[1] S. Arimoto, S. Kawamura, F. Miyazaki, Bettering operation of robots by learning, Journal of Robotic systems, 1(2) (1984) 123-140.
[2] A. Tayebi, S. Abdul, M. Zaremba, Y. Ye, Robust iterative learning control design: application to a robot manipulator, IEEE/ASME Transactions on mechatronics, 13(5) (2008) 608-613.
[3] L. Zhang, S. Liu, Iterative learning control for flexible manipulator using fourier basis function, International Journal of Automation and Computing, 12(6) (2015) 639-647.
[4] W. Hoffmann, K. Peterson, A.G. Stefanopoulou, Iterative learning control for soft landing of electromechanical valve actuator in camless engines, IEEE Transactions on control systems technology, 11(2) (2003) 174-184.
[5] T. Liu, F. Gao, Y. Wang, IMC-based iterative learning control for batch processes with uncertain time delay, Journal of Process Control, 20(2) (2010) 173-180.
[6] J. Chani-Cahuana, P.N. Landin, C. Fager, T. Eriksson, Iterative learning control for RF power amplifier linearization, IEEE Transactions on Microwave Theory and Techniques, 64(9) (2016) 2778-2789.
[7] H.-S. Ahn, Y. Chen, K.L. Moore, Iterative learning control: Brief survey and categorization, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(6) (2007) 1099-1121.
[8] J. Han, D. Shen, C.-J. Chien, Terminal Iterative Learning Control for Discrete-Time Nonlinear System Based on Neural Networks, Journal of the Franklin Institute, 355 (2018) 3641–3658.
[9] M. Kim, T.-Y. Kuc, H. Kim, J.S. Lee, Adaptive iterative learning controller with input learning technique for a class of uncertain MIMO nonlinear systems, International Journal of Control, Automation and Systems, 15(1) (2017) 315-328.
[10] A. Madady, An extended PID type iterative learning control, International Journal of Control, Automation and Systems, 11(3) (2013) 470-481.
[11] A. Madady, H.R. Reza‐Alikhani, A guaranteed monotonically convergent iterative learning control, Asian Journal of Control, 14(5) (2012) 1299-1316.
[12] A. Madady, H.-R. Reza-Alikhani, S. Zamiri, Optimal N-Parametric Type Iterative Learning Control, International Journal of Control, Automation and Systems, 16(5) (2018) 2187-2202.
[13] K. Wan, X.-D. Li, Iterative learning control for two-dimensional linear discrete systems with Fornasini-Marchesini model, International Journal of Control, Automation and Systems, 15(4) (2017) 1710-1719.
[14] J.-X. Xu, Y. Tan, A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties, IEEE Transactions on Automatic Control, 47(11) (2002) 1940-1945.
[15] S. Yang, J.X. Xu, D. Huang, Y. Tan, Synchronization of heterogeneous multi‐agent systems by adaptive iterative learning control, Asian Journal of Control, 17(6) (2015) 2091-2104.
[16] N. Liu, A. Alleyne, Iterative learning identification for linear time-varying systems, IEEE Transactions on Control Systems Technology, 24(1) (2016) 310-317.
[17] N. Liu, Learning identification and control for repetitive linear time-varying systems, University of Illinois at Urbana-Champaign, 2014.
[18] N. Liu, A. Alleyne, Iterative Learning Identification/Iterative Learning Control for Linear Time-Varying Systems, Journal of Dynamic Systems, Measurement, and Control, 138(10) (2016) 101005.
[19] S. Billings, Identification of nonlinear systems using parameter estimation techniques, in: Institute of Electrical Engineers Conference, 1981, pp. 183-190.
[20] S. Billings, W. Voon, Least squares parameter estimation algorithms for non-linear systems, (1984).
[21] S. Chen, S.A. Billings, Representations of non-linear systems: the NARMAX model, International journal of control, 49(3) (1989) 1013-1032.
[22] E. Camporeale, S. Wing, J. Johnson, Machine learning techniques for space weather, Elsevier, 2018.
[23] C.C. Huang, C.H. Loh, Nonlinear identification of dynamic systems using neural networks, Computer‐Aided Civil and Infrastructure Engineering, 16(1) (2001) 28-41.
[24] J. Yan, J.R. Deller Jr, NARMAX model identification using a set-theoretic evolutionary approach, Signal Processing, 123 (2016) 30-41.
[25] X.C. Guan, D.Y. Zhao, Q.M. Zhu, NARMAX modelling and U-model control design for continuous stirred tank reactor (CSTR), in: 2016 35th Chinese Control Conference (CCC), IEEE, 2016, pp. 1964-1969.
[26] M.B. Menhaj, computational intelligence: fundamentals of neural networks, Amir Kabir University Publishing, tehran, iran, (2017) .
[27] M.B. Menhaj, adaptive control systems, Amir Kabir University Publishing, tehran,iran, (2017).
[28] H. Aliyari, S. Hosseinian, H. Sahraei, M. Menhaj, Effect of proximity to high-voltage fields: results of the neural network model and experimental model with macaques, International Journal of Environmental Science and Technology, (2018) 1-12.
[29] B. Karimi, M.B. Menhaj, Non-affine nonlinear adaptive control of decentralized large-scale systems using neural networks, Information Sciences, 180(17) (2010) 3335-3347.
[30] F. Abedini, M.B. Menhaj, M.R. Keyvanpour, An MLP-based representation of neural tensor networks for the RDF data models, Neural Computing and Applications, (2017) 1-10.
[31] C.J. Chien, L.C. Fu, An iterative learning control of nonlinear systems using neural network design, Asian Journal of Control, 4(1) (2002) 21-29.
[32] C. Fu, M. Poch, Application of a multi-layered neural network to system identification, International journal of systems science, 24(8) (1993) 1601-1609.
[33] S. Chen, S. Billings, P. Grant, Non-linear system identification using neural networks, International journal of control, 51(6) (1990) 1191-1214.
[34] D. Xu, Z. Li, W. Wu, X. Ding, D. Qu, Convergence of gradient descent algorithm for diagonal recurrent neural networks, in: 2007 Second International Conference on Bio-Inspired Computing: Theories and Applications, IEEE, 2007, pp. 29-31.
[35] D. Xu, H. Zhang, D.P. Mandic, Convergence analysis of an augmented algorithm for fully complex-valued neural networks, Neural Networks, 69 (2015) 44-50.
[36] C. Shao, J. Nie, F. Gao, A Robust Iterative Learning Control with Neural Networks for Robot, IFAC Proceedings Volumes, 37(1) (2004) 779-784.
[37] X. Yu, Z. Hou, C. Yin, Iterative learning control for discrete-time nonlinear systems based on adaptive tuning of 2D learning gain, in: 2017 36th Chinese Control Conference (CCC), IEEE, 2017, pp. 3581-3586.
[38] K. Patan, M. Patan, D. Kowalów, Neural networks in design of iterative learning control for nonlinear systems, IFAC-PapersOnLine, 50(1) (2017) 13402-13407.
[39] K. Patan, M. Patanl, Design and convergence of iterative learning control based on neural networks, in: 2018 European Control Conference (ECC), IEEE, 2018, pp. 1-6.
[40] W.-L. Yan, M.-X. Sun, Identification of discrete-time varying nonlinear systems using time-varying neural networks, in: 2010 8th World Congress on Intelligent Control and Automation, IEEE, 2010, pp. 301-306.
[41] C.-C. Ku, K.Y. Lee, Diagonal recurrent neural networks for dynamic systems control, IEEE transactions on neural networks, 6(1) (1995) 144-156.
[42] C.-H. Lee, C.-C. Teng, Identification and control of dynamic systems using recurrent fuzzy neural networks, IEEE Transactions on fuzzy systems, 8(4) (2000) 349-366.
[43] W.T. Miller, P.J. Werbos, R.S. Sutton, Neural networks for control, MIT press, 1995.
[44] Y.C. Wang and C. J. Chien, An output-recurrent-neural-network-based iterative learning control for unknown nonlinear dynamic plants, Journal of control science and engineering, 2012 (2012), 1-9.