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A recursive numerical algorithm to computing Fourier series coefficients to find 
cylinder potential in electrodynamics
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ABSTRACT:  In this article, a new approach to find the Fourier expansion coefficients have been 
carried out by a recursive algorithm without computing their correspondent integral. Finally, in virtue 
of this new method, some Partial differential equations have been solved and compared with their 
exact solutions.After deriving the recursive relation, some differential equations have been solved 
with the partial differentiation and compared with the numerical answers in addition. The Fourier 
series coefficients were computed more accurate and fast in this method as compared to others then 
we calculate cylinder potential in electrodynamics by this method. The results show that the algorithm 
proposed in this paper  has achieved better results.
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1- INTRODUCTION
For the first time the well-known mathematician, Joseph 

Fourier, devised of new series method respect to trigonometric 
functions in terms of sines and cosines while he was studying 
the heat conduction. It was just one of the many applications 
of Fourier series [1]-[21]. The Fourier series and transform 
has many applications, in fact any field of physical such as 
engineering, physics, applied mathematics, and chemistry. 
It could be given some examples of various branches of 
sciences where the Fourier transform is involved in finding 
their solutions. They are used in the analysis of current flow 
in electrical engineering, analysis of sound waves and signal 
processing. In physical issues, it could be applied to solve posed 
problems in Astronomy, optics and trapping. They are also 
used in mathematics to solve ordinary and partial differential 
equations and integral equations. Fourier’s ideas can also be 
found in electronically synthesized music, chemistry and 
talking computer chips. These are just a few of examples of 
the many uses of Fourier series in the world of science and 
technology. In physics and engineering, expanding functions 
in terms of sines and cosines is very useful duo to the fact 
that it allows someone to manipulate periodic functions more 
easily, for instance, discontinuous or difficult functions to 

represent their analytically form as a rigorous mathematical 
analysis techniques. In particular, the fields of electronics, 
quantum mechanics, and electrodynamics all of them make 
enormous uses of the Fourier series. In addition, other 
methods based on the Fourier Series, such as the Fast Fourier 
Transform (FFT) [1]-[3], a form of a Discrete and finite 
Fourier Transform (DFT), are especial useful for the areas of 
Digital Signal Processing (DSP) and Spectral Analysis.

The FFT strategy has been applied by Borak et al. [16]. 
They have demonstrated its efficacy by comparison with 
Monte-Carlo simulation for a variety of models. In another 
investigation, it has been showed how Fourier’s convolution 
theorem can be used to price certain exotic options in 
combination with the FFT [17] and [18]. A different 
approach has been done by using the characteristic function 
to approximate the marginal transitional probability density 
of returns by Fang et al. [19]. Zhang et al. [20] have showed 
that this methodology can be extended to the pricing of early- 
exercise commodity options under the Ornstein-Uhlenbeck 
process.

In comparison with Fourier series expansion coefficients, 
we introduced a new algorithm based on Taylor expansion 
function that the corresponding ones in this method are 
computed based on recursive equations without necessity 
to any integral computing. Therefore, not only finding 
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coefficients are simple respect to direct method, but also 
speed and error of computations are definitely better than 
the traditional method. This paper is organized as follow. In 
next section, we describe details of this method and write the 
related procedures correspond to each stage. Afterwards, we 
express some applicable examples to realize and emphasizing 
this method. As an example, with the comparison of this 
method with Simpson integration method, we realized that 
in the Simpson method more 3996000 processes are needed 
to reach the same accuracy. As the conclusion, one can say 
that this method is far accurate than Simpson method since 
computes the Fourier coefficients analytically.

2- FINDING FOURIER COEFFICIENTS WITHOUT 
INTEGRATION

For any periodic real and bounded function F, defined 
on closed interval, with period length 2l, and with a finite 
number of discontinuous points, its Fourier series expansion 
is indicated as follow:
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On the other hand, we can rewrite this differentiable 
function based on Taylor expansion around the point 0x x= .
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Afterwards, we express the computed Fourier expansion 
coefficients (FEC) of simple polynomials from different orders 
which are the approximations from the same polynomials 
order.

One-point FEC:
Applying Fourier extension Equations (3) and (4) for 

( ) ( ) ( )0 1,F u F u l u l= = − < < , we get
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Two-point FEC:
Applying Fourier extension Equations (3) and (4) for 
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Three-point FEC:
Applying Fourier extension Equations (3) and (4) for 
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M-point FEC:
Applying Fourier extension Equations (3) and (4) for 
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With integration by part we could get:
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After a little simplification we reach to these conclusions:
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Again after a little simplification we reach to these 
conclusions:
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Also with attention to Equations (12), and (14), we get 
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In other words, we get the following equalities for even 
and odd indexes of coefficients;
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Therefore, by these recursive equations we could introduce 
a procedure for computing the coefficients of Fourier 
extension related to polynomials ( ) mF u u= . We recall this as 
first procedure. All these codes have been written by Matlab 
language.

Now by this algorithm the Fourier extension in Equation 
(1), for real function ( )F u , with attention to truncated 
Taylor extension from m -th order could be computed as 
follow:
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In the following, we introduce other equations to have a 
more simplicity
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In conclusion:
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Although, we continue to test the algorithms, we will 
study a few examples that we have their exact answer, because 
of we want to study the applied problems. As we know, in 
applied problems, the functions are generally unknown and 
always, examine we examine such a problems by interpolation 
method.

Tip 1) since this analytical method, exactly without any 
error solves the integrals of  Fourier coefficients, thus for a 
power series with few terms (finite series) is suitable.  But, 
for a power series of ( )ln u , 2xe−  and … which are infinite 
series, we want to calculate the coefficients using this method; 
there is an error of truncate in the series. Therefore, Fourier 
coefficients also will confront errors as a result.

Tip 2) According to the tip 1, in the following if we want 
to solve a function by the Fourier series, there is another 
error, due to calculating sin n u

l
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in the series. 
But this is unavoidable in the physical issues. These problems 
will front of errors, but we will calculate the coefficients in a 
more accurate way as it follows. In the realistic situations, the 
problems never will be solved by an infinite series, but also it 
will be express experimentally by a finite power series.

First, we use (present) a simple problem.
First problem: Here, we want to check the value of the 

function ( ) 4F x x= in the interval of    a x b< <   by Fourier 
series and finally compare with its main answer.

Solution: We study the problem in two methods.
First method:
At first, we must to expand the function ( )F x  around 

0u  
in a form that ( )0l x x l− < − <  will be satisfied.

( )0 0 0                                          18l a x x x u l b x− = − < − = < = −
 

(18)
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Therefore:
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According to the Equation ( )19 , the function  ( )F u  
will be in the form:
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Here, the function ( )F u  is that standard function which 
we studied it and find the algorithms. Thus, according to the 
second algorithms, we can study this function in a Fourier 
series from around the point xo. For showing the numerical 
calculations in a better way, we firstly give the algorithms, and 
then we write its code by MATLAB.

The absolute error of the graph is as follows:
The second method:
We increase the period interval in such a way that consists 

of specified or defined interval. We increase the period until it 
consist the contended interval and there is no need to expand 
it around a special point.

If x be in the l x l− < <  interval, then:  l a x b l− ≤ < < ≤  .

( ) ( )4F ,   l a              22x x x b l= − ≤ < < ≤
 

(22)

If a b< , then l b=  in here. Otherwise l a= . To show 
the numerical calculations in a better way, we firstly give the 
algorithms, and then we write its code by MATLAB. At this 
stage, we investigate the algorithm for 2l b= = , 1a = , and 

4M = .
For different N  value (N is number of Furier series 

summation), the absolute errors are presented below (figure 
2)

By comparing the two methods, we can find that the 
MATLAB software is sensitive to the loops number and by 
increasing this number will result in the accuracy, whereas 
it must not be. Thus, the second method is more effective. 
Figures 2, shows increase in accuracy by increasing N  value.

In the next step, we study a nonlinear function and we 
change it to a linear problem using Taylor expansion and then 
we compare it with Simpson method. The Fourier coefficients 
has been computed with Simpson method first and then 
the out-put has been compared with the current method. It 
is so important to notice that these two methods has been 
compared in the same process numbers first and then the 
numbers of processes to reach the same accuracy.

In the previous method, there were two “For” rings inside 
each other, so the number of process repeating is ( )1N M −
that is 4M =  for this problem. If we want to solve this 
problem by Simpson method with the same process numbers, 
we should choose the integral pitch as ( 2 1lh

M
= =  ,

2
b al −

= ) wherein 
h is the integral pitch and M  is the number of pitches. Since 
the value of M  is low, we expect to have a high pitch and so 
the accuracy of our calculations will be decreased.

Now we investigate the integration pitch in Simpson 
method for 0.01, 0.001h = , and 0.0001 . The number of 
processes in two methods are ( )K M N−  with attention to their 
algorithms. For the 0.01h =  and 1000N = , we have the graph 
below ( ( )2 400, 396000lK K M N

h
= = − = ).

The graph indicates that 39996000 processes are needed in 
Simpson method to gain the same accuracy of our method. So 
we can say that the represented method in this paper is more 
accurate than Simpson method.

Problem 2: In this section, we study the function 
( ) ( )2F x ln x= +  using Fourier expansion between 0.8 0.8x− < <  

.
Solution:
Taylor series of this function will be in the form:
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Using the Equation ( )23 , the function to order of M  
and more M  value will result in more calculations accuracy 
of the Taylor series.
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If we suppose to expand this series up to the first twenty 
terms, then the Error is:
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We suppose that we have a 20 sentences series that 
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its answer is logarithmic. In the other hand, we do not 
need to solve the logarithmic sentence and a presentation 
of a logarithmic series is enough. Now, we introduce the 
algorithms of this problem and show its accuracy by a graph.

Which, its absolute error is presented below(Figures 4):
As the method is sensitive to the kind of program used 

and also to the recurration loop, we can improve it with some 
changes.

The point in here is that the logarithmic function has 
been put in MATLAB software by default and the value of 
those functions has been already determined. The main goal 
of this stage in our research is to compare the accuracy of 
two methods, therefore we suppose that we have the first 21 
sentences and want to analyze them. Since we know the exact 
value of them, we can do it now.

Since the error in integration in the Simpson method is 
very high, we only plot one case of those values. This technique 
is not suitable for the functions with multi series sentences. 
For the 0.0001 h = and 3000N = , we have the graph below (

( )2 4000, 3996 3001lK K M N
h

= = − = × ).
So the represented method is more accurate for multi 

series and is suggested for evaluation of analytical problems. 
Therefore we can use the proposed method for solving the 
physical problems with reasonable results. As the method 
is sensitive to the kind of program used and also to the 
recurration loop, we can improve it with some changes.

Thus, according to the advantages we apply the proposed 
method to the applied problems in electromagnetic.

3- THE INTERNAL POTENTIAL OF A LONG 
HOLLOW CYLINDER

We study the internal potential of a long hollow cylinder 
with radius R . By changing the boundary conditions, the 

algorithms will change. In this paper, one of the possible kind 
of the boundary conditions will be studied:

11 
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(26)

For calculating the potential inside a long hollow cylinder, 
we must solve the Laplace equation of  ( )2Ö ñ,ö 0∇ = .

It will results the potential for inside the cylinder in the 
form:

11 
 

ℎ = 0.0001 𝑁𝑁 =
3000 𝐾𝐾 = 2𝑙𝑙
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𝜋𝜋

−𝜋𝜋
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(27)

According to the potential equation and boundary 
conditions we have:
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(28)

Using Equation ( )28 , we find that it is a form of Fourier 
series and by the proposed method presented here, we try to 
solve it to define series coefficients

 

Figure 1: Where 𝑢𝑢 is function variable, h is the actual value of the function and  𝐹𝐹 is the Fourier value of the 
function. 𝑎𝑎𝑎𝑎𝑎𝑎(𝐹𝐹 − 𝐻𝐻) is the difference between the actual value and the value of the Fourier function series. The 

limit of Fourier series summation is for N=201. 

  

Fig.  1. Where  is function variable, h is the actual value of the function and   is the Fourier value of the function.  is the difference 
between the actual value and the value of the Fourier function series. The limit of Fourier series summation is for N=201.
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Fig.  2. (a) The graph for N=201, (b) The graph for N=501 and (c) The graph for N=5501.
Where N is number of Furier series summation.
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(b)  

 

(c) 

 

Figure 2: (a) The graph for N=201, (b) The graph for N=501 and (c) The graph for N=5501. 

Where N is number of Furier series summation. 
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(a) 

 

(b) 

 

 

(c) 

Figure 3.  (a) The graph for 𝑁𝑁 = 1000 and the red graph is error of our method and the blue is Simpson error. For 
the ℎ = 0.001 and 𝑁𝑁 = 1000, we have the graph in this Figure (𝐾𝐾 = 2𝑙𝑙

ℎ = 4000, (𝐾𝐾 − 𝑀𝑀)𝑁𝑁 = 3996000), (b) The 
graph for 𝑁𝑁 = 1000 and the red graph is error of our method and the blue is Simpson error. For the ℎ = 0.0001 

and 𝑁𝑁 = 1000, we have the graph in this Figure (𝐾𝐾 = 2𝑙𝑙
ℎ = 40000, (𝐾𝐾 − 𝑀𝑀)𝑁𝑁 = 39996000) and (c) The graph for 

𝑁𝑁 = 1000 and the red graph is error of our method and the blue is Simpson error. 

 

  

 Fig.  3.  (a) The graph for  and the red graph is error of our method and the blue is Simpson error. For the  and , we have the graph

in this Figure ( ( )2 4000, 3996000lK K M N
h

= = − = ), (b) The graph for and the red graph is error of our method and the blue is Simpson

  error. For the h=0.0001 and , N=1000 we have the graph in this Figure ( ( )2 40000, 39996000lK K M N
h

= = − = ) and (c) The graph for

N=1000 and the red graph is error of our method and the blue is Simpson error.
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(29b)

According to the Equation ( )26  we have:
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Fig.  4. (a) The graph for N=5001and M=20. These graphs show a good approximation. Therefore we can use the proposed method for 
solving the physical problems with reasonable results.

 (b) The graph for N=3001and M=20 and h=0.0001. We want to compare this method with the Simpson method; therefore we plot the 
comparison graphs with the (b). 

 
 (a) 

 

 

(b)  

Figure 4: (a) The graph for N=5001and M=20. These graphs show a good approximation. Therefore we can use the 
proposed method for solving the physical problems with reasonable results. 

 (b) The graph for N=3001and M=20 and h=0.0001. We want to compare this method with the Simpson method; 
therefore we plot the comparison graphs with the (b).  
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(a) 

 

 

(b) 

Fig. 5. Here  is angle in cylindrical coordinate,is the potential value at the boundary and is resulted Fourier value of potential at the 
boundary.  is the difference between the actual value and the value of the potential function Fourier series at the boundary. (a) Absolute 

error for. (b) Absolute error for . (c) Absolute error for .

 

(c) 

Figure 5: Here 𝑥𝑥 is angle in cylindrical coordinate,𝑤𝑤is the potential value at the boundary and 𝐹𝐹is resulted Fourier 
value of potential at the boundary. 𝑎𝑎𝑎𝑎𝑎𝑎(𝐹𝐹 − 𝑤𝑤) is the difference between the actual value and the value of the 

potential function Fourier series at the boundary. (a) Absolute error for 𝑁𝑁 = 201. (b) Absolute error for 𝑁𝑁 = 2001. 
(c) Absolute error for 𝑁𝑁 = 20001. 
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(a) 

 

(b) 

 

Figure 6: Where 𝑥𝑥 is the angle is in cylindrical coordinate, 𝑟𝑟 is radial variable and 𝐹𝐹 is potential everywhere inside 
the cylinder. (a) Potential chart for N= 20001 with 0.1 radial step. (b) Potential chart for N= 20001 with 0.02 radial 

step. 

 

 Fig.  6. Where  is the angle is in cylindrical coordinate,  is radial variable and  is potential everywhere inside the cylinder. (a) Potential
chart for N= 20001 with 0.1 radial step. (b) Potential chart for N= 20001 with 0.02 radial step.
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As a result for the potential inside the cylinder we have:
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𝑧𝑧𝑛𝑛,𝑘𝑘 = −
(−1)𝑛𝑛(1 − (−1)𝑘𝑘)

𝑛𝑛 𝜋𝜋𝑘𝑘 + k
𝑛𝑛 𝑦𝑦𝑛𝑛,𝑘𝑘−1, 𝑧𝑧𝑛𝑛,0 = 0, 𝑧𝑧𝑛𝑛,1 = − 2(−1)𝑛𝑛

𝑛𝑛 𝜋𝜋        (30𝑑𝑑)

Φ(𝜌𝜌, 𝜑𝜑) = 𝑎𝑎0 + 1
𝜋𝜋 ∑ ∑ 𝜌𝜌𝑛𝑛

𝑅𝑅𝑛𝑛 (𝑐𝑐𝑘𝑘𝑦𝑦𝑛𝑛,𝑘𝑘 cos(𝑛𝑛𝜑𝜑) + 𝑐𝑐𝑘𝑘𝑧𝑧𝑛𝑛,𝑘𝑘 sin(𝑛𝑛𝜑𝜑))
𝑁𝑁

𝑛𝑛=1

𝑀𝑀

𝑘𝑘=0
                      (31)

Φ(𝜌𝜌, 𝜑𝜑) = 𝑎𝑎0 − 2𝑐𝑐1 ∑ 𝜌𝜌𝑛𝑛

𝑅𝑅𝑛𝑛
(−1)𝑛𝑛

𝑛𝑛 sin(𝑛𝑛𝜑𝜑)
𝑁𝑁

𝑛𝑛=1

+ 1
𝜋𝜋 ∑ ∑ 𝜌𝜌𝑛𝑛

𝑅𝑅𝑛𝑛 (𝑐𝑐𝑘𝑘𝑦𝑦𝑛𝑛,𝑘𝑘 cos(𝑛𝑛𝜑𝜑) + 𝑐𝑐𝑘𝑘𝑧𝑧𝑛𝑛,𝑘𝑘 sin(𝑛𝑛𝜑𝜑))
𝑁𝑁

𝑛𝑛=1

𝑀𝑀

𝑘𝑘=2
                                                                     (32)

(32)

𝑐𝑐𝑘𝑘 = 1
2𝑘𝑘 , 𝑀𝑀 = 10, 𝑅𝑅 = 1,        0 < 𝜑𝜑 < 2𝜋𝜋                                   (33) 

N
𝑅𝑅 = 𝑟𝑟

 

 (31)

We study the solution of this problem in the same way of 
the previous problem and we present it in a more simple way:

12 
 

𝑧𝑧𝑛𝑛,𝑘𝑘 = −
(−1)𝑛𝑛(1 − (−1)𝑘𝑘)

𝑛𝑛 𝜋𝜋𝑘𝑘 + k
𝑛𝑛 𝑦𝑦𝑛𝑛,𝑘𝑘−1, 𝑧𝑧𝑛𝑛,0 = 0, 𝑧𝑧𝑛𝑛,1 = − 2(−1)𝑛𝑛

𝑛𝑛 𝜋𝜋        (30𝑑𝑑)

Φ(𝜌𝜌, 𝜑𝜑) = 𝑎𝑎0 + 1
𝜋𝜋 ∑ ∑ 𝜌𝜌𝑛𝑛

𝑅𝑅𝑛𝑛 (𝑐𝑐𝑘𝑘𝑦𝑦𝑛𝑛,𝑘𝑘 cos(𝑛𝑛𝜑𝜑) + 𝑐𝑐𝑘𝑘𝑧𝑧𝑛𝑛,𝑘𝑘 sin(𝑛𝑛𝜑𝜑))
𝑁𝑁

𝑛𝑛=1

𝑀𝑀

𝑘𝑘=0
                      (31)

Φ(𝜌𝜌, 𝜑𝜑) = 𝑎𝑎0 − 2𝑐𝑐1 ∑ 𝜌𝜌𝑛𝑛

𝑅𝑅𝑛𝑛
(−1)𝑛𝑛

𝑛𝑛 sin(𝑛𝑛𝜑𝜑)
𝑁𝑁

𝑛𝑛=1

+ 1
𝜋𝜋 ∑ ∑ 𝜌𝜌𝑛𝑛

𝑅𝑅𝑛𝑛 (𝑐𝑐𝑘𝑘𝑦𝑦𝑛𝑛,𝑘𝑘 cos(𝑛𝑛𝜑𝜑) + 𝑐𝑐𝑘𝑘𝑧𝑧𝑛𝑛,𝑘𝑘 sin(𝑛𝑛𝜑𝜑))
𝑁𝑁

𝑛𝑛=1

𝑀𝑀

𝑘𝑘=2
                                                                     (32)

(32)

𝑐𝑐𝑘𝑘 = 1
2𝑘𝑘 , 𝑀𝑀 = 10, 𝑅𝑅 = 1,        0 < 𝜑𝜑 < 2𝜋𝜋                                   (33) 

N
𝑅𝑅 = 𝑟𝑟

 

 

(32)

Using the Equation ( )32 , we express the algorithms for 
calculating the potential value.

Now, we study the algorithms for the equations:

( )1 ,  10,  1,        0 2                                    33
2k kc M R ϕ π= = = < <

 
(33)

This program will give the potential in every point and 
is related to two parameters of angle and also to the internal 
radius.

If we want more information about the accuracy of 
the program, we must compare its value according to the 
boundary conditions and the value which is presented by the 
algorithms in the boundary for different N values.

Also, calling the Equation (32) in programing at the 
boundary R r=  is figures 5:

As we can see, by increasing the number of power series 
terms, the accuracy in the boundary has been increased. 
Here, the accuracy is the point which is very important, 
because of using this technique, the series coefficient has been 
solved analytically and the errors are the result of computer 
calculations and not an integral error of the method.

If we want to call the potential for few points in the 
cylinder, the chart will be in the form below:

With a 0.1 radial step, we have the graph which is presented 
below (figures 6)

As seen in the figure 6, in the radius near to zero, the 
change in the angle would not change the potential but it 
would increase the relation of them.

According to the chart of Figure 6, one can conclude 
the potential variations in the cylinder and also the effect of 
boundary conditions on the internal potential behavior. In 
another paper, we will study different boundary conditions 
to have a more insight on the applications of the proposed 
method. This method can be used and will be extended to the 
electron and ion capture in the cylindrical situations.

4- CONCLUSIONS
This method is very convenient from the point of accuracy 

and time efficiency for the calculation of Fourier’s coefficients 
and the dependent problems. This method has capability to 
solve the problems with limit sentences analytically, so its 
accuracy is very high. As seen in the figure 6, in the radius 
near to zero, the change in the angle would not change the 
potential but it would increase the relation of them..
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