[1] I. P. Castro and A. G. Robins. The flow around a surface-mounted cube in uniform and turbulent streams. J. Fluid Mech., 79:307–335, 1977.
[2] A. Okajima. Strouhal numbers of rectangular cylinders. J. Fluid Mech., 123:379–398, 1982.
[3] H. J. Hussein and R. J. Martinuzzi. Energy balance for turbulent flow around a surface mounted cube placed in a channel. Phys. Fluids, 8:764–780, 1996.
[4] M. J. Brown, R. E. Lawson, D. S. DeCroix, and R. L. Lee. Comparison of centerline velocity measurements obtained around 2D and 3D building arrays in a wind tunnel. Technical Report LA-UR-01-4138, Los Alamos National Laboratory, 2001.
[5] D. Sumner, J. L. Heseltine, and O. J. P. Dansereau. Wake structure of a finite circular cylinder of small aspect ratio. Exper. Fluids, 37:720–730, 2004.
[6] M. S. Adaramola, O. G. Akinlade, D. Sumner, D. J. Bergstrom, and A. J. Schenstead. Turbulent wake of a finite circular cylinder of small aspect ratio. J. Fluids Struct., 22:919–928, 2006 .
[7] D. Sumner and J. L. Heseltine. Tip vortex structure for a circular cylinder with a free end. J. Wind Eng. Ind. Aero., 96:1185–1196, 2008.
[8] R. J. Martinuzzi and B. Havel. Vortex shedding from two surfacemounted cubes in tandem. Int. J. Heat Fluid Flow, 25:364–372, 2004.
[9] D. Sumner, M. D. Richards, and O. O. Akosile. Strouhal number data for two staggered circular cylinders. J. Wind Eng. Ind. Aero., 96:859–871, 2008.
[10] H. C. Lim, I. P. Castro, and R. P. Hoxey. Bluff bodies in deep turbulent boundary layers: Reynolds-number issues. J. Fluid Mech., 571:97–118, 2007.
[11] H. Wang, Y. Zhou, C. Chan, and T. Zhou. Momentum and heat transport in a finite- length cylinder wake. Exper. Fluids, 46:1173–1185, 2009.
[12] H. F. Wang and Y. Zhou. The finite-length square cylinder near wake. J. Fluid Mech., 638:453–490, 2009.
[13] P. Sattari, J. A. Bourgeois, and R. J. Martinuzzi. On the vortex dynamics in the wake of a finite surface-mounted square cylinder. Exper. Fluids, 52:1149–1167, 2012.
[14] J. A. Bourgeois, P. Sattari, and R. J. Martinuzzi. Alternating half-loop shedding in the turbulent wake of a finite surface-mounted square cylinder with a thin boundary layer. Phys. Fluids, 23:095101, 1–15, 2011.
[15] F. S. Lien, E. Yee, and Y. Cheng. Simulation of mean flow and turbulence over a 2D building array using high-resolution CFD and a distributed drag force approach. J. Wind Eng. Ind. Aero., 92:117–158, 2004.
[16] F.-S. Lien and E. Yee. Numerical modelling of the turbulent flow developing within and over a 3-D building array, part I: A high resolution Reynolds-averaged Navier-Stokes approach. Boundary-Layer Meteorol., 112:427–466, 2004.
[17] J. L. Santiago, A. Martilli, and F. Mart´ın. CFD simulation of airflow over a regular array of cubes. Part I: Three-dimensional simulation of the flow and validation with wind-tunnel measurements. BoundaryLayer Meteorol., 122:609–634, 2007.
[18] K. B. Shah and J. H. Ferziger. A fluid mechanicians view of wind engineering: Large eddy simulation of flow past a cubic obstacle. J. Wind Eng. Ind. Aero., 67:211–224, 1997.
[19] R. Martinuzzi and C. Tropea. The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow. J. Fluids Eng., 115:85–92, 1993.
[20] S. Schmidt and F. Thiele. Comparison of numerical methods applied to the flow over wall-mounted cubes. Int. J. Heat Fluid Flow, 23:330– 339, 2002.
[21] S. R. Hanna, S. Tehranian, B. Carissimo, R. W. MacDonald, and R. Lohner. Compar- isons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. J. Atmos. Env., 36:5067–5079, 2002.
[22] B. Niˇceno, A. D. T. Dronkers, and K. Hanjali´c. Turbulent heat transfer from a multi- layered wall-mounted cube matrix: A large eddy simulation. Int. J. Heat Fluid Flow, 23:173–185, 2002.
[23] Y. Cheng, F. S. Lien, E. Yee, and R. Sinclair. A comparison of large eddy simulations with a standard k−ǫ Reynolds-averaged Navier-Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubes. J. Wind Eng. Ind. Aero., 91:1301–1328, 2003.
[24] I. Afgan, C. Moulinec, R. Prosser, and D. Laurence. Large eddy simulation of turbulent flow for wall mounted cantilever cylinders of aspect ratio 6 and 10. Int. J. Heat Fluid Flow, 28:561–574, 2007.
[25] R. F. Shi, G. X. Cui, Z. S. Wang, C. X. Xu, and Z. S. Zhang. Large eddy simulation of wind field and plume dispersion in building array. J. Atmos. Env., 42:1083–1097, 2008.
[26] J. H. Lee, H. J. Sung, and P.-A˚. Krogstad. Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech., 669:397–431, 2011.
[27] M. Saeedi and B.-C. Wang. Large-eddy simulation of turbulent flow over an array of wall-mounted cubic obstacles. In Direct and LargeEddy Simulation 9 (DLES9), 2013. Dresden, Germany.
[28] R. K. Madabhushi and S. P. Vanka. Large eddy simulation of turbulence-driven secondary flow in a square duct. Phys. Fluids A, 3:2734–2745, 1991.
[29] P. Sagaut. Large Eddy Simulation for Incompressible Flows: An Introduction. Springer, Berlin, 2nd edition, 2002.
[30] F. E. Ham, F. S. Lien, and A. B. Strong. A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids. J. Comp. Phys., 177:117– 133, 2002.
[31] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A, 3:1760–1765, 1991.
[32] D. K. Lilly. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A, 4:633–635, 1992.
[33] Y. Morinishi and O. V. Vasilyev. A recommended modification to the dynamic two- parameter mixed subgrid scale model for large eddy simulation of wall bounded turbu- lent flow. Phys. Fluids, 13:3400– 3410, 2001.
[34] B.-C. Wang and D. Bergstrom. A dynamic nonlinear subgrid-scale stress model. Phys. Fluids, 17:035109, 1–15, 2005.