compare the efficiency of the proposed method using
different performance indices. This table is performed to
investigate its efficiency for disturbance rejection. Also,
to compare results different performance parameters are
considered in Table 1. For the error signal, the common
integral performance function types IAE, ISE, ITAE,
and ITSE are used to compare results in each channel,
separately. The results of Table 1 verify that our method
works well for the considered objectives.

Example 2: Consider the following non-minimum phase
system,
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Fig. 2. Comparison between the closed-loop step response from r to y for the MIMO system
without feedforward controller (red line) and with feedforward controller (blue line).
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EF\: 0 EN 0 [
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201 , , , , 201, , , . .
a 100 200 300 400 0 100 200 300 400
Time (5] Time is)

Fig. 3. Control signals without (red line) and with (blue line) employing the feedforward
controllers.
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15

10F E

rms{u1)

1 1
100 150 200 250
Time (s)

Fig. 4. Comparison between RMS of control signals for the NMP MIMO system with feedforward con-
troller (blue line) and without feedforward controller (red line) for channel 1.

14} -

10F &

rms{u2)
o

. L.
il i
1 1 1 1 1 1 1 1 1
100 120 140 160 180 200 220 240 260

Time (s)

Fig. 5. Comparison between RMS of control signals for the NMP MIMO system with feedforward con-
troller (blue line) and without feedforward controller (red line) for channel 2.
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Table 1. Comparison between closed-loop performance indices with and without using the proposed feedforward

controller for disturbance rejection property.

System Error No. IAE ISE ITAE ITSE

With Feedforward e; 1.87 0.11 3.74x102 0.2104x10%

Without Feedforward e 21.38 5.98 39.88x10? 13.775%10*

With Feedforward e 2.15 0.13 3.77x102 0.5442x10%

Without Feedforward e 16.96 5.30 40.07x102 29.156x10%
10 and 11. Also, comparison between singular values
8 -138 of the NMP system with and without feedforward
Py(s) = 16s +1 9s+9 (40) controller is shown in Figure 12. To compare results,
: 6 25 [ ISE performance parameter is considered in Figure 13
12s +6 155 +1 to compare results in each channel, separately. Results

This system has an RHP zero at s =7.078. The main
controller used here is a PID controller obtained in the
following form using the method proposed in [19],

3 0.2099 -0.1005
710.0191 —0.1526]
0.0234 0.0138
P = , (41)
0.0016 -0.0136
B 0.0001 -0.0021
“710.0028  0.0006 |’
the output zero direction for this system is
7 =[-0.6858 0.7278] (42)

which shows that the RHP zero mostly affects the second
channel of the system. By considering obtained PID controller,
the feedforward MIMO controller transfer function derived
using the LMI approach is obtained in the following form,

2.063s +0.2211 —0.2811s —0.01843
F(s)= s +1.751 s +1.824 . @3
0.08353s +0.008844  —0.609s —0.0737
s +1.751 s +1.824

This system results in 26 iterations and total CPU
time 8.26 s. As it could be observed in Figure 6
and Figure 7, disturbance rejection is significantly
improved. Control signals are derived in Figure 8, and
9 and the RMS of control signals are given in Figure

of Figure 13 verify that our method works well for the
considered objectives.

Example 3: The following transfer matrix was proposed
in [33] as a benchmark system whose appropriate input-
output pairing cannot be determined effectively using the
relative gain array (RGA):

| 1 —4.19 -2596

-8

P(s)=———|6.19 1  -2596 44
3(5) (55 +1) | | “44)

This transfer matrix has three NMP transmission zeros at
s = 1. The gains of the MIMO PI controller are obtained as
follows [34]

0.0821  0.0260  0.6753 |
K,=1-02996 0.2071 -0.6095 |,
0.0211 -0.0601 0.2449
2 (45)
0.0022  0.0012  0.0302
K, =[-0.0136  0.0099 -0.0252
0.0002  —0.0003  0.0021 |

Assuming the above PI controller in the loop and
considering the initial condition as follows

(46)

The proposed design procedure results in the following
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1.2 3

0 50 100 150
Time (s)

Fig. 6. Comparison between disturbance rejection for the NMP MIMO system with feedforward con-
troller (blue line) and without feedforward controller (dashed-dotted red line) for channel 1.

1.2 T

0.8 \

0.6 |

Y,

0 50 100 150
Time (s)

Fig. 7. Comparison between disturbance rejection for the NMP MIMO system with feedforward con-
troller (blue line) and without feedforward controller (dashed-dotted red line) for channel 2.
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Fig. 8. Comparison between control signals for the NMP MIMO system with feedforward controller
(blue line) and without feedforward controller (dashed-dotted red line) for channel 1.
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Fig. 9. Comparison between RMS of control signals for the NMP MIMO system with feedforward con-
troller (blue line) and without feedforward controller (red line) for channel 2.
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Fig. 10. Comparison between RMS of control signals for the NMP MIMO system with feedforward con-
troller (blue line) and without feedforward controller (dashed-dotted red line) for channel 1.
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Fig. 11. Comparison between RMS of control signals for the NMP MIMO system with feedforward con-
troller (blue line) and without feedforward controller (dashed-dotted red line) for channel 2.
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Fig. 12. Comparison between singular values of NMP MIMO system with feedforward controller (blue
line) and without feedforward controller (red line).
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Fig. 13. Comparison between closed-loop performance indices (ISE criterion) with feedforward (blue
line) and without feedforward (red line).
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Fig. 14. Closed-loop step responses without (red line) and with (blue line) employing the feedforward
controllers

feedforward MIMO controllers

1.789s +4.679  4.289s —3.785 —36.68s +9.713
s +4.675 s +4.683 s +1.942
F(s)= 20.75s —5.58  —28.54s +4.687  31.05s —9.713 (47)
s +4.675 s +4.683 s +1.942
1.468s +0.9008 4.988s —0.9023 —7.159s +1.942
s +4.675 s +4.683 s +1.942

This system results in 23 iterations and a total CPU time
of 13.44 s. As could be observed in Figure 14, disturbance
rejection and set-point tracking are improved by exerting the
feedforward controllers. In this figure, the closed-loop step
response of the system with and without the dual-feedforward
MIMO method is considered. Also, the results of Table 2
confirm that our method acts well for disturbance rejection.
Figure 15 shows the disturbance rejection property of each
channel separately with and without feedforward controllers.
Also, the disturbance rejection property of the proposed
method for three different feedforward controllers obtained
by using three different initial conditions is shown in Figure
16. In this figure, the blue, black, and red plots correspond
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to the controllers obtained by using the initial conditions
v, =1y, y,=5yand y,=10y, respectively. Also,
control signals are derived in Figure 17. The RMS of control
signals is given in Figures 18, 19, and 20 for channels 1 to
3, respectively. The results show that our proposed method
converges with different initial conditions and it is not very
sensitive to the initial condition used for controller design.

6- Conclusion

In this paper, we introduced a feedforward controller
for NMP MIMO systems to improve disturbance rejection
properties. For this purpose, an LMI approximation is
proposed for generally non-convex systems. This method
is naturally iterative and the results show that it works well
for the considered objectives. Structured and unstructured
variable matrices are used in designing the feedforward
controller. Also, to cope with the NMP effect of the system, a
condition is designed based on the RHP zero direction of the
NMP system to improve the disturbance rejection property.
Finally, the simulations revealed that the proposed method
shows satisfactory results. Therefore, it is expected that this
leads to satisfactory results in dealing with a wide variety of
problems.
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Fig. 15. Disturbance rejection property of the MIMO system without (red line) and with (blue line) feedfor-
ward controllers
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Fig. 16. Disturbance rejection of the system with the feedforward controllers designed using three different
initial conditions.
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Fig. 17. Control signals without (black line) and with (blue line) employing the feedforward controllers.

Fig. 18. Comparison between RMS of control signals for the NMP MIMO system with feedforward control-
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Fig. 19. Comparison between RMS of control signals for the NMP MIMO system with feedforward control-
ler (blue line) and without feedforward controller (red line) for channel 2.
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Fig. 20. Comparison between RMS of control signals for the NMP MIMO system with feedforward control-
ler (blue line) and without feedforward controller (red line) for channel 3.
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Table 2. Closed-loop performance indices for disturbance rejection.

System Error IAE ISE ITAE ITSE
With Feedforward e; 140.5184 58.8827 0.55066 x 10° 0.58806 x 10°
Without Feedforward er 2374.9542 2420.2779 12.075 x 10° 80.517 x 10°
With Feedforward e 138.382 63.212 0.65078 x 10° 1.174 x 10°
Without Feedforward e 2645.4945 3017.8395 13.483 x 10° 100.41 x 10°
With Feedforward e; 36.5764 13.1393 0.1624 x 10° 0.36435 x 10°
Without Feedforward e3 495.0434 139.6994 2.467 x 10° 4.374 x 10°
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