[1] A. Apkarian, M.C. Bushnell, R. Treede, J. Zubieta, Human Brain Mechanisms of Pain Perception and Regulation in Health and Disease, Eur J Pain, 9(4) (2005) 463-484.
[2] M. McCaffery, C.L. Pasero, Pain ratings: the fifth vital sign, Am J Nurs, 97(2) (1997) 15-16.
[3] J. Shieh, C. Dai, Y. Wen, W. Sun, A Novel Fuzzy Pain Demand Index Derived From Patient-Controlled Analgesia for Postoperative Pain, IEEE Transactions on Biomedical Engineering, 54(12) (2007) 2123-2132.
[4] A.V. Apkarian, M.C. Bushnell, R.-D. Treede, J.-K. Zubieta, Human brain mechanisms of pain perception and regulation in health and disease, European Journal of Pain 9(2005) 463-484.
[5] K. Broderson, K. Wiech, E. Lomakina, C. Lin, J. Buhman, U. Bingel, M. Ploner, K. Stephan, I. Tracey, Decoding the Perception of Pain from FMRI Using Multivariate Pattern Analysis, Neuroimage, 63(3) (2012) 1162-1170.
[6] A. Marquand, M. Howard, M. Brammer, C. Chu, S. Coen, J. Mourao-Miranda, Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes, Neuroimage, 49(3) (2010) 2178-2189.
[7] M.A. Yukel, C.A. Aasted, M.P. Petcov, D. Borsook, D.A. Boas, Specificity of hemodynamic brain responce to painful stimuli: a functional near infrared spectroscopy study, Nature, Scientific Reports, 5(9469) (2015) 1-9.
[8] L.J. Hadjileontiadis, EEG Based Tonic Cold Pain Characterization Using Wavelet Higher order Spectral Features, IEEE Transactions on Biomedical Engineering, 62(8) (2015) 1981-1991.
[9] G. Misra, W.E. Wang, D.B. Archer, A. Roy, S.A. Coombes, Automated classification of pain perception using high-density electroencephalography data, J Neurophysiol, 117(2) (2017) 786-795.
[10] R.R. Nir, R. Lev, R. Moont, Y. Granovsky, E. Sprecher, Neurophysiology of the Cortical Pain Network: Revisiting the Role of S1 in Subjective Pain Perception Via Standardized Low-Resolution Brain Electromagnetic Tomography (sLORETA), The Journal of Pain, 9(11) (2008) 1058-1069.
[11] F. Razavipour, R. Boostani, S. Kouchaki, S. Afrasiabi, Comparative Application of Non-negative Decomposition Methods in Classifying Fatigue and Non-fatigue States, Arabian Journal for Science and Engineering, 39(10) (2014) 7049-7058.
[12] M. Fabri, G. Polonara, A. Quattrini, U. Salvolini, Mechanical Noxious Stimuli Cause Bilateral Activation of Parietal Operculum in Callosotomized Subjects, Cereb. Cortex, 12(4) (2002) 446-451.
[13] T. Nezam, R. Boostani, V. Abootalebi, K. Rastegar, A Novel Classification Strategy to Distinguish Five Levels of Pain Using the EEG Signal Features, IEEE Transactions on Affective Computing, (2018) 1-9.
[14] M. Huber, J. Bartling, D. Pachur, S. Woikowski, S. Lautenbacher, EEG Responce to Tonic Heat Pain, Exp. Brain Res. , 173(1) (2006) 14-24.
[15] C. Huishi Zhang, A. Sohrabpour, Y. Lu, B. He, Spectral and spatial changes of brain rhythmic activity in response to the sustained thermal pain stimulation, Human brain mapping, 37(8) (2016) 2976-2991.
[16] G. Huang, P. Xiao, Y. Huang, G. Iannetti, Z. Zhang, L. Hu, A Novel Approach to Predict Subjective Pain Perception from Single-trial Laser-evoked Potentials, Neuroimage, 1(81) (2013) 283-293.
[17] S. Afrasiabi, R. Boostani, S. Koochaki, F. Zand, Presenting an effective EEG-based index to monitor the depth of anesthesia, in: The 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP 2012), 2012, pp. 557-562.
[18] M. Vatankhah, V. Asadpour, R. Fazelrezai, Perceptual Pain Classification Using ANFIS Adapted RBF Kernel Support Vector Machine for Terapeutic Usage, Applied Soft Computing, 13(1) (2013) 2537-2546.
[19] M. Vatankhah, A. Toliyat, Pain Level Measurment Using Descrete Wavelet Transform, IJET, 8(5) (2016) 380-385.
[20] E. Schulz, E.S. May, M. Postorino, L. Tiemann, M.M. Nickel, V. Witkovsky, P. Schmidt, J. Gross, M. Ploner, Prefrontal Gamma Oscillations Encode Tonic Pain in Humans, Cereb Cortex, 25(11) (2015) 4407-4414.
[21] G. Garra, A.J. Singer, A. Domingo, H.C. Thode, Jr., The Wong-Baker pain FACES scale measures pain, not fear, Pediatr Emerg Care, 29(1) (2013) 17-20.
[22] F. AliMardani, R. Boostani, B. Blankertz, Presenting a Spatial-Geometric EEG Feature to Classify BMD and Schizophrenic Patients, 2016, 5(2) (2016) 7.
[23] A. Delorme, S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, J Neurosci Methods, 134(1) (2004) 9-21.
[24] R. Elul, Gaussian behavior of the electroencephalogram: changes during performance of mental task, Science, 164(3877) (1969) 328-331.
[25] S. Afrasiabi, R. Boostani, F. Zand, F. Razavipour, INTRODUCING A NOVEL INDEX FOR MEASURING DEPTH OF ANESTHESIA BASED ON VISUAL EVOKED POTENTIAL (VEP) FEATURES, Iranian Journal of Science and Technology Transactions of Electrical Engineering, 36(2) (2012) 131-146.
[26] H.O. Hartley, H.A. David, Universal Bounds for Mean Range and Extreme Observation, The annals of Mathematical Statistics, 25(1) (1954) 85-99.
[27] A.D. Nazhvani, R. Boostani, S. Afrasiabi, K. Sadatnezhad, Classification of ADHD and BMD patients using visual evoked potential, Clinical Neurology and Neurosurgery, 115(11) (2013) 2329-2335.
[28] S. Afrasiabi, R. Boostani, M.-A. Masnadi-Shirazi, A Physiological-Inspired Classification Strategy to Classify Five Levels of Pain in: ICBME2019, Tehran, 2019.
[29] G. Huang, P. Xiao, Y. Hung, G. Iannetti, Z. Zhang, L. Hu, A Novel Approach to Predict Subjective Pain Perception from Single-Trial Laser-evoked Pottential, Neuroimage, 1(81) (2013) 283-293.
[30] G. Misra, W. Wang, D. Archer, A. Roy, S. Coombes, Automated Classification of Pain Perception using High density Electroencephalography Data, Neurophysiology, 117 (2017) 786-795.
[31] A. Marquand, M. Hovard, M. Brammer, C. Chu, S. Coen, J. Mourao-Miranda, Quantitative Prediction of Subjective Pain Intensity from whole brain FMRI Data Using Gaussian Processes, Neuroimage, 49(3) (2010) 2178-2189.
[32] J. Bergstra, Y. Bengio, Random Search for Hyper-parameter Optimization, J. Mach. Learn. Res., 13(1) (2012) 281-305.