[1] A. Linden, P.R. Yarnold, Using data mining techniques to characterize participation in observational studies, Journal of Evaluation in Clinical Practice, 22(6) (2016) 839-847.
[2] J.F. Clapp, B. Lopez, S. Simonean, Nuchal cord and neurodevelopmental performance at 1 year, The Journal of the Society for Gynecologic Investigation: JSGI, 6(5) (1999) 268-272.
[3] G. Hankins, R.R. Snyder, J.C. Hauth, L. Gilstrap 3rd, T. Hammond, Nuchal cords and neonatal outcome, Obstetrics and gynecology, 70(5) (1987) 687-691.
[4] D. Shere, A. Anyaegbuam, Prenatal ultrasonographic morphologic assessment of the umblical cord: a review, Obstet Gynecol Surv (USA), 52(8) (1997) 506-523.
[5] G.R. Gutiérrez, S.E. Razo, A.C. Curiel, A.P.P. de León, Color Doppler flowmetry values in fetuses with nuchal cord encirclement, Ginecologia y obstetricia de Mexico, 68 (2000) 401-407.
[6] A. Funk, W. Heyl, R. Rother, M. Winkler, W. Rath, Subpartal diagnosis of umbilical cord encirclement using color-coded Doppler ultrasonography and correlation with cardiotocographic changes during labor, Geburtshilfe und Frauenheilkunde, 55(11) (1995) 623-627.
[7] Tehran University Medical Journal, 63(12) (2005) 991-997.
[8] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, Knowledge Discovery and Data Mining: Towards a Unifying Framework, in: KDD, 1996, pp. 82-88.
[9] S. Pereira, F. Portela, M.F. Santos, J. Machado, A. Abelha, Predicting type of delivery by identification of obstetric risk factors through data mining, Procedia Computer Science, 64 (2015) 601-609.
[10] N. Chamidah, I. Wasito, Fetal state classification from cardiotocography based on feature extraction using hybrid K-Means and support vector machine, in: 2015 international conference on advanced computer science and information systems (ICACSIS), IEEE, 2015, pp. 37-41.
[11] H.-Y. Chen, C.-H. Chuang, Y.-J. Yang, T.-P. Wu, Exploring the risk factors of preterm birth using data mining, Expert systems with applications, 38(5) (2011) 5384-5387.
[12] R.W. Bendon, S.P. Brown, M.G. Ross, In vitro umbilical cord wrapping and torsion: possible cause of umbilical blood flow occlusion, The Journal of Maternal-Fetal & Neonatal Medicine, 27(14) (2014) 1462-1464.
[13] t. ashraf, Umbilical cord entanglement and intrapartum complications, Journal of Shahrekord Uuniversity of Medical Sciences, 6(2) (2004) 44-49.
[14] L. Mallick, J. Yourkavitch, C. Allen, Trends, determinants, and newborn mortality related to thermal care and umbilical cord care practices in South Asia, BMC pediatrics, 19(1) (2019) 1-16.
[15] A. Krzyżanowski, M. Kwiatek, T. Gęca, A. Stupak, A. Kwaśniewska, Modern ultrasonography of the umbilical cord: prenatal diagnosis of umbilical cord abnormalities and assessement of fetal wellbeing, Medical science monitor: international medical journal of experimental and clinical research, 25 (2019) 3170.
[16] G.A. Pradipta, R. Wardoyo, A. Musdholifah, I.N.H. Sanjaya, Improving classifiaction performance of fetal umbilical cord using combination of SMOTE method and multiclassifier voting in imbalanced data and small dataset, Int. J. Intell. Eng. Syst., 13(5) (2020) 441-454.
[17] M. Shuja, S. Mittal, M. Zaman, Effective prediction of type ii diabetes mellitus using data mining classifiers and SMOTE, in: Advances in computing and intelligent systems, Springer, 2020, pp. 195-211.
[18] R. Heale, A. Twycross, Validity and reliability in quantitative studies, Evidence-based nursing, 18(3) (2015) 66-67.
[19] A. Ramezankhani, O. Pournik, J. Shahrabi, F. Azizi, F. Hadaegh, D. Khalili, The impact of oversampling with SMOTE on the performance of 3 classifiers in prediction of type 2 diabetes, Medical decision making, 36(1) (2016) 137-144.
[20] W. Xing, Y. Bei, Medical health big data classification based on KNN classification algorithm, IEEE Access, 8 (2019) 28808-28819.
[21] S. Vijayarani, S. Dhayanand, Data mining classification algorithms for kidney disease prediction, Int J Cybernetics Inform, 4(4) (2015) 13-25.
[22] P. Edastama, A.S. Bist, A. Prambudi, Implementation Of Data Mining On Glasses Sales Using The Apriori Algorithm, International Journal of Cyber and IT Service Management, 1(2) (2021) 159-172.
[23] C. Wang, X. Zheng, Application of improved time series Apriori algorithm by frequent itemsets in association rule data mining based on temporal constraint, Evolutionary Intelligence, 13(1) (2020) 39-49.
[24] B.M. Patil, R.C. Joshi, D. Toshniwal, Classification of type-2 diabetic patients by using Apriori and predictive Apriori, International Journal of Computational Vision and Robotics, 2(3) (2011) 254-265.
[25] I.H. Sarker, Machine Learning: Algorithms, Real-World Applications and Research Directions, SN Computer Science, 2(3) (2021) 160.
[26] T. Scheffer, Finding association rules that trade support optimally against confidence, Intelligent Data Analysis, 9(4) (2005) 381-395.
[27] M. Kavitha, S. Selvi, Comparative study on Apriori algorithm and Fp growth algorithm with pros and cons, International Journal of Computer Science Trends and Technology (I JCS T)–Volume, 4 (2016).
[28] J. Xu, Y. Zhang, D. Miao, Three-way confusion matrix for classification: A measure driven view, Information sciences, 507 (2020) 772-794.
[29] S. Stiernborg, S. Ervik, Evaluation of Machine Learning Classification Methods: Support Vector Machines, Nearest Neighbour and Decision Tree, in, 2017.