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Large-eddy simulation of turbulent flow over an array of wall-mounted cubes 
submerged in an emulated atmospheric boundary-layer
M. Saeedi
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ABSTRACT:  Turbulent flow over an array of wall-mounted cubic obstacles has been numerically 
investigated using large-eddy simulation. The simulations have been performed using high- performance 
computations with local cluster systems. The array of cubes is fully submerged in a simulated deep 
rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental 
turbulent flows. Four different approaches have been tested to reproduce the approaching highly turbulent 
inflow condition. Significant influence of the inlet boundary condition on the predictive streamwise root 
mean squared velocity (and second-order turbulence statistics if generalized) have been observed. A 
pro- posed method based on inserting a solid grid at the inlet of the domain with superimposed correlated 
random fluctuations has been selected as the inlet boundary condition to conduct the simulations. Three 
different subgrid-scale (SGS) models have been also used to compare their predictive performance in 
turbulence statistics and temporal energy spectra. It was observed that the choice SGS model does not 
have considerable effect on the second-order turbulence statistics, however, it was influential on the 
predicted energy level in the energy spectra. It was also observed that the flow reaches a self-similar 
states after the second row of obstacles which was different from the reported value in some of the 
previous studies.
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1.Introduction
The massively developing urban areas with different 

buildings in proximity of each other, makes it an important 
topic to study wind engineering to understand the mechanism 
of flow- structure interactions. To this purpose, extensive 
experimental and numerical studies have been conducted to 
investigate turbulent flows around wall-mounted obstacles 
and buildings.

1.1.Experimental studies
Castro and Robins [1] studied the flow physics and wake 

characteristics of flow around a wall-mounted cube based on 
wind-tunnel experiments. They examined two different types 
of approaching flows, namely: irrotational uniform flow 
and turbulent shear flow, and revealed that the wake size is 
reduced when the approaching flow is a turbulent shear 
flow rather than a uniform flow. Okajima [2] investigated 
the effects of aspect ratio of wall-mounted rectangular 
obstacles on the vortex shedding Strouhal number and 
the flow pattern. It was shown that for a certain range of 
Reynolds number and for width-to-height ratio of 2 and 
3, the flow pattern would abruptly change with a sudden 
discontinuity of Strouhal num- ber. The critical Reynolds 
number was assumed to be dependent on both aspect ratio 
and freestream turbulence while the freestream turbulence 

was kept constant at 0.5%. Hussein and Martinuzzi [3] 
studied the three dimensional flow structures around a wall-
mounted cube in a water-channel experiment. They defined 
four critical regions of the flow, i.e.: 1) upstream region 
in which the obstacle effect was insignificant, 2) evolving 
shear layer on the top edge of the cube, 3) horseshoe 
vortex legs in the cube’s wake region, and 4) far wake 
region in which the flow adjusts itself to a far wake. Brown 
et al. [4] performed high resolution measurements of first- 
and second-order turbulence statistics along the centerline 
plane of a two dimensional (2-D) array of wide buildings 
and a three dimensional (3-D) array of cubical buildings 
immersed in a simulated atmospheric boundary-layer. The 
goal of their experiment was to provide a high resolution 
experimental data for assessment of CFD codes. Sumner 
et al. [5, 6, 7] conducted wind-tunnel experiments to study 
the wake structures of a circular wall-mounted cylinder with 
different aspect ratios partially immersed in a boundary layer. 
They showed that the wake pattern and the power spectra 
would have similar behavior for aspect ratios between 5-9 
while they would show considerably different behavior for 
aspect ratio 3. Martinuzzi and Havel [8] investigated the 
vortex shedding from two wall-mounted cubes in a tandem 
configuration. They conducted their experiment in a wind 
tunnel and did their measurements using Laser Doppler 
Velocimetry (LDV). They showed that for a specific range 
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of separation length between the cubes, shedding frequency 
scaled inversely with that length in a way that the Strouhal 
number would remain constant.

Sumner et al. [9] investigated the Strouhal number 
change for two circular wall-mounted cylinders in different 
positions relative to the freestream flow. They showed 
that when two cylinders were close to each other, the flow 
pattern was similar to a single bluff body while when the 
cylinders were moderately separated, two different Strouhal 
numbers were observable depending on the incidence angle 
of the connecting line between two cylinders. However, 
when two cylinders were separated by a distance more than 
2.5 cylinder diameter, the Strouhal numbers were close to 
that of a single cylinder. Lim et al. [10] studied the 
turbulent flow over a cubic bluff body based on a wind 
tunnel experiment. They showed that the generally accepted 
assumption of Reynolds-number independency for bluff 
bodies submerged in thick boundary layers was not valid 
under all circumstances. Wang et al. [11]  experimentally 
studied the turbulent momentum and heat transport in the 
wake region of a wall-mounted cylinder in both water- and 
wind-tunnels. The cylinder aspect ratio was between 3-7 
and the it was heated in such a way that the heat could 
be considered as a passive scalar. It was observed in their 
study that the cylinder aspect ratio would affect the Reynolds 
stress and heat flux. They stated that the down-wash flow 
acted to suppress the  spanwise vortices and separated two 
rows of spanwise vortices away from the wake center- line. 
Wang and Zhou[12] conducted wind-tunnel experiments 
using hot-wire anemometry and particle-image velocimetry 
(PIV) to analyze the wake region of a square cylinder of 
different aspect ratios. They characterized the near wake 
region by the interaction of the tip, base and spanwise 
vortices. Sattari et al. [13, 14] conducted a wind-tunnel 
experiment to investigate the shedding process in the near 
wake of a rectangular wall-mounted cylinder with aspect 
ratio 4. They used PIV and hot-wire anemometry for 
velocity measurements and pressure transducers for pressure 
measurements and observed two dominant regimes of 
vortex shedding, i.e.: A) an alternate Ká rm án-like shedding 
process and B) a pair of co-existing vortices which were 
present throughout a shedding cycle.

1.2.Numerical studies
Traditionally, numerical studies heavily relied on 

the Reynolds-averaged Navier-Stokes (RANS) approach, 
which however, cannot provide detailed temporal and 
spatial information. Lien et al. [15] compared the predictive 
performance of four different k-ǫ models in simulating 
disturbed flow over and through a two-dimensional array 
of rectangular buildings immersed in a deep rough-wall 
turbulent boundary-layer. They showed that the non-linear 
k-ǫ model had the best performance among the tested 
RANS models. Lien and Yee [16] studied turbulent 
flow over an array of three-dimensional buildings using two 
versions of k-ǫ model.

They could obtain good agreement with the experimental 

results for the mean velocities but underpredicted the 
turbulent kinetic energy (TKE) above the buildings. Santiago 
et al. [17] conducted a RANS simulation with standard k-ǫ 
model to study the turbulent flow over a regular array of 
cubes submerged in an atmospheric boundary-layer. They 
showed that the center of the canyon vortex was located at 
3/4 of the cube height and the down-wash flow

was more dominant that the up-wash flow inside the 
canyon region.

With the fast development of computational technology, 
high-resolution 3-D numerical simulations have become 
more and more accessible. Shah et al. [18] studied the flow 
over a wall-mounted cube at high Reynolds numbers using 
the large-eddy simulation (LES) ap- proach and compared 
his simulation results against the experimental measurement 
data of Martinuzzi and Tropea [19]. One of their major 
objectives was to demonstrate the capabil-ity of LES to solve 
complex 3-D flows. Schmidt and Thiele [20] studied the 
capability of different turbulence modeling approaches in 
capturing the complex 3-D flow features over wall mounted 
cubes, and demonstrated the effectiveness of detached eddy 
simulation (DES) in resolving the dominant flow patterns. 
Hanna et al. [21] performed LES over different arrays of 
wall-mounted cubic obstacles immersed in a fully developed 
boundary-layer. They compared regular and staggered arrays 
of obstacles and showed that the so-called channeling effect 
was enhanced in the regular array configuration compared 
to that in the staggered configuration. They also showed 
that the flow reached a near-equilibrium state in both 
configurations after the third or fourth row. Ní ceno et al. [22] 
conducted an LES over a matrix of wall-mounted internally 
heated cubes. They investigated the vortical structure and 
convective heat transfer around the cubes and showed that 
the total heat transfer from the cubes to the fluid was directly 
related to the coherent vortical structure close to the cubes.

Cheng et al. [23] compared the effectiveness of LES 
and RANS approaches in simulating the turbulent flow 
over a matrix of cubes at a relatively low Reynolds number. 
They showed the better performance of LES especially in 
prediction of Reynolds stress and spanwise mean velocity. 
Afgan et al. [24] conducted LES of turbulent flow over two 
wall-mounted circular cylinders with aspect ratios 6 and 10 
and showed that the effect of the free-end down-wash flow 
on the wake region is stronger for the lower aspect ratio. Shi et 
al. [25] performed LES of wind field over a group of buildings 
in a staggered arrangement. They showed that the predicted 
turbulent fluctuation would be considerably lower than the 
experimentally measured values if no perturbation was used 
at the inlet of the computational domain and applied 
time-correlated random fluctuations as a remedy to this 
problem. Lee et al. [26] conducted a DNS to investigate the 
3-D turbulent boundary-layer roughened with a staggered 
array of cubes and compared that with a boundary-layer flow 
over a 2-D rod-roughened wall. It was shown in their study 
that the friction velocity over a wall with 3-D roughness 
elements was smaller than that with 2-D roughness.

Although there have been some studies based on direct 
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numerical simulation (DNS) of flow around bluff bodies, 
conducting a DNS over an array of obstacles at a high 
Reynolds number of practical interest can be prohibitively 
expensive due to the demand for high resolution mesh 
near a large number of solid surfaces. Furthermore, detailed 
flow information at the finest Kolmogorov scales obtained 
from DNS is not always necessary in engineering practice. 
In view of this, LES can be an optimum tool for simulating 
turbulent flows and investigating detailed flow structures 
over an idealized urban area.

As a completion of the previously presented conference 
paper [27], in the current research article, we perform a high-
resolution LES over an array of 3-D wall-mounted obstacles 
and conduct a comparative study of different inlet boundary 
conditions. Three SGS stress models have been tested and 
the obtained numerical results are validated against 
the available experimental data to compare the predictive 
performances of the SGS stress models.

2.Simulation set-up and numerical schemes
The simulation is to reproduce the experiment of Brown 

et al. [4] conducted at the U.S. Environmental Protection 
Agency′s (EPA) meteorological wind tunnel. In this 
experiment, a regular array of 77 (7 rows by 11 columns) 
cubes with side-length of h = 15 cm are immersed in an 
emulated neutrally stratified atmospheric boundary layer. 
The cubes are strictly aligned with a uniform spacing of 
h in the streamwise and spanwise directions. The Reynolds 
number based on the cube side and mean freestream velocity 
is 30,000. Mean and turbulent velocities along the center 
line plane (plane of symmetry) are measured using a high 
resolution pulsed-wire anemometer.

Fig. 1 shows the schematic view of the array of 
cubes and the coordinate system. Given the fact that the 
flow domain is symmetric in the spanwise direction, only 
the central column (7× 1 cubes) has been considered with 
a periodic boundary condition applied to the spanwise 
direction following the approach of Lien and Yee [16]. In 
total, 1000×112×128 grid- points are used to discretize the 
domain in the streamwise, vertical and spanwise directions 

respectively. Fig. 2 shows the non-uniform grid distribution 
in the streamwise direction. As is evident in the figure, 
the grid size has its minimum value in the vicinity 
of solid walls. Since no wall model is applied to the 
governing equations and the flow dynamics is intended 
to be directly resolved in wall regions, it essential to keep 
the non-dimensional distance of the first grid point off 
solid surfaces at the order of one. Also, the grid size is 
smoothly stretched to avoid any sudden change (which my 
lead to numerical error and instability) and to maintain a 
global second-order truncation error. In this particular case, 
the growth rate has been kept less than 10% to guarantee a 
smooth and gradual growth for the grid-size. According to 
Madabhushi and Vanka [28], a slow growth rate of the grid 
size is required in order to maintain a global second-order 
truncation error in non-uniform grid systems. The same 
criterion has been applied to the grid distribution in wall-
normal and spanwise directions. It must be noted that the 
simulation is based on implicit LES approach in which the 

 

 

Figure 1: Schematic of the array of 7 × 11 wall-mounted cubes. 
 

  

Fig. 1: Schematic of the array of 7 × 11 wall-mounted cubes.

Figure 2: Grid-size distribution in streamwise direction. 
 

  

Fig. 2: Grid-size distribution in streamwise direction.
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the threshold of modeled and computed scales directly 
depends on filter size and consequently the grid resolution 
[29]. As such, implicit LES is not a grid-independent 
simulation and the finer the computational grid, the more 
the directly computed scales of the flow.

The numerical simulations were performed using an 
in-house code developed using the FORTRAN 90/95 
programming language, and fully-parallelized using the 
message passing interface (MPI) library. The code is based on 
a fully implicit fractional step method and fully conservative 
finite difference discretization scheme on a staggered grid 
arrangement [30]. Numerical simulations were conducted on 
a local 252-core computer cluster. In total, 45,000 CPU-hours 
have been spent to perform each simulation.

2.1.Governing equations and subgrid-scale models
Tensorial form of the filtered continuity and momentum 

equations in a Cartesian coordinate system take the following 
form for an incompressible fluid flow: 
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 in which ūi and p̄ represent the filtered velocity and 
pressure fields respectively, xi is the coordinates, and ρ and 
ν are the density and kinematic viscosity, respectively. τij 
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will be introduced at the end of this subsection. A fully 
implicit four- level fractional step method coupled with a 
second-order Crank-Nicolson scheme was used to advance 
the velocity field over a single time step. In the following, 
the semi-discretized form of the fractional step method is 
presented. For simplicity, the bar-sign has been removed 
and the νeq accounts for both fluid’s and turbulent kinematic 
viscosity. 

( )( )

( )

* **

2 *

1
4

1 ,
2

n nn
j j i ii i

j

nn
i ieq

i j j

u u u uu u
t x

u up
x x x

ν
ρ

∂ + +−
+ =

∆ ∂

∂ +− ∂
+

∂ ∂ ∂
�

(3)

( )** *
1 ,

2

n
i i

i

u u p
t xρ

− ∂
=

∆ ∂ �
(4)

**2 1 2 ,
n

i

i i i

up
x x t x

ρ+ ∂∂
=

∂ ∂ ∆ ∂

�

(5)

( )1 ** 11 .
2

n n
i i

i

u u p
t xρ

+ +− − ∂
=

∆ ∂ �
(6)

Here, n
iu  and 1n

iu +  are the velocity vectors at the previous 
and current time steps respectively, *

iu  and **
iu  are two 

intermediate velocity components, and np  and 1np +  are 
also the old and new pressures, respectively. In the first step, 
an intermediate velocity based on the pressure of previous 
time step is calculated using an alternative directional 
implicit (ADI) solver, and then in the second step, it is further 
modified to the second intermediate velocity by removing 
half of the old pressure. In the third step, the Poisson equation 
is solved using a four-level V-cycle multi-grid solver to obtain 
the new pressure field. Finally, half of the new pressure is used 
to update the velocity field.

Three SGS models have been used for conducting the 
simulation. The modeling equations for the SGS stresses are 
briefly described as follows. The first model is the conventional 
dynamic Smagorinsky model (DSM) , which expresses the 
SGS stress tensor as
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base stress tensors, respectively.
The second model is the dynamic two parameter mixed 

model (DTPMM) of Morinishi and Vasilyev [33]  which 
calculates the SGS stress as:

Here, 𝑢𝑢𝑖𝑖𝑛𝑛 and 𝑢𝑢𝑖𝑖𝑛𝑛+1 are the velocity vectors at the previous and current time steps respectively, 𝑢𝑢𝑖𝑖∗ 
and 𝑢𝑢𝑖𝑖∗∗ are two intermediate velocity components, and 𝑝𝑝𝑛𝑛 and 𝑝𝑝𝑛𝑛+1 are also the old and new 

pressures, respectively. In the first step, an intermediate velocity based on the pressure of 

previous time step is calculated using an alternative directional implicit (ADI) solver, and then in 

the second step, it is further modified to the second intermediate velocity by removing half of the 

old pressure. In the third step, the Poisson equation is solved using a four-level V-cycle multi-

grid solver to obtain the new pressure field. Finally, half of the new pressure is used to update the 

velocity field. 

Three SGS models have been used for conducting the simulation. The modeling equations for 

the SGS stresses are briefly described as follows. The first model is the conventional dynamic 

Smagorinsky model (DSM) , which expresses the SGS stress tensor as 

𝜏𝜏𝑖𝑖𝑖𝑖∗ =def 𝜏𝜏𝑖𝑖𝑖𝑖 −
𝜏𝜏𝑘𝑘𝑘𝑘
3 𝛿𝛿𝑖𝑖𝑖𝑖 = −2𝐶𝐶𝑠𝑠𝛥𝛥

2|𝑆𝑆𝑖𝑖𝑖𝑖|𝑆𝑆𝑖𝑖𝑖𝑖 , (7) 

where 𝑆𝑆𝑖𝑖𝑖𝑖 =def (𝜕𝜕𝑢𝑢𝑖𝑖/𝜕𝜕𝑥𝑥𝑗𝑗 + 𝜕𝜕𝑢𝑢𝑗𝑗/𝜕𝜕𝑥𝑥𝑖𝑖)/2 is the resolved strain rate tensor, |𝑆𝑆𝑖𝑖𝑖𝑖| is the norm of 𝑆𝑆𝑖𝑖𝑖𝑖, 
𝛿𝛿𝑖𝑖𝑖𝑖 is the Kronecker delta, and an asterisk superscript denotes the trace free form of a tensor. The 

model coefficient 𝐶𝐶𝑠𝑠 is dynamically calculated as 

𝐶𝐶𝑆𝑆 = −
𝑀𝑀𝑖𝑖𝑖𝑖ℒ𝑖𝑖𝑖𝑖

𝑀𝑀𝑚𝑚𝑚𝑚𝑀𝑀𝑚𝑚𝑚𝑚
 , (8) 

where ℒ𝑖𝑖𝑖𝑖 is the resolved Leonard type stress defined as ℒ𝑖𝑖𝑖𝑖 =def 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗̃ − 𝑢𝑢𝑖𝑖 𝑢𝑢𝑗𝑗 , and 𝑀𝑀𝑖𝑖𝑖𝑖 =def 𝛼𝛼𝑖𝑖𝑖𝑖 −

𝛽̃𝛽𝑖𝑖𝑖𝑖 is a differential tensor. Here, 𝛼𝛼𝑖𝑖𝑖𝑖 =def 2 𝛥̃𝛥
2
| 𝑆̃𝑆 | 𝑆̃𝑆𝑖𝑖𝑖𝑖 and 𝛽𝛽𝑖𝑖𝑖𝑖 =def 2𝛥𝛥2|𝑆𝑆|𝑆𝑆𝑖𝑖𝑖𝑖 are the test-grid and 

grid level base stress tensors, respectively. 

The second model is the dynamic two parameter mixed model (DTPMM) of Morinishi and 

Vasilyev [33]  which calculates the SGS stress as: 

𝜏𝜏𝑖𝑖𝑖𝑖∗ = −2𝐶𝐶𝑠𝑠𝛥𝛥
2|𝑆𝑆𝑖𝑖𝑖𝑖|𝑆𝑆𝑖𝑖𝑖𝑖 + 𝐶𝐶𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖∗  , (9) 

�
(9)

in which ijL  is the resolved Leonard type stress defined as 
def

i jij i jL u u u u= −
   . The two coefficients can be determined using 

the least squares approach,

in which 𝐿𝐿𝑖𝑖𝑖𝑖 is the resolved Leonard type stress defined as 𝐿𝐿𝑖𝑖𝑖𝑖 =def 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗̃ − 𝑢𝑢𝑖𝑖 𝑢𝑢𝑗𝑗. The two 

coefficients can be determined using the least squares approach, 

 

[
𝐻𝐻𝑖𝑖𝑖𝑖

𝑧𝑧∗𝐻𝐻𝑖𝑖𝑖𝑖
𝑧𝑧∗ −𝐻𝐻𝑖𝑖𝑖𝑖

𝑧𝑧∗𝑀𝑀𝑖𝑖𝑖𝑖

−𝐻𝐻𝑖𝑖𝑖𝑖
𝑧𝑧∗𝑀𝑀𝑖𝑖𝑖𝑖 𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖

] ⋅ [𝐶𝐶𝐿𝐿𝐶𝐶𝑠𝑠] = [𝐿𝐿𝑖𝑖𝑖𝑖
∗ 𝐻𝐻𝑖𝑖𝑖𝑖

𝑧𝑧∗

𝐿𝐿𝑖𝑖𝑖𝑖∗ 𝑀𝑀𝑖𝑖𝑖𝑖
] ,

(10) 

where 𝐻𝐻𝑖𝑖𝑖𝑖
𝑧𝑧 = 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖

̃ − 𝑢𝑢𝑖𝑖 𝑢𝑢𝑗𝑗. 

The third model is the dynamic non-linear model (DNM) proposed by Wang and Bergstrom 

[34]  

𝜏𝜏𝑖𝑖𝑖𝑖∗ = −𝐶𝐶𝑆𝑆𝛽𝛽𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑊𝑊𝛾𝛾𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑁𝑁𝜂𝜂𝑖𝑖𝑖𝑖 , (11) 

where the base tensors are defined as 𝛽𝛽𝑖𝑖𝑖𝑖 =def 2𝛥𝛥2|𝑆𝑆|𝑆𝑆𝑖𝑖𝑖𝑖, 𝛾𝛾𝑖𝑖𝑖𝑖 =def 4𝛥𝛥2(𝑆𝑆𝑖𝑖𝑖𝑖𝛺𝛺𝑘𝑘𝑘𝑘 + 𝑆𝑆𝑗𝑗𝑗𝑗𝛺𝛺𝑘𝑘𝑘𝑘) and 

𝜂𝜂𝑖𝑖𝑖𝑖 =def 4𝛥𝛥2(𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑘𝑘𝑘𝑘 − 𝑆𝑆𝑚𝑚𝑚𝑚𝑆𝑆𝑛𝑛𝑛𝑛𝛿𝛿𝑖𝑖𝑖𝑖/3). Here, 𝛺𝛺𝑖𝑖𝑖𝑖 =def (𝜕𝜕𝑢𝑢𝑖𝑖/𝜕𝜕𝑥𝑥𝑗𝑗 − 𝜕𝜕𝑢𝑢𝑗𝑗/𝜕𝜕𝑥𝑥𝑖𝑖)/2 is the resolved 

rotation rate tensor. The model coefficients are dynamically calibrated using local instantaneous 

flow variables following the least-square approach as 

[
𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 𝑀𝑀𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖
𝑊𝑊𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 𝑁𝑁𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖

] ⋅ [
𝐶𝐶𝑆𝑆
𝐶𝐶𝑊𝑊
𝐶𝐶𝑁𝑁

] = −[
ℒ𝑖𝑖𝑖𝑖∗ 𝑀𝑀𝑖𝑖𝑖𝑖
ℒ𝑖𝑖𝑖𝑖∗ 𝑊𝑊𝑖𝑖𝑖𝑖
ℒ𝑖𝑖𝑖𝑖∗ 𝑁𝑁𝑖𝑖𝑖𝑖

] ,
(12) 

where 𝑊𝑊𝑖𝑖𝑖𝑖 =def 𝜆𝜆𝑖𝑖𝑖𝑖 − 𝛾̃𝛾𝑖𝑖𝑖𝑖 and 𝑁𝑁𝑖𝑖𝑖𝑖 =def 𝜁𝜁𝑖𝑖𝑖𝑖 − 𝜂̃𝜂𝑖𝑖𝑖𝑖 are differential tensors, respectively (analogous to 

the definition of 𝑀𝑀𝑖𝑖𝑖𝑖); and 𝜆𝜆𝑖𝑖𝑖𝑖 =def 4 𝛥̃𝛥
2
(𝑆̃𝑆𝑖𝑖𝑖𝑖 𝛺̃𝛺𝑘𝑘𝑘𝑘 + 𝑆̃𝑆𝑗𝑗𝑗𝑗 𝛺̃𝛺𝑘𝑘𝑘𝑘) and 𝜁𝜁𝑖𝑖𝑖𝑖 =def 4 𝛥̃𝛥

2
(𝑆̃𝑆𝑖𝑖𝑖𝑖 𝑆̃𝑆𝑘𝑘𝑘𝑘 −

𝑆̃𝑆𝑚𝑚𝑚𝑚 𝑆̃𝑆𝑛𝑛𝑛𝑛 𝛿𝛿𝑖𝑖𝑖𝑖/3) are base tensors at the test-grid level. 

 

Boundary Conditions 

No slip boundary condition is used for all solid surfaces and periodic boundary condition 

has been applied to the domain boundaries in spanwise direction. Neumann boundary 

�
(10)

where z
i i i jijH u u u u= −
  

.
The third model is the dynamic non-linear model (DNM) 

proposed by Wang and Bergstrom [34] 
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in which 𝐿𝐿𝑖𝑖𝑖𝑖 is the resolved Leonard type stress defined as 𝐿𝐿𝑖𝑖𝑖𝑖 =def 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗̃ − 𝑢𝑢𝑖𝑖 𝑢𝑢𝑗𝑗. The two 

coefficients can be determined using the least squares approach, 

 

[
𝐻𝐻𝑖𝑖𝑖𝑖

𝑧𝑧∗𝐻𝐻𝑖𝑖𝑖𝑖
𝑧𝑧∗ −𝐻𝐻𝑖𝑖𝑖𝑖

𝑧𝑧∗𝑀𝑀𝑖𝑖𝑖𝑖

−𝐻𝐻𝑖𝑖𝑖𝑖
𝑧𝑧∗𝑀𝑀𝑖𝑖𝑖𝑖 𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖

] ⋅ [𝐶𝐶𝐿𝐿𝐶𝐶𝑠𝑠] = [𝐿𝐿𝑖𝑖𝑖𝑖
∗ 𝐻𝐻𝑖𝑖𝑖𝑖

𝑧𝑧∗

𝐿𝐿𝑖𝑖𝑖𝑖∗ 𝑀𝑀𝑖𝑖𝑖𝑖
] ,

(10) 

where 𝐻𝐻𝑖𝑖𝑖𝑖
𝑧𝑧 = 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖

̃ − 𝑢𝑢𝑖𝑖 𝑢𝑢𝑗𝑗. 

The third model is the dynamic non-linear model (DNM) proposed by Wang and Bergstrom 

[34]  

𝜏𝜏𝑖𝑖𝑖𝑖∗ = −𝐶𝐶𝑆𝑆𝛽𝛽𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑊𝑊𝛾𝛾𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑁𝑁𝜂𝜂𝑖𝑖𝑖𝑖 , (11) 

where the base tensors are defined as 𝛽𝛽𝑖𝑖𝑖𝑖 =def 2𝛥𝛥2|𝑆𝑆|𝑆𝑆𝑖𝑖𝑖𝑖, 𝛾𝛾𝑖𝑖𝑖𝑖 =def 4𝛥𝛥2(𝑆𝑆𝑖𝑖𝑖𝑖𝛺𝛺𝑘𝑘𝑘𝑘 + 𝑆𝑆𝑗𝑗𝑗𝑗𝛺𝛺𝑘𝑘𝑘𝑘) and 

𝜂𝜂𝑖𝑖𝑖𝑖 =def 4𝛥𝛥2(𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑘𝑘𝑘𝑘 − 𝑆𝑆𝑚𝑚𝑚𝑚𝑆𝑆𝑛𝑛𝑛𝑛𝛿𝛿𝑖𝑖𝑖𝑖/3). Here, 𝛺𝛺𝑖𝑖𝑖𝑖 =def (𝜕𝜕𝑢𝑢𝑖𝑖/𝜕𝜕𝑥𝑥𝑗𝑗 − 𝜕𝜕𝑢𝑢𝑗𝑗/𝜕𝜕𝑥𝑥𝑖𝑖)/2 is the resolved 

rotation rate tensor. The model coefficients are dynamically calibrated using local instantaneous 

flow variables following the least-square approach as 

[
𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 𝑀𝑀𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖
𝑊𝑊𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 𝑁𝑁𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖

] ⋅ [
𝐶𝐶𝑆𝑆
𝐶𝐶𝑊𝑊
𝐶𝐶𝑁𝑁

] = −[
ℒ𝑖𝑖𝑖𝑖∗ 𝑀𝑀𝑖𝑖𝑖𝑖
ℒ𝑖𝑖𝑖𝑖∗ 𝑊𝑊𝑖𝑖𝑖𝑖
ℒ𝑖𝑖𝑖𝑖∗ 𝑁𝑁𝑖𝑖𝑖𝑖

] ,
(12) 

where 𝑊𝑊𝑖𝑖𝑖𝑖 =def 𝜆𝜆𝑖𝑖𝑖𝑖 − 𝛾̃𝛾𝑖𝑖𝑖𝑖 and 𝑁𝑁𝑖𝑖𝑖𝑖 =def 𝜁𝜁𝑖𝑖𝑖𝑖 − 𝜂̃𝜂𝑖𝑖𝑖𝑖 are differential tensors, respectively (analogous to 

the definition of 𝑀𝑀𝑖𝑖𝑖𝑖); and 𝜆𝜆𝑖𝑖𝑖𝑖 =def 4 𝛥̃𝛥
2
(𝑆̃𝑆𝑖𝑖𝑖𝑖 𝛺̃𝛺𝑘𝑘𝑘𝑘 + 𝑆̃𝑆𝑗𝑗𝑗𝑗 𝛺̃𝛺𝑘𝑘𝑘𝑘) and 𝜁𝜁𝑖𝑖𝑖𝑖 =def 4 𝛥̃𝛥

2
(𝑆̃𝑆𝑖𝑖𝑖𝑖 𝑆̃𝑆𝑘𝑘𝑘𝑘 −

𝑆̃𝑆𝑚𝑚𝑚𝑚 𝑆̃𝑆𝑛𝑛𝑛𝑛 𝛿𝛿𝑖𝑖𝑖𝑖/3) are base tensors at the test-grid level. 

 

Boundary Conditions 

No slip boundary condition is used for all solid surfaces and periodic boundary condition 

has been applied to the domain boundaries in spanwise direction. Neumann boundary 

� (11)

where the base tensors are defined as 
def

22ij ijS Sβ = ∆
, ( )

def
24ij ik kj jk kiS Sγ = ∆ Ω + Ω  and ( )

def
24 / 3ij ik kj mn nm ijS S S Sη δ= ∆ − . Here, 

( )
def

/ / / 2ij i j j iu x u xΩ = ∂ ∂ −∂ ∂  is the resolved rotation rate tensor. 
The model coefficients are dynamically calibrated using 
local instantaneous flow variables following the least-square 
approach as

in which 𝐿𝐿𝑖𝑖𝑖𝑖 is the resolved Leonard type stress defined as 𝐿𝐿𝑖𝑖𝑖𝑖 =def 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗̃ − 𝑢𝑢𝑖𝑖 𝑢𝑢𝑗𝑗. The two 

coefficients can be determined using the least squares approach, 

 

[
𝐻𝐻𝑖𝑖𝑖𝑖

𝑧𝑧∗𝐻𝐻𝑖𝑖𝑖𝑖
𝑧𝑧∗ −𝐻𝐻𝑖𝑖𝑖𝑖

𝑧𝑧∗𝑀𝑀𝑖𝑖𝑖𝑖

−𝐻𝐻𝑖𝑖𝑖𝑖
𝑧𝑧∗𝑀𝑀𝑖𝑖𝑖𝑖 𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖

] ⋅ [𝐶𝐶𝐿𝐿𝐶𝐶𝑠𝑠] = [𝐿𝐿𝑖𝑖𝑖𝑖
∗ 𝐻𝐻𝑖𝑖𝑖𝑖

𝑧𝑧∗

𝐿𝐿𝑖𝑖𝑖𝑖∗ 𝑀𝑀𝑖𝑖𝑖𝑖
] ,

(10) 

where 𝐻𝐻𝑖𝑖𝑖𝑖
𝑧𝑧 = 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖

̃ − 𝑢𝑢𝑖𝑖 𝑢𝑢𝑗𝑗. 

The third model is the dynamic non-linear model (DNM) proposed by Wang and Bergstrom 

[34]  

𝜏𝜏𝑖𝑖𝑖𝑖∗ = −𝐶𝐶𝑆𝑆𝛽𝛽𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑊𝑊𝛾𝛾𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑁𝑁𝜂𝜂𝑖𝑖𝑖𝑖 , (11) 

where the base tensors are defined as 𝛽𝛽𝑖𝑖𝑖𝑖 =def 2𝛥𝛥2|𝑆𝑆|𝑆𝑆𝑖𝑖𝑖𝑖, 𝛾𝛾𝑖𝑖𝑖𝑖 =def 4𝛥𝛥2(𝑆𝑆𝑖𝑖𝑖𝑖𝛺𝛺𝑘𝑘𝑘𝑘 + 𝑆𝑆𝑗𝑗𝑗𝑗𝛺𝛺𝑘𝑘𝑘𝑘) and 

𝜂𝜂𝑖𝑖𝑖𝑖 =def 4𝛥𝛥2(𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑘𝑘𝑘𝑘 − 𝑆𝑆𝑚𝑚𝑚𝑚𝑆𝑆𝑛𝑛𝑛𝑛𝛿𝛿𝑖𝑖𝑖𝑖/3). Here, 𝛺𝛺𝑖𝑖𝑖𝑖 =def (𝜕𝜕𝑢𝑢𝑖𝑖/𝜕𝜕𝑥𝑥𝑗𝑗 − 𝜕𝜕𝑢𝑢𝑗𝑗/𝜕𝜕𝑥𝑥𝑖𝑖)/2 is the resolved 

rotation rate tensor. The model coefficients are dynamically calibrated using local instantaneous 

flow variables following the least-square approach as 

[
𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 𝑀𝑀𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 𝑀𝑀𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖
𝑊𝑊𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 𝑁𝑁𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖

] ⋅ [
𝐶𝐶𝑆𝑆
𝐶𝐶𝑊𝑊
𝐶𝐶𝑁𝑁

] = −[
ℒ𝑖𝑖𝑖𝑖∗ 𝑀𝑀𝑖𝑖𝑖𝑖
ℒ𝑖𝑖𝑖𝑖∗ 𝑊𝑊𝑖𝑖𝑖𝑖
ℒ𝑖𝑖𝑖𝑖∗ 𝑁𝑁𝑖𝑖𝑖𝑖

] ,
(12) 

where 𝑊𝑊𝑖𝑖𝑖𝑖 =def 𝜆𝜆𝑖𝑖𝑖𝑖 − 𝛾̃𝛾𝑖𝑖𝑖𝑖 and 𝑁𝑁𝑖𝑖𝑖𝑖 =def 𝜁𝜁𝑖𝑖𝑖𝑖 − 𝜂̃𝜂𝑖𝑖𝑖𝑖 are differential tensors, respectively (analogous to 

the definition of 𝑀𝑀𝑖𝑖𝑖𝑖); and 𝜆𝜆𝑖𝑖𝑖𝑖 =def 4 𝛥̃𝛥
2
(𝑆̃𝑆𝑖𝑖𝑖𝑖 𝛺̃𝛺𝑘𝑘𝑘𝑘 + 𝑆̃𝑆𝑗𝑗𝑗𝑗 𝛺̃𝛺𝑘𝑘𝑘𝑘) and 𝜁𝜁𝑖𝑖𝑖𝑖 =def 4 𝛥̃𝛥

2
(𝑆̃𝑆𝑖𝑖𝑖𝑖 𝑆̃𝑆𝑘𝑘𝑘𝑘 −

𝑆̃𝑆𝑚𝑚𝑚𝑚 𝑆̃𝑆𝑛𝑛𝑛𝑛 𝛿𝛿𝑖𝑖𝑖𝑖/3) are base tensors at the test-grid level. 

 

Boundary Conditions 

No slip boundary condition is used for all solid surfaces and periodic boundary condition 

has been applied to the domain boundaries in spanwise direction. Neumann boundary 

�(12)

where 
def

ijij ijW λ γ= −


 and 
def

ijij ijN ζ η= −


 are differential 
tensors, respectively (analogous to the definition of ijM ); and 

2def
4 kj kiik jkij S Sλ  

= ∆ Ω + Ω 
 

   

 and 
2def

4 / 3ik kj mn nmij ijS S S Sζ δ 
= ∆ − 

 

     are base tensors 
at the test-grid level.

2.2.Boundary Conditions
No slip boundary condition is used for all solid surfaces 

and periodic boundary condition has been applied to 
the domain boundaries in spanwise direction. Neumann 
boundary condition is applied to the outlet boundary. One 
of the major challenges for this problem is to prescribe a 
realistic inlet boundary condition that would allow the LES 
to reproduce the wind-tunnel experiment of Brown et al. [4] 
in a precise manner. The mean velocity profile at the inlet is 
considered to follow the power-law profile given by

condition is applied to the outlet boundary. One of the major challenges for this problem is 

to prescribe a realistic inlet boundary condition that would allow the LES to reproduce the 

wind-tunnel experiment of Brown et al. [4] in a precise manner. The mean velocity profile 

at the inlet is considered to follow the power-law profile given by 

 

𝑢𝑢 = 𝑢𝑢∞ ( 𝑦𝑦
0.15)

0.16
 with  𝑢𝑢∞ = 3 m/s. (13) 

 

Since the purpose of the original experiment was to simulate a deep rough-wall atmo- 

spheric boundary layer, the approaching flow has exceptionally high turbulence level. In 

fact, the lowest turbulence intensity at the domain inlet and above the cubes is approxi- 

mately 10%. In order to reproduce the high turbulence level using LES, four methods have 

been tested for modeling the inlet boundary, which include: A) prescribing mean profile 

with no fluctuations, B) using a turbulent plane channel flow simulation as a precursor, 

C) using a solid grid at the inlet plane of the domain, and D) using a solid grid at the 

inlet plane with superimposed correlated random fluctuations in regions above the cubes. 

In order to evaluate the performances of these four inlet boundary condition methods, the 

profiles of the of streamwise root-mean-squared (RMS) velocity predicted by LES at a typ- 

ical point (x/h = 9.5) are compared against the experimental data. As evident in figure 3,  

method A cannot generate any turbulence above the cubes. As an improvement, method 

B can generate turbulence above the cubes but it is still far from the high turbulence level 

measured in the experiment. The approach for method C is drastically different than that 

for method B, however, its performance is not considerably different from method B. Based 

on the observation that methods A, B and C all fail to reproduce the high turbulence level 

above the cubes, we propose method D, which superimposes correlated random numbers in 

regions above the wall-mounted cubes (x/h > 3 and y/h > 1.35) based on the approach of 

method C. The superposition is implemented at the beginning of consecutive time-windows. 

 

� (13)

Since the purpose of the original experiment was to 
simulate a deep rough-wall atmo- spheric boundary layer, 
the approaching flow has exceptionally high turbulence 
level. In fact, the lowest turbulence intensity at the domain 
inlet and above the cubes is approxi-mately 10%. In order to 
reproduce the high turbulence level using LES, four methods 
have been tested for modeling the inlet boundary, which 
include: A) prescribing mean profile with no fluctuations, 
B) using a turbulent plane channel flow simulation as a 
precursor, C) using a solid grid at the inlet plane of the 
domain, and D) using a solid grid at the inlet plane with 
superimposed correlated random fluctuations in regions 
above the cubes.

In order to evaluate the performances of these four 
inlet boundary condition methods, the profiles of the of 
streamwise root-mean-squared (RMS) velocity predicted 
by LES at a typical point (x/h = 9.5) are compared against 
the experimental data. As evident in figure 3,  method A 
cannot generate any turbulence above the cubes. As an 
improvement, method B can generate turbulence above 
the cubes but it is still far from the high turbulence level 
measured in the experiment. The approach for method C 
is drastically different than that for method B, however, its 

performance is not considerably different from method B. 
Based on the observation that methods A, B and C all fail 
to reproduce the high turbulence level above the cubes, we 
propose method D, which superimposes correlated random 
numbers in regions above the wall-mounted cubes (x/h > 3 
and y/h > 1.35) based on the approach of method C. The 
superposition is implemented at the beginning of consecutive 
time-windows. The duration of each time-window is 0.03 
seconds which is 60% of the time required for the mean flow 
to travel one cube side. With such arrangement, method D 
is able to reproduce the highest turbulence level above the 
cube (closest to the measured value). The results reported 
in this paper is based on method D.

3.Results and discussion
In this section we will present the qualitative and quantitative 

results to conduct physical analysis and investigate the flow 
structure over the array of cubes. Velocity and pressure 
contours, vector plots, Energy spectra and comparison of 
turbulence statistics will be used to conduct the analysis.

3.1.Qualitative results
In order to provide a qualitative physical insight about 

the general flow structure, a typical snapshot of the flow 
field is taken to present instantaneous contours and vector 
plots from the lateral and top views. The results are 
obtained from a simulation which uses the DNM as its SGS 
stress model. Fig. 4 shows the instantaneous streamwise 
velocity contour in the x-y plane located at z/h = 0. As 
evident in the figure, a stagnant region has been formed 
in the impinging zone of the first row. The strong shear 
layer arising from velocity difference in regions above the 
cubes are observable in the figure. Because of the matrix 
configuration of the cubes, no reattachment occurs behind 

 

Figure 3: Effects of 4 different inlet conditions on the streamwise RMS velocity level at the 
location x/h = 9.5. 

 
 

  

Fig. 3: Effects of 4 different inlet conditions on the streamwise 
RMS velocity level at the location x/h = 9.5.
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any of the first 6 rows and the flow is recirculating inside 
the space between two cubes. This shows that one h 
spacing is not enough for flow recovery after the cubes. Fig. 5 
presents the static pressure contours extracted from the same 
instantaneous field in the same x-y plane. A high pressure 
region corresponding to the impinging flow is observable in 
front of the first row. Tip vortex shedding from the rooftop 
of the first row is also observable. However, since the next 
rows have been placed in the wake of the first row, no 
tip vortex shedding is present at their rooftops. In view 
of this, the high momentum approaching flow strikes the 
windward of the first row and this will lead to the tip 
vortex shedding occurring at the first row rooftop. After 
the flow impingement with the first row, a strong shear layer 
will be produced on its top edge which stops the tip vertex 
shedding from the rooftop of the next rows.

Fig.s 6 and 7 present the streamwise velocity and 
pressure contours in the x-z plane located at y/h = 0.5 
extracted from the same instantaneous field. Local flow 
acceleration occurring in side regions of the first row is 
clearly observable in figure 6. Lateral vortex shedding is 
also occurring only for the first row which is shown in 
figure 7. The high pressure region in the impingement 
region is also observable in figure 7. Fig. 8 depicts the 
velocity vector plot in the wake region of all the rows in 
the same x-z plane. Two small lateral vortices adjacent to 
the side walls are only observable for the fist row which 
are corresponding to the lateral vortex shedding of the first 
row. Two large counter-rotating vortices are observable in the 
wake region of the first six rows with a fairly similar qualitative 
pattern. For the last row, the counter-rotating vortices have 
been more elongated in the streamwise direction which 

 

 
Figure 4: Lateral view of a typical instantaneous streamwise velocity contours. 

 

  

Fig. 4: Lateral view of a typical instantaneous streamwise velocity contours.
 

 
Figure 5: Lateral view of a typical instantaneous pressure contours. 

 

  

Fig. 5: Lateral view of a typical instantaneous pressure contours.

Figure 6: To p view of a typical instantaneous velocity contours. 
 

  

Fig.6: To p view of a typical instantaneous velocity contours.
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is due to the open space after the last row of cubes. After the last row, the distance required for the streamlines 

Figure 7: To p view of a typical instantaneous pressure contours. 
 

  

Fig. 7: To p view of a typical instantaneous pressure contours.

Figure 8: Vector plot of the velocity field in the wake region of the cubes from the top view. 
 

  

Fig. 8: Vector plot of the velocity field in the wake region of the cubes from the top view.

Figure 9: Vector plot of the velocity field in the canyon region between rows 4 and 5. 
 

  

Fig. 9: Vector plot of the velocity field in the canyon region between rows 4 and 5
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to take their streamwise direction is approximately 3h. 
This, again, indicates that the one h spacing between two 
consecutive cubes is not enough for the full flow recovery. 
Fig. 9a magnifies the instantaneous velocity vector map 
between rows 4 and 5. As evident in this figure, several small 
local vortices are formed in that region which clearly shows 

the turbulent flow structures and irregular floe patterns. In 
figure 9b, the time-averaged vector map at the same location 
is shown in which only one large vortex in the core region 
and two small vortices at the corners are observable.

Fig. 10 shows the contours of TKS production rate from 
the lateral view.  As evident in figure 10a, the maximum value 

 

Figure 10: Lateral view of TKE production contours (non-dimensionalized with the maxi- 
mum TKE production in the same plane). 

 

  

Fig. 10: Lateral view of TKE production contours (non-dimensionalized with the maxi-mum TKE production in the same plane).

 

Figure 11: Temporal energy spectra for streamwise velocity obtained from simulations with 
three SGS models at x/h = 5.5 and y/h = 1.0. 

 

  

Fig. 11: Temporal energy spectra for streamwise velocity obtained from simulations with three SGS models at x/h = 5.5 and y/h = 1.0.
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for TKE production occurs at the rooftop edge of the first 
building row. This is mainly because of the flow separation at 
this location as a consequence of the high velocity gradient. 
The high velocity gradient is the result of the impact of the 
flow to the sharp edge of the first row. This flow separation 
can also be observed in figure 5 in which the tip vortex 
shedding from the rooftop of the first row is observable. 
After the second row, a band of high TKE production can 
be observed right above all canyon regions at the elevation 
y/h ≈ 1. This high value of TKE production is mainly due to 
the boundary-layer separation formed on the rooftop of the 
obstacles.

Fig. 11 shows the temporal streamwise energy spectra 
at x/h = 5.5 and y/h = 1.0 obtained from simulations 

with three SGS models. From the figure, it is evident that 
simulations based on all three SGS stress models have 
been able to capture the inertial subrange. Furthermore, 
a perusal of three subfigures indicates that the resolved 
streamwise TKE predicted by the DNM is the largest at all 
frequencies. This suggests that the DNM has the lowest 
energy dissipation among the SGS models considered in 
this research.

3.2.Turbulence statistics
In this section, first- and second-order turbulence statistics 

inside and above the canyon regions will be investigated. Three 
separate zones will be considered to analyze the state of the 
flow in different regions. Fig. 12 schematically presents the 

 

Figure 12: Locations of three different zones in the x-direction. 

  

Fig. 12: Locations of three different zones in the x-direction.

Figure 13: Profiles of the mean streamwise velocity at different x-locations in the zone (a). 
 

  

Fig. 13: Profiles of the mean streamwise velocity at different x-locations in the zone (a).
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zones. The streamwise range for each zone is as follows: 3.5 
< x/h < 6.5, 7.5 < x/h < 10.5 and 11.5 < x/h < 14.5 for zones 
(a), (b) and (c), respectively. Zone (a) starts after the second 
row of the array and is considered as the developing zone. Fig. 
13 shows the mean streamwise velocity profile inside the 
canyon (at x/h = 4.5 and 6.5) and above the rooftop (at x/h 
= 4.5 and 6.5) of the array in zone (a). A good agreement 
between the simulation and the experimental results can 
be observed for both canyon and rooftop regions. In terms 
of the prediction of hūi, no significant effect is observed 
arising from using different SGS models. As shown in 
figures 13a and 13c, in the street canyon, LES overpredicts 
the magnitude of the negative velocity (corresponding to the 
recirculation flow). The discrepancy is due to two main 
reasons: first, velocity measurement in regions very close to 
solid surfaces is a very difficult job to do especially with 
hot-wire systems. This may lead to a reduced accuracy of 
the experimental measurements inside the canyon region. 
Second, numerical dissipation and false diffusion may 
become significant in wake flows when the flow is highly 
mixing and three dimensional which indicates the need 
for highly accurate and higher order numerical schemes 
when fine flow strucutes are intended to be captured. The 
mentioned discrepancy also exists for the velocity profiles 
in zone (b) shown in Fig. 14. In figure 16, the RMS profiles 
of the streamwise velocity are shown for the same locations. 
For both canyon and rooftop regions, the maximum 
turbulence level occurs around the cube rooftop (y/h ≈ 1). 

This peak value in the resolved TKE is the result of the 
strong shear production at the rooftop of the cube. This fact 
is consistent with the distribution of TKE production rate 
presented in figure 10. The urms around the cube rooftop is 
fairly well captured by all numerical simulations, however, 
the turbulence level above the cube is under-predicted by 
numerical simulations and it decays quickly as the vertical 
distance from the rooftop increases. Fig. 19 presents the 
profiles of the vertical RMS velocity at different locations 
in zone (a). A good agreement between the numerical 
prediction and experimental measurement of vrms can be 
observed for both canyon regions (corresponding to figures 
19a and 19c) and rooftop regions(corresponding to figures 
19b and 19d). According to the findings of Hanna et al. 
[21], a self-similar behavior should be observable after the 
third or fourth row. However, in the current case study, 
the self-similar behavior for the mean streamwise velocity 
has been observed after the second row (zone (a)) for both 
experimental and numerical results. Zone (b), which starts 
after the forth row at x/h = 7.5 and extends up to the 
sixth row at x/h = 10.5, again shows self-similar profiles 
of the mean streamwise velocity as exhibited in figure 14. 
Fig.s 17 and 20 show the profiles of the streamwise and 
vertical RMS velocity at different locations in zone (b). No 
significant difference between the profiles of RMS velocities 
can be observed between zone (a) and zone (b). This fact 
reconfirms the self-similar flow structures starting at zone 
(a). Zone (c) which includes the last row and its wake 

 

Figure 14: Profiles of the mean streamwise velocity at different x-locations in the zone (b). 
 

  

Fig. 14: Profiles of the mean streamwise velocity at different x-locations in the zone (b).
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Figure 15: Profiles of the mean streamwise velocity at different x-locations in the zone (c). 
 

  

Fig. 15: Profiles of the mean streamwise velocity at different x-locations in the zone (c).

 

Figure 16: Profiles of the streamwise RMS velocity at different x-locations in the zone (a). 
 

  

Fig. 16: Profiles of the streamwise RMS velocity at different x-locations in the zone (a).
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Figure 17: Profiles of the streamwise RMS velocity at different x-locations in the zone (b). 
 

  

Fig. 17: Profiles of the streamwise RMS velocity at different x-locations in the zone (b).

Figure 18: Profiles of the streamwise RMS velocity at different x-locations in the zone (c). 
 

  

Fig. 18: Profiles of the streamwise RMS velocity at different x-locations in the zone (c).
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Figure 19: Profiles of the vertical RMS velocity at different x-locations in the zone (a). 
 

  

Fig. 19: Profiles of the vertical RMS velocity at different x-locations in the zone (a).

Figure 20: Profiles of the vertical RMS velocity at different x-locations in the zone (b). 
 

  

Fig. 20: Profiles of the vertical RMS velocity at different x-locations in the zone (b).
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region starts at x/h = 11.5 and extends up to x/h = 
14.5. Fig. 15 shows the profiles of the mean streamwise 
velocity at different locations of zone (c). At x/h = 13.5 which 
is 0.5h away from the leeward of the last row, Numerical 
prediction exhibits over-prediction of negative velocity in 
the recirculation region. At x/h = 14.5, no negative velocity is 
observed showing that flow reattachment has been occurred.

4.Conclusions
Large-eddy simulation of turbulent flow over an array of 

wall-mounted cubic obstacles at Re = 30, 000 is conducted using 
three SGS models. In order to reproduce the exceptionally 
high turbulence level (with a minimum turbulence intensity of 
10%) of the neutrally stratified atmospheric boundary layer 
simulated in the wind tunnel, four methods have been 
tested to model the inlet boundary condition. It is observed 
that use of different inlet conditions can significantly affect 
the streamwise turbulence intensity (urms) profile. The 
proposed method based on mounting a solid grid at the 
inlet and superimposing correlated random fluctuations 
in regions above the cubes is shown to be very effective in 
generating sustained high turbulence levels. Time-averaged 
first- and second-order flow statistics do not show much 
sensitivity towards the SGS models tested. With respect 
to the temporal energy spectra of the streamwise velocity at 
a typical canyon location, the results from simulations with 
different SGS models are also similar, however, the DTPMM 

shows the lowest predicted energy level and the DNM shows 
the highest predicted level. It is also shown based on the 
time-averaged flow patterns and also turbulence statistics 
that the self-similar region in the array of cubes starts after 
the second row of wall-mounted cubes.
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