[1] W. Lam, J.C.Y. Leong, Y. Li, Y. Hu, W. Lu, Biomechanical and electromyographic evaluation of ankle foot orthosis and dynamic ankle foot orthosis in spastic cerebral palsy, Gait & posture, 22(3) (2005) 189-197.
[2] A. Roy, H.I. Krebs, C.T. Bever, L.W. Forrester, R.F. Macko, N. Hogan, Measurement of passive ankle stiffness in subjects with chronic hemiparesis using a novel ankle robot, Journal of neurophysiology, 105(5) (2011) 2132-2149.
[3] R.L. Lieber, S. Steinman, I.A. Barash, H. Chambers, Structural and functional changes in spastic skeletal muscle, Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 29(5) (2004) 615-627.
[4] G. Steinwender, V. Saraph, E.-B. Zwick, C. Uitz, W. Linhart, Fixed and dynamic equinus in cerebral palsy: evaluation of ankle function after multilevel surgery, Journal of Pediatric Orthopaedics, 21(1) (2001) 102-107.
[5] M.F. Abel, G.A. Juhl, C.L. Vaughan, D.L. Damiano, Gait assessment of fixed ankle-foot orthoses in children with spastic diplegia, Archives of physical medicine and rehabilitation, 79(2) (1998) 126-133.
[6] S.J. Lawrence, M.J. Botte, Management of the adult, spastic, equinovarus foot deformity, Foot & ankle international, 15(6) (1994) 340-346.
[7] S. Yamamoto, A. Hagiwara, T. Mizobe, O. Yokoyama, T. Yasui, Development of an ankle–foot orthosis with an oil damper, Prosthetics and orthotics international, 29(3) (2005) 209-219.
[8] M. Alam, I.A. Choudhury, A.B. Mamat, Mechanism and design analysis of articulated ankle foot orthoses for drop-foot, The Scientific World Journal, 2014 (2014).
[9] I. Skaaret, H. Steen, A. Huse, I. Holm, Comparison of gait with and without ankle-foot orthoses after lower limb surgery in children with unilateral cerebral palsy, Journal of children's orthopaedics, 13(2) (2019) 180-189.
[10] M. McGrath, D. Howard, R. Baker, The strengths and weaknesses of inverted pendulum models of human walking, Gait & posture, 41(2) (2015) 389-394.
[11] V.T. Inman, H.D. Eberhart, The major determinants in normal and pathological gait, JBJS, 35(3) (1953) 543-558.
[12] H. Elftman, Biomechanics of muscle: with particular application to studies of gait, JBJS, 48(2) (1966) 363-377.
[13] G.A. Cavagna, H. Thys, A. Zamboni, The sources of external work in level walking and running, The Journal of physiology, 262(3) (1976) 639-657.
[14] S. Mochon, T.A. McMahon, Ballistic walking: An improved model, Mathematical Biosciences, 52(3-4) (1980) 241-260.
[15] T. McGeer, Passive dynamic walking, I. J. Robotic Res., 9(2) (1990) 62-82.
[16] T. McGeer, Dynamics and control of bipedal locomotion, Journal of theoretical biology, 163(3) (1993) 277-314.
[17] J.M. Donelan, R. Kram, A.D. Kuo, Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking, Journal of Experimental Biology, 205(23) (2002) 3717-3727.
[18] J.M. Donelan, R. Kram, A.D. Kuo, Simultaneous positive and negative external mechanical work in human walking, Journal of biomechanics, 35(1) (2002) 117-124.
[19] A.D. Kuo, J.M. Donelan, A. Ruina, Energetic consequences of walking like an inverted pendulum: step-to-step transitions, Exercise and sport sciences reviews, 33(2) (2005) 88-97.
[20] M. Srinivasan, Fifteen observations on the structure of energy-minimizing gaits in many simple biped models, Journal of The Royal Society Interface, 8(54) (2011) 74-98.
[21] T. Koolen, T. De Boer, J. Rebula, A. Goswami, J. Pratt, Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models, The international journal of robotics research, 31(9) (2012) 1094-1113.
[22] H. Hong, S. Kim, C. Kim, S. Lee, S. Park, Spring-like gait mechanics observed during walking in both young and older adults, Journal of biomechanics, 46(1) (2013) 77-82.
[23] S. Kim, S. Park, Leg stiffness increases with speed to modulate gait frequency and propulsion energy, Journal of biomechanics, 44(7) (2011) 1253-1258.
[24] M.G. Pandy, N. Berme, A numerical method for simulating the dynamics of human walking, Journal of biomechanics, 21(12) (1988) 1043-1051.
[25] M.G. Pandy, N. Berme, Synthesis of human walking: a planar model for single support, Journal of biomechanics, 21(12) (1988) 1053-1060.
[26] M. McGrath, D. Howard, R. Baker, A lagrange-based generalised formulation for the equations of motion of simple walking models, Journal of biomechanics, 55 (2017) 139-143.
[27] F.C. Anderson, M.G. Pandy, Individual muscle contributions to support in normal walking, Gait & posture, 17(2) (2003) 159-169.
[28] R.L. Haupt, S. Ellen Haupt, Practical genetic algorithms, (2004).
[29] J.M. Johnson, Y. Rahmat-Samii, Genetic algorithm optimization and its application to antenna design, in: Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, IEEE, 1994, pp. 326-329.
[30] S. Onyshko, D. Winter, A mathematical model for the dynamics of human locomotion, Journal of biomechanics, 13(4) (1980) 361-368.
[31] D. Winter, J. Milsum, Biomechanics of human movement. John Willey & Sons, Influência dos níveis de atividade física no comportamento biomecânico das forças reativas do apoio durante o caminhar em mulheres pós-menopáusicas, 202 (1979).
[32] K. Nomura, T. Yonezawa, H. Mizoguchi, H. Takemura, Measurement of the passive stiffness of ankle joint in 3 DOF using stewart platform type ankle foot device, in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2016, pp. 5011-5014.