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 Optimization of ankle stiffness using genetic algorithm in gait modeling

 A. Hashemnezhad, S. Taghvaei, K. Hashemnia, S. A. Haghpanah*

School of Mechanical Engineering, Shiraz University, Shiraz, Iran

ABSTRACT: In the human gait modeling, it is common to employ 2D models that consist of a chain 
of rigid links joined together by frictionless hinge joints. Although Newton’s method is usually used to 
obtain equations of motion in the previous studies, in this research, the constrained Lagrange’s method 
was employed for this purpose. This method has some advantages over the previous one, such as the 
solution process is independent of the coordinate system and there is no necessity to know the ground 
reaction force beforehand. In this work, optimization was also performed by genetic algorithm so that 
the moment of each joint was estimated by tracking the kinematic data. Moreover, by solving the inverse 
dynamics and by applying Lagrange multipliers, the distribution of ground reaction force under both 
feet in the double support mode was calculated and compared with the experimental data to verify the 
effectiveness of the proposed method. Finally, as one of the applications of dynamic modeling of the 
human gait, the optimal value of passive stiffness in the ankle joint was obtained to provide a better 
design of the orthoses used for patients with motor impairment. The results show compatibility between 
the simulations and experiments for normalized joint moments as well as reaction forces. The optimal 
joint stiffness is also in the range reported by available experimental data. In conclusion, the methodology 
can be used for modelling human movements and can be considered as an optimal approach in designing 
assistive devices especially passive exsoskeletons. 
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1- INTRODUCTION
One of the most important applications of dynamic 

modeling of the human gait is to improve and correct the gait 
of injured patients, via designing improved assistive devices. 
For instance, people who are injured in traffic or work related 
accidents, 10% to 20% of those who have survived a stroke, 
and most patients with cerebral injury have motor defects in 
their lower limbs. One example of these defects is an abnormal 
plantar-flexed position of the foot which reduces the neutral 
angle of the ankle [1-3]. One of the causes of these motor 
deficits is severe muscle spasms resulting from previously 
mentioned injuries. This will increase the passive stiffness 
of the ankle joint, thereby reducing the range of motion of 
that joint [4]. Passive ankle foot orthoses (AFO) are usually 
utilized to correct the gait pattern of these patients and to 
reposition the foot relative to the leg in a correct manner 
[5-9]. Therefore, calculating the optimum stiffness of these 
orthoses in the ankle joint is an important parameter in their 
design. This optimization is based on the energy consumed by 
the person during walking.

Therefore, to calculate the optimal parameter for the 
ankle joint stiffness, dynamic gait modeling was implemented 
in this paper. Walking is the most important way of human 
motion, so the importance of its analysis and evaluation 

is undeniable. Evaluation of human gait consists of the 
measurement and analysis of biomechanical parameters, all 
events that occur during walking and position changes of the 
limbs with respect to each other. In the literature, researchers 
have repeatedly used the inverse pendulum (IP) model for 
the gait stance phase which has been the basis for recent 
research on the gait dynamic analysis [10]. Although in earlier 
works, such assumption was made [11, 12], Cavagna [13] for 
the first time  proposed IP for stance phase modeling. This 
research [13] was the basis for the development of research by 
McMahon’s [14] and McGeer’s [15, 16], which later elucidated 
the IP dynamic modeling of gait. Recent works by Donelan’s 
group [17-19] also focused on the transition phase from one 
step to another. In the recent study, the IP model has been 
expanded to include springs, dampers, telescopic actuators, 
and additional segments and joints [20-23].

Typically, most of the developed models consist of 
several rigid links joined together by frictionless joints 
which ultimately form a chain that represents the limbs of a 
person. To provide a person’s forward dynamic simulation, 
the equation of motion (EOM) should be derived. These 
equations have already been established in Pandy’s articles 
[24, 25] by the Newtonian approach whose advantage is 
the reduction in computational time at a large number of 
degrees of freedom (DOF). Recently, McGrath [26] employed 
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Lagrange’s method in order to derive EOM, like what was 
followed  in this research. Using this strategy, the solution 
would be independent of the coordinate frame, and there is 
no need to know the ground reaction force (GRF) in advance; 
since, Lagrange’s method uses virtual work and energy 
calculations instead of forces.

Optimization is used to solve the governing equations 
needed to simulate the human gait, as in most complex models 
such as what was studied in [27]. The optimization techniques 
are especially valuable when the number of unknowns 
exceeds the order of system of equations as it is the case for 
human gait model. In the present study, the similar approach 
was used, except that genetic algorithm (GA) was selected 
for optimization. GA is very effective in saving time during 
problem solving. Genetic algorithm searches for different 
possible solutions of the system in order to find the best 
answer. According to the natural selection theory, the only 
answers with better cost function remain in the competition. 
Finally, the best answer is introduced based on the considered 
cost function and convergence criterion [28, 29].
The contributions can be listed as follows:
-Genetic algorithm is used to solve the human gait dynamics.
-The results of GA gives both joint moments and reaction 
forces in single support and double support phase.
-An optimal joint stiffness is obtained to minimize the joint 
moments.
-The proposed method can be generalized to simulate the 
dynamics of other human motions.

In this study, first, the EOM was obtained by using the 
Lagrange method. As mentioned before, genetic algorithm 
was used as the optimization method. Then, as one of the 
applications of this modeling, the optimum passive stiffness 
for the ankle joint was determined. Designing orthosis based 
on the calculated optimal parameter can improve orthopedic 
movement pattern of an injured patient.

2- METHOD
2-1- Obtaining EOM

The Lagrange equation which employed in obtaining 
EOM in an open-loop chain mechanism with no external 

force and torque is as follows [30]:

0
ii

d L L
dt q q
 ∂ ∂

− = ∂ ∂  �
(1)

Where L is the Lagrangian function which is the 
difference between kinetic and potential energies and iq  is 
the generalized coordinate of the ith link in the chain. In the 
case that there is no external force and torque, the right side of 
this equation will be equal to zero. Otherwise, the relationship 
is as follows:

i
i i
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(2)

where iQ  represents the generalized characteristic of 
forces  derived from virtual work äw :

( )1i i i i i
i i

w Q q M Mδ δ θ+= = −∑ ∑
�

(3)

where iM  is the torque applied to the distal joint of the 
ith link of the chain and iθ  is the ith link angle with respect to 
the vertical axis.

These derivations are expressed for an open-loop chain 
with n rigid links. The ground is considered as a constraint 
with zero overall work at one end of the chain, while the other 
end of the chain is free. il  represents the length of each link, 
mass im  and moment of inertia around the center of mass 
of each link iI  were considered for each link i. Position of 
the center of mass was determined by id  on each link. Also, 
g  represents the gravitational acceleration. Therefore, the 
position of each link was determined by (4), (5):
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Fig 1.  Free body diagram for the IP model [10] 

 

  

Fig 1. Free body diagram for the IP model [10]
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Equation (6) represents the linear velocity of the center 
of mass for each link. Kinetic and potential energies were 
calculated by using the following equations:
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Consequently, general equations were derived from (2), 
(3). and by calculating the above equations, EOM can be 
written in the following matrix form:
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=∑  indicates that the value of h covers all values 
from 1 to n  except p . Equation (9) is for open loop chain 
mechanisms; however, there is a set of constraints for a close 

loop mechanism. Taking advantage of Lagrange’s method, 
these constraints can be easily entered in the equations 
by employing Lagrange multipliers. The expression of jth 
constraint is  0jf = .

The Lagrange equations will be rewritten as follows:
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Where jλ  is the Lagrange multiplier for the jth constraint. 
And r is the number of constraints of the mechanism. 
If constraints are merely functions of position, by twice 
differentiating these relations, new unknown variables or jλ  
can be solved with

¨
 iq  simultaneously. In other words, to apply 

positional constraints into the EOM, they were differentiated 
twice according to (13) and the matrix (9) was rewritten in the 
form of matrix (14).
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It should be mentioned that for a chain with n degrees of 
freedom and r constraints, n-r independent variables exist. 
Therefore, all 

¨

iq  are not independent, which means that by 
knowing 

¨

iq  for the first n-r links in the chain, one can obtain ¨

iq  for the last r links by employing the constraints equations.

2-2- Ground reaction force calculation
Another advantage of the Lagrange’s method appears 

during computing the ground reaction force (GRF) in a 
double support situation. Lagrange multipliers determine 
how GRF is distributed beneath the legs. In other words, the 
force required to remain the trailing foot fixed on the ground 
is considered as the GRF under that leg. The inverse dynamics 
can also be used to calculate the total GRF, and to obtain the 
GRF under the leading foot by simple subtraction.
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Equations(16) and(17) are referred to the horizontal and 
the vertical GRF beneath the trailing foot, so by subtracting 
these from(18) and (19) which are the total GRFs in x and 
y directions, respectively, the GRF under the leading foot in 
both directions is obtained.

2-3- Optimization
In this work, the genetic algorithm (GA) optimization 

method was performed to estimate the moments applied to 
each link. This estimation is based on a comparison between 
the kinematic data obtained from EOM and the experimental 
data. In this study, Winter’s data [31] as laboratory data was 
used.

The cost function for estimating the torque on each link 
was defined by tracking the kinematic data as follows [26]:

( ) ( )22
c s l s lF θ θ θ θ = ∑ − + − 

 
 

�
(20)

where sθ  ,  sθ were calculated in the simulations and  
lθ  , lθ  were the experimental data. The stages of GA are in 

accordance with the flowchart in Fig. 2. Therefore, we aimed 
to find the minimum value of the cost function defined in 
(20). For this reason, the cost function was calculated for the 
initial values, and based on the concept of natural selection, 
the values resulted in higher cost function was eliminated 

from the competition. Then, through the next stages, a new 
generation was produced using the best of the previous 
generations.

3- RESULTS AND DISCUSSION
The motion simulation includes both single support 

and double support modes. The genetic algorithm was 
used to run the simulations for each of these modes. As 
mentioned before, by comparing the angular position and 
velocity of each segment gained from experimental data and 
simulations results, the torque on each link was obtained as 
the optimization output.

The model involved a link chain with 6 DOFs, and gait of 
a person with 165 cm height and 65 kg weight was considered. 
All the anthropometry information required was taken from 
Winter’s work [31]. 

Heel strike of the leading foot was considered to be the 
beginning of gait simulation. Therefore, the first 10% of the 
gait was in the double support phase, and then it switched 
to the single support phase until half of the gait cycle. In the 
second half of the gait cycle, the same phase changes will 
occur, symmetrically. The results of the motion simulation 
based on genetic algorithm are shown in Fig. 3. These results 
are also compared to the experimental data [31].

The simulation and experimental results are compatible 
with an acceptable range of error. Since in this model the 
foot segment and also the variation of the center of pressure 
for implementing the GRF have not been considered, the 
simulated moments at the joints differ from the experiment. 
Another source of error in this calculation comes from the 
genetic algorithm which tries to track the desired joint angles, 
so the errors in this tracking would be augmented in joint 
moments.

Using the Lagrange multipliers, the ground reaction 
forces beneath the feet were calculated. These calculations 

 

Fig. 2. The stages of GA 

 

  

Fig. 2. The stages of GA
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were in both vertical and horizontal directions, because the 
mechanism constraints were defined in these two directions. 
Then, the results of these computations for the leading foot, 
during the first half of the gait cycle were compared to the 
experimental data in Fig. 4. In the final section, by studying 
the behavior of the ankle joint stiffness parameter over the 
whole body motion considering all joints moments, an 
optimal value for this parameter was determined. To this end, 
first, the spring energy equation (21) must be added to the 
potential energy term in the Lagrangian function (8).

21   
2spring ankle ankleV K φ=

�
(21)

where ankleK  is the stif﻿fness of the equivalent spring at the 
ankle, and φ  is the relative angle of two links connected at the 
ankle joint. Then, the effect of this spring stiffness can be easily 
studied by varying the value of ankleK  in (21). To study how 
this parameter affects all joints moments and determine the 
optimal value for it, a norm function was defined as follows:

01

f
n t

it
i

J M dt
=

=∑∫
�

(22)

In other words, the idea of defining this function was 
based on minimizing the area under the torque-time curve 

 

 

 

Fig. 3. Comparison of simulation results for torque values with their experimental data. All moments are normalized to the 
body mass. 

 

  

Fig. 3.Comparison of simulation results for torque values with their experimental data. All moments are normalized to the body 
mass.

 

Fig. 4. The obtained GRFs based on Lagrange multipliers compared to the experimental data. GRF is normalized to the body weight 
(BW)  

 

  

Fig. 4.The obtained GRFs based on Lagrange multipliers compared to the experimental data. GRF is normalized to the body 
weight (BW)
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for the members during the gait.  This area is correlated to 
the person’s energy consumption. Finally, the minimum value 
for this function was suggested as the optimal value. The 
results of the norm function, for different values of the spring 
stiffness, are shown in Fig. 5. The range of variation of the 

ankleK  was taken from [32]. As it can be seen, there is a global 
minimum in the neighborhood of point ( )4 . /ankleK N m rad=
. The ankle stiffness obtained by experiments depend on the 
motion speed and subject’s characteristics with the range of 
0.1-0.3 Nm/deg (for plantar flexion) which is compatible with 
the result obtained by the proposed approach (.07 Nm/rad). 
So, as mentioned earlier, now that an optimal value for the 
ankle joint stiffness has been found, better design of the AFO 
orthoses will be possible. As a result, less moments will be 
applied to the limbs of the patients who use these optimized 
orthoses, and hence they will consume less energy while 
walking. 

The proposed approach in this study can be used for 
simulation and optimal design of assistive devices. Usually 
the design of assistive devices (walkers, canes, prosthetic foot, 
etc.) that involve walking, do not consider the dynamics of the 
user. By having a validated model of the user such as the one 
proposed in this study, the design parameters can be varied to 
obtain optimal design. 

4- CONCLUSION
The human gait modeling was implemented as a chain 

consisting of rigid links and frictionless joints in both open-
loop and closed-loop modes. The equation of motion for 
these modes was derived, which were single support and 
double supports, respectively. The Lagrange’s method, which 
has several advantages over other methods, was chosen for 
this goal. Independency of the solutions of coordinate system 
and less need for prior knowledge of kinetic data can be 
mentioned as some of these advantages.

As mentioned above, there is no need for ground reaction 
force (GRF) to calculate forward dynamics, but the moment 
applied to each link should be estimated. For a similar 
purpose, an approach was used by Anderson and Pandy, 
where optimization was performed to estimate muscle activity 
in a complex model. In the present work, this estimation of 

moment on each link was carried out by genetic algorithm 
(GA).

Another advantage of the Lagrange’s method in the present 
modeling was in GRF calculation; where Lagrange multipliers 
was used to determine the distribution of GRF beneath each 
foot in the double support mode. The force required to remain 
the mechanism constraints was introduced to be proportional 
to the GRF under the trailing foot. Also the total GRF was 
calculated from the inverse dynamics. Finally, by subtracting 
these values, the GRF under the leading foot was obtained. 
As one of the important applications of human gait dynamic 
modeling, the optimal value for passive ankle joint stiffness 
was found by examining the effect of this stiffness on the 
human motions.

As a future work of this study, the constrained Lagrange 
equation is used to optimize the design of an assistive passive 
exsoskeleton and a cane. 
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