[1] A. Rashno, D.D. Koozekanani, P.M. Drayna, B. Nazari, S. Sadri, H. Rabbani, K.K. Parhi, Fully automated segmentation of fluid/cyst regions in Optical Coherence Tomography images with Diabetic Macular Edema using Neutrosophic sets and graph algorithms, IEEE Transactions on Biomedical Engineering, 65(5) (2017) 989-1001.
[2] A. Rashno, B. Nazari, D.D. Koozekanani, P.M. Drayna, S. Sadri, H. Rabbani, K.K. Parhi, Fully-automated segmentation of fluid regions in exudative Age-related Macular Degeneration subjects: Kernel Graph Cut in Neutrosophic domain, PloS one, 12(10) (2017) e0186949.
[3] A. Rashno, D.D. Koozekanani, K.K. Parhi, Oct fluid segmentation using graph shortest path and Convolutional Neural Network, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2018, pp. 3426-3429.
[4] B. Salafian, R. Kafieh, A. Rashno, M. Pourazizi, S. Sadri, Automatic segmentation of choroid layer in edi oct images using graph theory in Neutrosophic space, arXiv preprint arXiv:1812.01989, (2018).
[5] A. Rashno, K.K. Parhi, B. Nazari, S. Sadri, H. Rabbani, P. Drayna, D.D. Koozekanani, Automated intra-retinal, sub-retinal and sub-rpe cyst regions segmentation in Age-related Macular Degeneration (amd) subjects, Investigative Ophthalmology & Visual Science, 58(8) (2017) 397-397.
[6] K.K. Parhi, A. Rashno, B. Nazari, S. Sadri, H. Rabbani, P. Drayna, D.D. Koozekanani, Automated fluid/cyst segmentation: A quantitative assessment of Diabetic Macular Edema, Investigative Ophthalmology & Visual Science, 58(8) (2017) 4633-4633.
[7] J. Kohler, A. Rashno, K.K. Parhi, P. Drayna, S. Radwan, D.D. Koozekanani, Correlation between initial vision and vision improvement with automatically calculated retinal cyst volume in treated dme after resolution, Investigative Ophthalmology & Visual Science, 58(8) (2017) 953-953.
[8] E. Rashno, A. Rashno, S. Fadaei, Fluid segmentation in Neutrosophic domain, in: 2019 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), IEEE, 2019, pp. 1-5.
[9] H. Bogunović, F. Venhuizen, S. Klimscha, S. Apostolopoulos, A. Bab-Hadiashar, U. Bagci, M.F. Beg, L. Bekalo, Q. Chen, C. Ciller, RETOUCH: the retinal OCT fluid detection and segmentation benchmark and challenge, IEEE transactions on medical imaging, 38(8) (2019) 1858-1874.
[10] A. Heshmati, M. Gholami, A. Rashno, Scheme for unsupervised colour–texture image segmentation using Neutrosophic set and non‐subsampled contourlet transform, IET Image Processing, 10(6) (2016) 464-473.
[11] A. Rashno, S. Sadri, Content-based image retrieval with color and texture features in Neutrosophic domain, in: 2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA), IEEE, 2017, pp. 50-55.
[12] A. Rashno, F. Smarandache, S. Sadri, Refined Neutrosophic sets in content-based image retrieval application, in: 2017 10th Iranian Conference on Machine Vision and Image Processing (MVIP), IEEE, 2017, pp. 197-202.
[13] M. Rahmati, A. Rashno, Automated image segmentation method to analyse skeletal muscle cross section in exercise-induced regenerating myofibers, Scientific reports, 11(1) (2021) 1-16.
[14] S.H. Kang, H.S. Park, J. Jang, K. Jeon, Deep neural networks for the detection and segmentation of the retinal fluid in OCT images, MICCAI Retinal OCT Fluid Challenge (RETOUCH), (2017).
[15] A.G. Roy, S. Conjeti, S.P.K. Karri, D. Sheet, A. Katouzian, C. Wachinger, N. Navab, ReLayNet: retinal layer and fluid segmentation of macular Optical Coherence Tomography using Fully Convolutional Network s, Biomedical optics express, 8(8) (2017) 3627-3642.
[16] F.G. Venhuizen, B. van Ginneken, B. Liefers, M.J. van Grinsven, S. Fauser, C. Hoyng, T. Theelen, C.I. Sánchez, Robust total retina thickness segmentation in Optical Coherence Tomography images using Convolutional Neural Networks, Biomedical optics express, 8(7) (2017) 3292-3316.
[17] T. Schlegl, S.M. Waldstein, H. Bogunovic, F. Endstraßer, A. Sadeghipour, A.-M. Philip, D. Podkowinski, B.S. Gerendas, G. Langs, U. Schmidt-Erfurth, Fully automated detection and quantification of macular fluid in OCT using deep learning, Ophthalmology, 125(4) (2018) 549-558.
[18] F.G. Venhuizen, B. van Ginneken, B. Liefers, F. van Asten, V. Schreur, S. Fauser, C. Hoyng, T. Theelen, C.I. Sánchez, Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor Optical Coherence Tomography, Biomedical optics express, 9(4) (2018) 1545-1569.
[19] A. Rashno, S. Sadri, H. SadeghianNejad, An efficient content-based image retrieval with ant colony optimization feature selection schema based on wavelet and color features, in: 2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP), IEEE, 2015, pp. 59-64.
[20] A. Rashno, B. Nazari, S. Sadri, M. Saraee, Effective pixel classification of mars images based on ant colony optimization feature selection and extreme learning machine, Neurocomputing, 226 (2017) 66-79.
[21] H. Wei, P. Peng, The segmentation of retinal layer and fluid in SD-OCT images using mutex dice loss based Fully Convolutional Networks, IEEE Access, 8 (2020) 60929-60939.
[22] G. Xing, L. Chen, H. Wang, J. Zhang, D. Sun, F. Xu, J. Lei, X. Xu, Multi-scale pathological fluid segmentation in OCT with a novel curvature loss in Convolutional Neural Network, IEEE Transactions on Medical Imaging, (2022).
[23] Y. He, A. Carass, Y. Liu, B.M. Jedynak, S.D. Solomon, S. Saidha, P.A. Calabresi, J.L. Prince, Structured layer surface segmentation for retina OCT using fully convolutional regression networks, Medical image analysis, 68 (2021) 101856.
[24] X. He, L. Fang, M. Tan, X. Chen, Intra-and Inter-Slice Contrastive Learning for Point Supervised OCT Fluid Segmentation, IEEE Transactions on Image Processing, (2022).
[25] R. Tennakoon, A.K. Gostar, R. Hoseinnezhad, A. Bab-Hadiashar, Retinal fluid segmentation in OCT images using adversarial loss based Convolutional Neural Networks, in: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE, 2018, pp. 1436-1440.
[26] X. Liu, T. Fu, Z. Pan, D. Liu, W. Hu, B. Li, Semi-supervised automatic layer and fluid region segmentation of retinal Optical Coherence Tomography images using adversarial learning, in: 2018 25th IEEE International Conference on Image Processing (ICIP), IEEE, 2018, pp. 2780-2784.
[27] D. Ma, D. Lu, S. Chen, M. Heisler, S. Dabiri, S. Lee, H. Lee, G.W. Ding, M.V. Sarunic, M.F. Beg, LF-UNet–A novel anatomical-aware dual-branch cascaded deep neural network for segmentation of retinal layers and fluid from Optical Coherence Tomography images, Computerized Medical Imaging and Graphics, 94 (2021) 101988.
[28] P.L. Vidal, J. de Moura, J. Novo, M. Ortega, Cystoid fluid color map generation in Optical Coherence Tomography images using a densely connected Convolutional Neural Network, in: 2019 International Joint Conference on Neural Networks (IJCNN), IEEE, 2019, pp. 1-8.
[29] T.N. Rao, G. Girish, A.R. Kothari, J. Rajan, Deep learning based sub-retinal fluid segmentation in central serous chorioretinopathy Optical Coherence Tomography scans, in: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2019, pp. 978-981.
[30] X. Liu, S. Wang, Uncertainty-Aware Semi-Supervised Framework for Automatic Segmentation of Macular Edema in Oct Images, in: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), IEEE, 2021, pp. 1453-1456.
[31] X. Liu, S. Wang, Y. Zhang, D. Liu, W. Hu, Automatic fluid segmentation in retinal Optical Coherence Tomography images using attention based deep learning, Neurocomputing, 452 (2021) 576-591.
[32] K. Alsaih, M. Yusoff, T. Tang, I. Faye, F. Mériaudeau, Retinal Fluids Segmentation Using Volumetric Deep Neural Networks on Optical Coherence Tomography Scans, in: 2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), IEEE, 2020, pp. 68-72.
[33] B. Anoop, R. Pavan, G. Girish, A.R. Kothari, J. Rajan, Stack generalized deep ensemble learning for retinal layer segmentation in Optical Coherence Tomography images, Biocybernetics and Biomedical Engineering, 40(4) (2020) 1343-1358.
[34] B. Azimi, A. Rashno, S. Fadaei, Fully Convolutional Networks for Fluid Segmentation in Retina Images, in: 2020 International Conference on Machine Vision and Image Processing (MVIP), IEEE, 2020, pp. 1-7.
[35] Z. Chen, D. Li, H. Shen, H. Mo, Z. Zeng, H. Wei, Automated segmentation of fluid regions in Optical Coherence Tomography B-scan images of Age-related Macular Degeneration, Optics & Laser Technology, 122 (2020) 105830.
[36] Y. Boykov, G. Funka-Lea, Graph Cuts and efficient ND image segmentation, International journal of computer vision, 70(2) (2006) 109-131.
[37] M.B. Salah, A. Mitiche, I.B. Ayed, Multiregion image segmentation by parametric Kernel Graph Cuts, IEEE Transactions on Image Processing, 20(2) (2010) 545-557.