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 A Physiological-Inspired Classification Strategy to Classify Five Levels of Pain
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ABSTRACT:   Current research on quantitative pain measurement using the electroencephalogram 
(EEG) signals showed a promising result just on classifying pain from no-pain states. In this paper, we go 
one step further introducing pain-level dependent EEG features as well as proposing a physiologically-
inspired hierarchical classifier to provide promising results for differentiating five classes of pain. In 
this research, forty four subjects were voluntarily enrolled, each of whom executed the Cold-Pressor 
Test (CPT), while their EEGs were simultaneously recorded. We filtered the EEGs through the alpha 
band and elicited meaningful features to reveal the behavior of signals in terms of distribution, spectrum 
and complexity at each pain state. To assess the susceptibility of the features in classifying one/group of 
classes against others, Kruscall-Walis test was applied to give a clue in order to construct the structure 
of our decision tree, where a Bayesian Optimized support vector machine (BSVM) was trained at each 
node. After arranging the tree, sequential forward selection (SFS) was applied to select a customized 
subset of features for each node. Our results provide 93.33% accuracy for the five classes and also 
generate 99.8% for pain and non-pain classes, which is statistically superior (P<0.05) to state-of-the-art 
methods over the same dataset.
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1- INTRODUCTION
 Nowadays, pain is considered as the fifth vital sign, after 

body temperature, heart rate, respiratory rate and blood 
pressure [2].Precise and continuous measuring of pain is 
critical, especially in patients who are intubated, patients under 
painful surgical operation, patients admitted in the intensive 
care unit (ICU) and totally for those who cannot announce 
their pain. Consequently, the need for developing a reliable, 
accurate and automatic pain measuring system is serious in 
order to prevent inadequate or suboptimal treatment of pain 
in these subjects.

The most common pain measuring tools are visual analog 
scales (VAS), numerical rating scales (NRS) and verbal rating 
scales (VRS) [3]. Nonetheless, these subjective measures do 
not use any physiological based data and therefore, it may 
impose a degree of uncertainty in terms of their dependency 
to the subjects. Despite many studies that have been done in 
this field, precise and automatic quantifying the amount of 
feelings and perceptions of each individual from pain is still 
an unsolved issue.

Since the field of automatic pain measuring is an 
interdisciplinary study that involves the selection and 
examination of several parameters, previous studies are being 
reviewed in three different areas including:

A. BRAIN VISUALIZATION TECHNIQUES:
 By observing the functional brain images, it is evident 

that the pain is felt in the brain [4]. Therefore most studies 
in this field benefit from one or more brain mapping 
techniques. Among these techniques, Functional Magnetic 
Resonance Imaging (fMRI) is mainly used for the purpose of 
localization of pain related sources [5, 6]. MR Spectroscopy 
and Near Infrared Spectroscopy (NIRS) are recently used for 
pain detection by tracking the long term changes in brain 
chemistry or cerebral hemodynamic activity [7]. Although 
some attempts have been made to functionally analyze 
the brain changes through the pain by nuclear scanning 
techniques [4], they neither present the pain related temporal 
information nor give a specified location of pain sources in 
the brain.

Using Electroencephalogram (EEG) signal in pain study 
field is recently increased [4, 8-11]. Taking into account the 
high temporal resolution of electroencephalogram (EEG) 
signals, analysis of EEG seems to provide online physiological-
based data to quantitatively track the dynamic changes in 
pain sensation. 

B. PAINFUL STIMULUS:
In the past two decades, in order to study pain, the 

brain’s response to the painful stimulus has been extensively 
investigated. Several stimuli have also been used as painful 
stimuli, such as electrical [7], mechanical [12] and thermal 
(both in the form of cold [8, 13] and heat [14, 15]) stimulus. 
The main purpose of painful stimulation is to stimulate 
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the experience of real and clinical pain. Consequently, an 
overdrive or a brief stimuli is not enough for this purpose, 
even for studying acute pain [8]. Meanwhile, tonic pain 
models have been shown to stimulate clinical pains better 
than phasic pain models [10]. The most popular tonic pain 
stimulator in recent studies is thermal stimulator due to its 
lowest side effects.  Cold Pressor Test (CPT) (which is the 
most popular thermal stimulator) is performed by immersing 
the hand into an ice water container in order to measure the 
pain threshold and pain tolerance [4, 8, 10, 13].

C. EEG ANALYSIS:
So far, in order to recognize the pain feeling from EEG 

signal, several complex temporal-spectral-spatial patterns of 
it has been suggested and investigated. Pain-related evoked 
potentials (Eps) are  well-known modality in pain detection 
[16]. The reason is that the pain stimuli evoke, increases neural 
activity between 150 to 400 milliseconds after stimulus [17]. 
High overlap between many components of the Eps and the 
alpha band of EEG (8-12 Hz) is the most challenging problem 
in this area. Eps are very informative features although they 
are not characterized in order to extract all pain related 
information as they deserve [13].

Since during pain feeling, the neurons are activated more 
asynchronously, the integration of their activities will result 
in more rough oscillations. This fact is the base for studies 
who use complexity measures such as fractal dimension (e.g., 
Katz, higuchi), Shannon entropy and approximate entropy 
(ApEn) to provide their pain related feature vector [13, 18]. 
Although the mentioned features are proper descriptors of 
rough signals, they need a long time interval of data to be 
calculated accurately (which is not available especially for low 
pain tolerant subjects).

Wavelet transform is also used in order to extract time-
frequency representation of EEG in painful conditions [8, 
19]. The concept of wavelet higher-order spectral (WHOS) 
features, is also shown as a potential field to reflect the 
nonlinear behavior of EEG signal and its changes in pain and 
no-pain states [8]. 

 In different studies, pain related changes in the features 
extracted from all different frequency bands of EEG, have 
been observed via band power feature [9-11, 13-15]. However 
the significance of each band for pain is still unknown.    

 In most of these studies alpha band is proposed as the 
most informative band for measuring inter subject pain 

susceptibility and intra subject objective pain amount along 
with one or two of other EEG bands like delta and beta or 
gamma. This is reasonable because alpha brain waves are 
generally associated with relaxation and contemplation which 
significantly undergo changes during painful stimulation 
[10].

     Studies performed so far have tried to find a statistical 
correlation among the extracted features and the change in 
the state of pain.  Some of them present their results in terms 
of a two class (pain vs no-pain) classification accuracy [5, 8, 
9, 16]. There are only a few papers which also distinguish 
between different amounts of pain [6, 13, 20].          

      In this paper, we tried to more deeply investigate the 
alpha band and its role in determining the amount of pain. 
The research resulted in providing a robust and generalized 
index for distinguishing five levels of pain. Due to the obtained 
promising results, our hypothesis that the tonic cold pain 
induces change to the amount of Gaussianity of PDF of alpha 
band of the subjects EEG signal, has been proved. Also it has 
been shown that the amount of deviation from Gaussianity is 
correlated with the amount of pain sensation. In this regard, 
a hierarchical classifier was designed using the physiological 
information changes over the time. The parameters of the 
SVM based classifier optimized using Bayesian Optimization 
method. The results of our method is statistically superior to 
former state of the art  pain classification results in all different 
scenarios such as pain VS no-pain ( two class scenario), three 
class, four class and five class (no-pain, low, medium, high 
and intolerable pain) .

2- MATERIALS AND METHODS
2-1- Subjects and EEG Recording

44 healthy right-handed volunteers with a mean age of 25 
year’s old including 24 males and 20 females participated in 
this study. Their EEG signal were collected during CPT. Scalp 
EEG signals were recorded at 250 Hz using 34 silver electrodes 
via a Scan-LT EEG recording apparatus. 

Pain condition imposed using bucket of ice water (1.7±0.2 
centigrade). Prior to recording, the considered five levels of 
pain, were described to the subjects using Wong-Baker Faces 
Pain Rating Scale [21], in order to help them to determine 
how to rate their pain. 

The baseline EEG, where no stimulation and no pain was 
applied, was recorded at the no-pain phase for 30 seconds. 
The pain process started as the subject submerged his/her 
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Fig. 1. The diagram of the pain EEG recording Experiment. 

Fig. 1. The diagram of the pain EEG recording Experiment.
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hand into the water which result in a moderate uncomfortable 
feeling (labeled as low pain). As the unpleasant sensation of 
pain gradually increased over time, the participants rated 
their pain at four different levels (low, medium, high and 
intolerable) according to their practice in the training phase. 
The subjects marked the levels by clicking a mouse button 
connected to the recording computer using their left hand. 
Each mouse click indicated the end of a level and beginning of 
the next state, except for the intolerable state which its end was 
shown by the withdrawal of the subject’s hand from the water. 
The timing diagram of the pain EEG recording experiment is 
shown in Fig. 1.

As the result, recorded signals were  labeled based on 
five classes of pain (rest state and low, medium,  high and 
intolerable pain states), and provided for full review. 

To avoid the bias of the results in favor of the class with 
longer interval of time, the length of “no pain” state was set to 
average length of the recording EEG in other pain states. The 
average length of date recorded in each pain state was about 
20 seconds.

2-2- EEG Preprocessing
The recorded data passed through a band pass filter (5th 

order Butterworth), with cut-off frequencies of 0.5 and 70 Hz 
to remove the baseline drift, linear trend and high frequency 
noises such as muscle contraction artifact. Line noise at 50 Hz 
was filtered out using a sharp notch filter.

In order to clean the blink effect, eye movement, neck 
and scalp muscle movement and sensor movement artifacts 
and any other non-brain signal from EEG, Artifact Subspace 
Reconstruction (ASR) [22] was used. The analysis was 
performed using MATLAB native toolboxes and EEGLAB 
[23].

2-3-Feature Extraction
 According to several studies, amplitude densities of 

human alpha rhythm in rest and normal states, closely 
approximate a Gaussian distribution. On the other hand, 
considerable deviation from Gaussianity in PDF of alpha 
band of EEG signals through performing a mental task or 
using certain types of medications has been reported [24]. 

In this paper, we show that painful stimulation can also have 
the same result. Also, changes in the amount of Gaussianity 
in human alpha rhythm concomitant with increase in pain 
amount using the following features have been investigated 
and used in order to classify five different pain levels: 

     1) First to Fourth Order Momentums: Mean ( )µ , 
variance ( )2σ , skewness and Kurtosis are recognized as the 
first to the fourth order momentums of x, though skewness 
and kurtosis are the normalized version of the third and 
fourth momentums, described as follows:
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The skewness for a normal distribution is zero, and to 
some extent, any symmetric data should have a skewness near 
zero. Negative and positive values for the skewness indicate 
data that are skewed to the left or right side, respectively [25].

2) Range: In statistics and mathematics, the range is the 
difference between the maximum and the minimum values of 
a dataset and serves as one of two important features of a data 
set (including the center and the spread of the data).

Given the statistics:

1 min jj
y x=

 
 (3)

   maxn jj
y x=

 
 (4)

(among j data samples), the formula for range is:

1nR y y= −  (5)

which provides us with a better understanding of how 
variate the samples of a dataset [26].

     3) Quantile: The quantiles are values which divide a 
distribution into a certain proportion of observations. Also a 
Q-Q plot, is a probability plot for comparing two probability 
distribution by plotting their quantiles against each other. If 
both distributions behave similar, the points in the Q-Q plot 
will approximately lie on the line y x= .

4) Negentropy: The entropy H of a random vector y with 
density ( )xP η  is defined as:

( ) ( ) ( )logx xH X p p dη η η= − ∫
 

(6)

A fundamental result of information theory is that a 
Gaussian variable has the largest entropy among all random 
variables with equal variance. In other words, the Gaussian 
distribution is the most random (the least structured of all 
distributions); therefore, entropy index can be used as a 
measure of Non-Gaussianity.

Normalized version for differential entropy is called 
negentropy, which is always a nonnegative value, and is zero 
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just for a Gaussian variable. Negentropy is defined as:

( ) ( ) ( )gaussJ X H X H X= −
 

(7)

where gaussX  is a Gaussian random vector with the same 
correlation and covariance matrix as X. Negentropy is also 
invariant for invertible linear transformations [27].

5)  Trimmed mean (TM) and Standard Deviation (TSD): 
TM and TSD are similar to a mean and SD, but with trimmed 
(truncated) outliers.

The trimmed version of this statistics, can often be a better 
fit for datasets with extremely skewed distributions. On the 
other hand we kept both arithmetic and trimmed estimators 
to examine the effect of eliminating the outliers on the 
classification ability of the features.

In this paper, 5% trimmed Mean and SD is obtained by 
discarding five percent highest and lowest observation in each 
epoch as follows:
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The list of all features are presented in Table 1.

2-4- Feature Selection
Our approach in this study is based on the assumption that 

the distribution of the data varies at different levels of pain. 
Since the goal of this study is to differentiate five levels of pain 
states, ANOVA, which is a statistical technique for comparing 
more than two populations, seems to be more suitable.

The statistical significance of the extracted features is 
examined using the Kruskal-Wallis test [28], which is a 
method for one-way ANOVA. The features with p < 0.01 are 
selected as the most significant features, since they reject the 
null hypothesis of coming from the same distribution. 

No. Feature set No. Feature set 
1 Mean (MN) 7 Median (.5 Quantile)(MD) 

2 Trimmed Mean (TM) 8 Skewness (SK) 
3 StandardDeviation (SD) 9 Kurtosis (KU) 
4 Trimmed SD (TSD) 10 𝛼𝛼 band power (BP) 
5 Variance (VC) 11 Area under curve (AU) 
6 Negentropy (NT) 12 Range (RA) 

Table 1. Features Extracted from Alpha Rhythms of EEG
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Fig. 2. Structure of proposed hierarchical BSVM 
classifier 

Fig. 2. Structure of proposed hierarchical BSVM classifier
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  The sequential forward selection (SFS) search strategy 
[13] was then used to select a proper subset of features that 
finely predict the pain levels.

2-5- Classification Using Bayes Optimized SVM
Support Vector Machines (SVMs), one of the most 

commonly used classifiers in this field, was employed in the 
current study. In order to properly choose the kernel function 
parameters ( )x , such as the regularization strength C or the 
width of the RBF kernel γ  (commonly known as SVM hyper-
parameters), the Bayesian optimization is deployed. 

This optimization problem can be considered as the 
process of finding the maximum of ( ) f x , defined as:

( ) { }( )1
max | ( . ) .N

i i iw
w e y

=
=F x x

 
(10)

where { } 1
( . ) N

i i i
e y

=
 (with ie  representing EEG samples 

features and iy  being the pain level assignment) is the 
training set, and the goal is to build a predictive model ( w
) based on these data and hyper-parameters that maximizes 
the performance score ( ) . Since F  is an unknown 
function, its gradient, Hessian or any other derivations that 
could guide the optimization process, cannot be computed. 
The only action that can be done is to obtain some values 
for F  ( ( )if x  ) at some arbitrary given point  is x  ( 1 : tx x
). Using Bayesian optimization, a global statistical model of 

Group of  classes Channels 
Pain vs. No-Pain Fz, P4, Pz, O2 & F4 

Low vs. Medium, High & Intolerable P4, Fz, O2,O1 & P8 
Intolerable vs. Medium & High P4, Fz, FP1, O1 & O2 

High vs. Medium P4, Fz, Fp1,O1 & O2 

Table 2. Five Best Channels with Best Classification Accuracy

 

 

 

 

 

 

 

 

   

   

 

Fig. 3. Cortical and sub-cortical pain perception sources. (a) The pain perception regions and their interconnectivity. (b) The areas shown in 

an anatomical MRI. (The schematic is modified from[1]) 

Fig. 3. Cortical and sub-cortical pain perception sources. (a) The pain perception regions and their interconnectivity. (b) The areas 
shown in an anatomical MRI. (The schematic is modified from[1])
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Fig. 4.  All 34 channels Power Spectral Density (PSD) and the related brain map in Theta ���(centered at 6 Hz), Alpha �𝜶𝜶� 
(centered at 10 Hz) and Beta ���(Centered at 22 Hz) frequency bands, (a) In no-pain state, (b) average of all different levels of 
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Fig. 4.  All 34 channels Power Spectral Density (PSD) and the related brain map in Theta ( )è (centered at 6 Hz), Alpha ( )á  

(centered at 10 Hz) and Beta ( )â (Centered at 22 Hz) frequency bands, (a) In no-pain state, (b) average of all different levels of 
pain. (c)Electrode placement locations on scalp.
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this unknown objective function will be developed iteratively.
The best hyper-parameters that separate the two pain 

and non-pain states, are not necessarily the best parameters 
to separate intolerable pain from low pain state (or other 
states).therefore, four different Bays Optimized SVM 
(BSVM) models with different hyper parameters were created 
during the training phase. Then the hierarchical data-driven 
classification strategy (shown in Fig. 2) is used as a flexible 
decision tree in order to classify the EEG features into five 
different classes. As it can be seen, a group of classes are 
classified from another group in each node of the tree (Fig. 2).

3- RESULTS
As discussed in part 3, the EEG data in this study is a 

34-channel dataset, and also according to Table 2, twelve 
different features were extracted from the whole signal in five 
different states.

Using all channels and features in classification did not 
result in significant improvement in classification accuracy, 
while it increased the complexity of the problem unreasonably. 
Therefore, first we tried to sort the most statistically significant 
channels and features. Our findings imply that the most 
participated brain regions involved in different pain levels 
are located below the channels reported in Table 2. As we 

see, there are three channels (Fz, P4 and O2), which their 
elicited features are among the highest differentiative features 
in all pain classes. In addition, these EEG channels are either 
located above the pain perception sources (Fig. 3) or placed 
over the highlighted alpha band activation regions, shown in 
Fig. 4.

Kruskal-Wallis statistical test was then used to discard the 
non-significant features, which result in P > 0.01 (for two by 
two classes). Table 3. Shows the best features in each node 
of the classifier in a descending order. The different order 
of features in different nodes, again confirms the need for a 
hierarchical classifier. The classification results obtained using 
each feature individually is shown in Fig. 5.

Finally after sorting the features according to Table 3 in 
each node of the BSVM classifier, sequential forward selection 
was applied to select the most descriptive subset of features.

Four different scenarios are designed for practical 
situations, in which a specialist needs to know his patient 
suffers from the pain or not and into some extent requires 
more detailed information about the intensity of pain. As an 
example, more detailed information about the pain intensity 
specifically is needed in studies about cognitive appraisal of 
pain. The decision nodes of the proposed classifier (as shown 
in fig 2) provide general to specific quantitative diagnosis 

Classified groups The best features in terms of accuracy, respectively 
No-pain VS. Pain TSD, SD, RA,MD, KU, BP, VC, TM, SK, MN, NT, AU 

Low vs. medium, high & intolerable pain VC, RA, MN,TM, AU, NT, MD, BP, TSD, SK, SD, KU 
Intolerable vs. high & medium AU, NT, VC, MD, KU, SK, TSD, TM, SD, RA, MN, BP 

High vs. medium SD, RA, TSD, SK, TM, KU, MN, VC,MD, BP, AU, NT 

Table 3. The Best Features in a Descending Order for each Node of the Hierarchical Classifier

 

 

 

 

 

 

 

 

 

 

Figure 5. The impact level of each feature is shown, using terms: accuracy, sensitivity and specificity. The plots are sorted according to 

accuracy results and the results for each feature are calculated individually.  
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Fig5. The impact level of each feature is shown, using terms: accuracy, sensitivity and specificity. The plots are sorted according to 
accuracy results and the results for each feature are calculated individually.

Classification Pain & No-Pain states 
5-class problem no-pain, low, medium, high & intolerable 
4-class problem no-pain, low, high & intolerable 
3-class problem No-pain, low & high 
2-class problem No-pain &pain 

Table 4. Different N-Class Classification Problems Considered in This Paper
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information in a hierarchical manner to address different 
requirements.  

The multiclass classification problems considered here are 
given in Table 4. Additionally we tried to classify pain states 
in both inter- subject and intra-subject levels. To optimize the 
parameters of BSVM models for intra-subject classification, 
the feature vectors of 10 subjects out of 44 were randomly 
selected as the test data. The BSVMs were trained via 10-times 
10-fold cross validation method, over the train set. Afterward 
the trained BSVMs were used to classify the pain levels of the 
test subjects.

The final classification result of the proposed method 
along with the other state of the art studies is presented in 
Table 5. Which shows the superiority of our results compared 

with others.

4- DISCUSSION
4-1- Comparative Study

In the current study, we collected EEG data during an 
experimental paradigm in which subjects experienced and 
reported five different levels of pain. We implemented a novel 
field for the formation of quantitative features that could 
characterize tonic cold pain objectively. In this approach, 
twelve different features were used to determine whether the 
deviation of PDF of alpha band from Gaussianity contributes 
to quantify pain perception. By using this method, remarkable 
results were achieved and we report 3 novel findings. First a 

Source Modality 
𝑨𝑨𝑨𝑨̅̅ ̅̅  

Intra-
subject 

Inter-
subject 

Huang et al., 2013 [29] 
[2-class] EEG 80.3 86.3 

Hadjileontiadis et al., 2015 [8] 
[2-class] EEG - 90.25 

Broderson et al. 2012 [5] 
[2-class] FMRI 66.5 - 

Misra et al. 2017  [30] 
[2-class] EEG 90  

Current Method 
[2-class] EEG 99.82 99.9 

Marquand et al. 2010 [31] 
[3-class] FMRI 72.67 - 

Nezam et al. , 2018 [13][3-class] EEG 83 - 
Current method 

[3-class](no-pain, low & high pain) EEG 98.6 98 

Current method 
[4-class](no-pain, low, medium & high pain) EEG 96 95.7 

Nezam et al., 2018 [13] 
[5-class] EEG 62 - 

Current method 
[5-class] EEG 93.33 92.4 

Table 5. Comparison of Existing State of the Art Pain State Classification Problems.

Classified states 𝐴𝐴𝐴𝐴̅̅ ̅̅ ± 𝑠𝑠𝑠𝑠𝑠𝑠(%) Selected features 

No-pain VS. Pain 99.82±0.1 TSD, SD, IRA, MD, 
KU, BP 

Low VS. medium, high 
&intolerable 97.5 ±2.1 All features except AU 

Intolerable VS. medium 
& high 96.66±3.1 All features except BP 

Medium VS. high 93.33±6.4 All features Except NT 

Table 6. Classification performance for different sub-problems & the features used in each case.
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new hierarchical SVM based classifier is designed whose 
parameters are optimized using Bayesian optimization. 
Second, this hypothesis has been confirmed that tonic cold 
pain induced widespread changes to the PDF of alpha band 
of EEG signal and the deviation from Gaussianity increases 
with the amount of pain sensation. Third, we outperformed 
previous classification results in all scenarios (two class, 
three class, four class and five class) in both inter-subject and 
intra-subject states.Table 5, compares the obtained results 
of current study to some of existing state of the art methods 
which report the accuracy of their methods numerically and 
quantitatively. 

While such studies have had a fair amount of success, 
most of them examined the efficacy of a two-class version of 
this problem. Along with increasing the number of classified 
levels of pain, our method outperformed formers in all two, 
three, four and five class scenarios. This achievement is the 
result of the choosing suitable features along with appropriate 
classifier design.

4-2- Effective and non-Complex Features
In contrast to the previous attempts that applied a 

transform on the EEG signals and feed the coefficients of 
that transform to a classifier, here we characterized a narrow 
band of EEGs by 12 informative features. In other words, if we 
extracted these features from the raw EEGs, these significant 
results could not be achieved. It means that the other bands 
of EEGs (except the alpha band) generate redundant features 
that mislead the pain level classification problem. Among 
the extracted features, measuring the distribution deviation 
response to different levels of pain has the most important 
role. This is therefore pain related evoke potential patterns are 
appeared in the EEGs in response to the external pain and 
the band width of these patterns is common with the alpha 
band. Therefore, adding these patterns to the background 
EEG deteriorate the distribution of the EEGs, specifically in 
the alpha band. The results show that the deterioration of this 
distribution varies from one level of pain to another one.

As an example, for classifying the high pain state against 
the medium, SD, RA and TSD present relevant information 
rather than BP, AU and NT. Thus, jumps between the 
successive samples can be better explained via standard 
deviation, range and TSD while a signal with uniform 
amplitude can have a high band power (BP) and area under 
curve (AU). In addition, NT value is mostly dependent on 
the distribution of amplitudes and is not influenced by local 
fast alternations in the signal. Although in the no-pain state, 
the alpha band distribution is Gaussian-like, by increasing 
the amount of pain feeling, the distribution is deformed 

and therefore, the skewness and Kurtosis of the signals can 
represent the amount of this variation. The classification 
results of the scenarios explained in Table 4, are illustrated in 
Table 6. Although for low pain tolerant subjects the transition 
between the pain states is rapidly occurred and we encounter 
with small sample size problem, the proposed scheme by 
the help of BSVM overcome this shortcoming and provide 
promising results.

As an example, for classifying the high pain state against 
the medium, SD, RA and TSD present relevant information 
rather than BP, AU and NT. Thus, jumps between the 
successive samples can be better explained via standard 
deviation, range and TSD while a signal with uniform 
amplitude can have a high band power (BP) and area under 
curve (AU). In addition, NT value is mostly dependent on 
the distribution of amplitudes and is not influenced by local 
fast alternations in the signal. Although in the no-pain state, 
the alpha band distribution is Gaussian-like, by increasing 
the amount of pain feeling, the distribution is deformed 
and therefore, the skewness and Kurtosis of the signals can 
represent the amount of this variation. The classification 
results of the scenarios explained in Table 4, are illustrated in 
Table 6. Although for low pain tolerant subjects the transition 
between the pain states is rapidly occurred and we encounter 
with small sample size problem, the proposed scheme by 
the help of BSVM overcome this shortcoming and provide 
promising results.

4-3- Classification Procedure
To distinguish the pain classes, several classifiers have been 

adopted, among which bagging [16], k-Nearest Neighbors [8, 
13], Discriminant Analysis  and SVM [5, 8, 13] have provided 
convincing results for two class problems. According to table 
7 although these methods have some success in two class or 
even three class problem, their results decline rapidly  as the 
number of classes increase to five. The better performance of 
proposed hierarchical BSVM classifier over previous methods 
is due to the following reasons:

1. The effectiveness of a classifier derived from SVMs is 
highly dependent on a proper selection of its kernel function 
and parameters [32]. The parameters of the kernel SVM 
include the regularization parameter (C: is the upper bound 
of the Lagrange coefficients) and the variance (γ) of the RBF 
kernel that commonly known as SVM hyper-parameters. 
These hyper-parameters must be estimated from the data 
in order to maximize the classification performance. Using 
Bayesian optimization to estimate the hyper-parameters, 
results in a better performance rather estimating these 
parameters using heuristic searching methods. By this 

         Classifier 
Resolution multi-class SVM Bagging KNN Proposed 

Classifier 
Two-class 89.3 86.67 80.1 99.82 

Three-class 69.7 64.44 61.2 98.6 
Four-class 46.5 51 47.67 96 
Five-class 36.3 43.2 28.9 93.33 

Table 7. Comparison of different classifiers with the proposed hierarchical Bayes-optimized SVM classifier.
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scheme, the SVMs located in the decision tree nodes are all 
optimized with regard to the 

selected subsets of features for the corresponding node.
2.   The second supremacy is due to distributing the 

whole decision making into some simpler classification tasks 
with lower number of classes, where each classifier takes a 
customized subset of features. This is because the classification 
of all classes with a single classifier is impossible. Since a 
high overlap naturally exists between the similar classes like 
(low and moderate), (moderate and high) and (high and 
intolerable). Some features might be able to differentiate one 
or two of the three above cases not all of them. Consequently, 
for differentiating different classes, different subsets of features 
are needed.

4-4-Study Limitations and Future Work
Pain is a sensation that everyone uniquely experiences 

and feels it and therefore people might report different pain 
level in response to a certain value of pain stimuli. Also the 
endurance of different people to deal with painful stimulation 
varies significantly. In most cases individuals agree about the 
existence or absence of pain (two class problem); while when 
the number of pain levels is increased the disagreement in 
their pain report is increased due to the natural difference in 
their pain tolerance. Although some people report the same 
amount of pain as medium level, some others label it as high 
level. Lower classification results in these two states, is the 
result of subjective labeling of their EEG signal. On the other 
hand, due to lack of a standard dataset in this field, most of 
the research groups work on the data recorded by themselves. 
Thus, it is impossible to compare the results of different 
studies, unless they are all applied to the same dataset. 

     Based on the above mentioned items, as a future work 
collecting a multimodal biomedical dataset containing EEG 
signal and other related physiological data (e.g., heart and 
breath rate ), for assigning accurate label to the intervals of 
data over a vast group of subjects is deemed necessary.

5- CONCLUSION 
In this research, by comprehensive decoding the alpha 

band content, we remarkably improved the classification 
accuracy of pain levels by proposing a novel physiological 
inspired classifier. Regarding the variety of elicited EEG 
features in the alpha band, consistent features were selected 
by the SFS method and by investigating the distribution of 
these features and considering a subset of features for each 
node, the candidate classes were chosen at the corresponding 
node. Empirical results imply the reachability of the alpha 
band in discriminating five levels of pain with a considerable 
improvement compared to the counterparts. As the future 
work, we suggest to build a universal decision tree for a 
considerable number of subjects which can be adapted 
and customized for each new participants. In addition, 
incorporating the features of electrocardiography can enhance 
the differentiating rate among the classes.
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