[1]A. S. Hurn, K. A. Lindsay, A. J. McClelland, On the Efficacy of Fourier SeriesApproximations for PricingEuropean Options, Applied Mathematics, 5, 2786-2807Published Online October 2014 in SciRes. http://dx.doi.org/10.4236/am.2014.517267.
[2]Carr P.P. and Madan D.B., Option valuation using the fast Fourier transform. J. Comp. Finance, 2:61-73, 1999.
[3]Carr, P.P. and Madan, D.B. (1999) Option Evaluation Using the Fast Fourier Transform. Journal of Computational Finance, 2, 61-73.
[4]F. Fang, C. W. Oosterlee, A novel pricing method for European options based on Fourier cosine series expansions, SIAM Journal on Scientific Comp, Vol. 31(2), 826-848, 2008. http://dx.doi.org/10.1137/080718061.
[5]B. Adcock, M. Gataric, and A. C. Hansen. On stable reconstructions from nonuniform Fourier measurements. SIAM J. Imaging Sci., 7(3):1690{1723, 2014.
[6]B. Adcock, A. C. Hansen, G. Kutyniok, and J. Ma. Linear stable sampling rate: Optimality of 2d wavelet reconstruction from fourier measurements. SIAM Journal on Mathematical Analysis, 47(2):1196–1233, 2015.
[7]Arfken, G. "Fourier Series." Ch. 14 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 760-793, 1985.
[8]Askey, R. and Haimo, D. T. "Similarities between Fourier and Power Series." Amer. Math. Monthly 103, 297-304, 1996.
[9]Byerly, W. E. An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. New York: Dover, 1959.
[10]Carslaw, H. S. Introduction to the Theory of Fourier's Series and Integrals, 3rd ed., rev. and enl. New York: Dover, 1950.
[11]Dym, H. and McKean, H. P. Fourier Series and Integrals. New York: Academic Press, 1972.
[12]Folland, G. B. Fourier Analysis and Its Applications. Pacific Grove, CA: Brooks/Cole, 1992.
[13]Groemer, H. Geometric Applications of Fourier Series and Spherical Harmonics. New York: Cambridge University Press, 1996.
[14]G. Barles, CH. Daher, and M. Romano. Convergence of numerical shemes for parabolic eqations arising in nance theory. Mathematical Models and Methods in Applied Sciences, 5:125-143 (1995).
[15]Richard Askey; Deborah TepperHaimo, Similarities Between Fourier and Power Series, The American Mathematical Monthly, Vol. 103, No. 4, pp. 297-304. (Apr., 1996).
[16]Borak, S., Detlefsen, K. and Hardle, W. (2005) FFT Based Option Pricing. SFB Discussion Paper 649.
[17]Lord, R., Fang, F. Bervoets, F. and Oosterlee, C.W. (2007) A Fast and Accurate FFT Based Methodology for PricingEarly-Exercise Options under Levy Processes. SIAM Journal of Scientific Computing, 20, 1678-1705.
[18]Kwok, Y.K., Leung, K.S. and Wong, H.Y. (2012) Efficient Options Pricing Using the Fast Fourier Transform. In:Duan, J.C., Ed., Handbook of Computational Finance, Springer, Berlin, 579-604. http://dx.doi.org/10.1007/978-3-642-17254-0_21.
[19]Zhang, B., Grzelak, L.A. and Oosterlee, C.W. (2012) Efficient Pricing of Commodity Options with Earlyexercise underthe Ornstein-Uhlenbeck Process. Applied Numerical Mathematics, 62, 91-111.
http://dx.doi.org/10.1016/j.apnum.2011.10.005.
[20]Heston, S.L. (1993) A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and CurrencyOptions. Review of Financial Studies, 6, 327-343.
[21]Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81, 637-654. http://dx.doi.org/10.1086/260062.