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ABSTRACT:  A new iterative learning controller is proposed for a general unknown discrete time-
varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving 
Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning 
neural identifier and an iterative learning controller. Iterative learning control and iterative learning 
identification are integrated in each iteration. A multi-layer neural network is used for identification. 
Since the system considered in this paper is time-varying, the proposed neural identifier also is time-
varying. The weights of the neural identifier are updated at each iteration, so both tracking performance 
and identification are improved at each iteration simultaneously. The structure of the proposed neural 
network used for identification system is affine in control input. Then new iterative learning control 
law based on the neural identifier is proposed and applied to the system. It should be mentioned that 
the proposed integrated algorithm has a faster, better and more accurate performance when compared 
with other iterative learning control algorithms proposed for similar systems. Convergence of both 
the trajectory tracking error and identification error is guaranteed along the iteration domain with 
repeating the process within a time-limited range. Simulation and comparison results easily approve the 
effectiveness of the proposed method.
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1. Introduction
Iterative learning control  for robotic manipulators is 

initially proposed by Arimoto et al. [1], then has been widely 
developed in theoretical and applied fields such as robotics [2, 
3], actuators (electromechanical valves) [4], batch processes 
[5], RF power amplifier linearization [6] and etc. It is a useful 
control method for improving transient response and tracking 
performance of the reference signal for unknown or uncertain 
dynamical systems that repeat a task in a finite time interval. 
In various control environment, learning methods are a 
complementary approach to the existing robust and adaptive 
control techniques. Robust and adaptive control techniques 
ensure the convergence along the time axis while learning 
control can guarantee the convergence along the iteration 
domain by repeating the process within a time-limited range 
[7-15].

Iterative learning identification (ILI) is a new approach. 
ILI uses data from each iteration to estimate of the system 
parameters  [16], It is particularly effective for linear time-
varying systems that their parameters vary quickly [17]. For 
linear time-varying and discrete time systems described by 
the autoregressive model (ARX), an ILC approach and an ILI 
are combined in [18], the ILI technique used in [18] is based 

on norm optimal. 
Nonlinear Autoregressive Moving Average with 

eXogenous (NARMAX) model is a general description of 
discrete-time nonlinear non-affine systems. The NARMAX 
model was proposed in 1981 as a new description [19-21], 
then has been widely developed for A great variety of systems, 
such as space weather system, neuroimaging, finance, the 
solar-terrestrial, and stem cells dynamics. NARMAX model 
is one of the most robust techniques for considering complex 
dynamical-systems [22-25]. It is very difficult to design a 
controller for such a model.

In this paper, we consider both of iterative learning 
identification and control for a general class of unknown 
nonlinear systems.  Since a multilayer feedforward network 
with as few as one hidden layer can approximate any nonlinear 
mapping to any desired degree of accuracy, artificial neural 
network is a effictive tool to use in control processes, it can 
also learn and adapt to dynamical property of unknown 
system, so neural network based control system is mainly 
robust and adaptive  [26-35]. 

A neural network based ILC for robot presented in [36], 
for tracking of the desired trajectory a compound control law 
that composed of the feed-forward ILC law and feedback law 
is applied to the system based on the model that identified by 
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the neural network. The neural network is trained to reach 
optimal weights in any iteration of the control algorithm, 
updating of neural network weights is also an iterative 
algorithm (the control iteration and identification process 
iteration are different) so the proposed approach has very 
much computing that takes a lot of time. 

Based on an equivalent compact form dynamic 
linearization (CFDL) data model of the nonlinear system in the 
iteration domain, a model-free adaptive control (MFAC) for 
a class of discrete-time nonlinear systems has been presented 
in [37]. The proposed control design in [37] is not accurate. 
The neural controller has been used in [38, 39] to follow 
the reference trajectory, the neural controller is a multilayer 
neural network whose parameters are updated after each 
iteration. The training process of this neural controller needs 
an precise estimation of the system that be achieved with the 
use of another neural network modeling the controlled plant.  

In all the reasearches mentioned before, there are defects 
that we have rectified them. In this paper, we propose a 
new ILC based on a neural network for a general unknown 
discrete time-varying nonlinear non-affine system described 
by NARMAX. The proposed approach in this paper is 
considered for a general class of nonlinear systems, whereas 
the above references [36-39] are applied to limited classes 
of systems. The proposed approach in this paper is a design 
of the integrated identification and control algorithm 
simultaneously, so our method takes less time than proposed 
methods in [36-39]. Also, this proposed approach has a better 
and more accurate performance than reasearches mentioned 
before.

A multilayer perceptron neural network (MLPNN) is 
used as an iterative identifier whose weights is updated along 
the control iteration domain. Since the mapping between 
the input and output of a time-varying system changes over 
time, the mapping between the input and output of the 
neural network must also be able to change over time [40], 
so the proposed neural network is time-varying. Descendant 
gradient algorithm is used for training of the weights of the 
neural network. The proposed ILC based on MLPNN is 
applied to the system such as the output of the neural network 
tracks the desired output trajectory, while the output of the 
neural network tends to the output of the system as iteration 
number increases (this approach is displayed in Fig. 1). The 
neural network output is rapidly converted to the given 
desired output trajectory but to converge the system output 
to the desired output trajectory must firstly identification 
be reached accurately. Convergence of both the trajectory 
tracking error and identification error is guaranteed along the 
iteration domain with repeating the process within a time-
limited range

The paper is organized as follows. Section 2 defines 
the problem, the system, and the preliminaries. Section 
3   presents the structure of the neural network used for 
identification of the system defined in the previous section, 
and its convergence analysis is presented  . An ILC based on 
neural network is presented in Section 4.  Section 5 gives the 
simulation example. The conclusion is given in section 6.

2. PROBLEM FORMULATION AND PRELIMINARIES
The underlying dynamic system to be identified and 

controlled is a general unknown and repeatable discrete 
time-varying nonlinear non-affine system described by 
NARMAX which is displayed as follows:
�

(1)

where ( , )u t i R∈ and ( , )y t i R∈  are the controlled (i.e. 
exogenous) input and the output of the system, respectively. 
The index 0,1,...i =  is the iteration or trial number, and 

[0, ]t N∈  is the finite time interval a given trial, N  denotes the 
time duration of the repetitions which is assumed to be fixed 
and known. yn  and un  are the maximum lags for the system 
output, input, and error, respectively. [.]F  is an unknown 
nonlinear mapping.  

Consider (1) and make the following reasonable 
assumptions:

A1) the system (1) is a relaxed system so

0,1,...

(0, ) ( 1, ) ... ( , )
( 1, ) ( 2, ) ... ( , ) 0

y

u
i

y i y i y n i
u i u i y n i

=

= − = = − =

− = − = = − =
 

3. Iterative learning identification
A multilayer perceptron neural network is used as an 

iterative learning identifier. Since the mapping between the 
input and output of a time-varying system changes over 
time, the mapping between the input and output of the 
neural network must also be able to change over time, so 
the proposed neural network is time-varying [40]. Also, we 

5 
 

The underlying dynamic system to be identified and controlled is a general unknown and 

repeatable discrete  time-varying nonlinear non-affine system described by NARMAX which is 

displayed as follows: 

( 1, ) ( , ), ( 1, ),..., ( , ), ( , ), ( 1, ),..., ( , ),

0,1,..., , 0,1,..
y uy t i F y t i y t i y t n i u t i u t i u t n i t

t N i

+ = − − − −
= =

                                  (1)                         

where ( , )u t i R  and ( , )y t i R  are the controlled (i.e. exogenous) input and the output of the system, 

respectively. The index 0,1,...i =  is the iteration or trial number, and [0, ]t N  is the finite time interval 

a given trial, N  denotes the time duration of the repetitions which is assumed to be fixed and known. yn   

and un  are the maximum lags for the system output, input, and error, respectively. [.]F  is an unknown 

nonlinear mapping.   

Consider (1) and make the following reasonable assumptions: 

A1) the system (1) is a relaxed system so 

0,1,...
(0, ) ( 1, ) ... ( , ) ( 1, ) ( 2, ) ... ( , ) 0y u

i
y i y i y n i u i u i y n i

=
= − = = − = − = − = = − =   

3. Iterative learning identification 

A multilayer perceptron neural network is used as an iterative learning identifier. Since the mapping 

between the input and output of a time-varying system changes over time, the mapping between the input 

and output of the neural network must also be able to change over time, so the proposed neural network is 

time-varying [40]. Also, we propose the structure of MLPNN in such a way that it is affine in input ( , )u t i

(see Fig. 1). The proposed MLPNN is shown in matrix form as follows: 

( )ˆ( 1, ) ( , ) ( , ) ( , ) ( , ) ( , )
0,1,..., , 0,1,...

Ty t i w t i h V t i x t i b t i u t i
t N i

+ = + +

= =
                                                                           (2)                

( , ) ( , ) ( 1, ) ... ( , ) ( 1, ) ... ( , ) T
y ux t i y t i y t i y t n i u t i u t n i= − − − −                      (3) 

5 
 

The underlying dynamic system to be identified and controlled is a general unknown and 

repeatable discrete  time-varying nonlinear non-affine system described by NARMAX which is 

displayed as follows: 

( 1, ) ( , ), ( 1, ),..., ( , ), ( , ), ( 1, ),..., ( , ),

0,1,..., , 0,1,..
y uy t i F y t i y t i y t n i u t i u t i u t n i t

t N i

+ = − − − −
= =

                                  (1)                         

where ( , )u t i R  and ( , )y t i R  are the controlled (i.e. exogenous) input and the output of the system, 

respectively. The index 0,1,...i =  is the iteration or trial number, and [0, ]t N  is the finite time interval 

a given trial, N  denotes the time duration of the repetitions which is assumed to be fixed and known. yn   

and un  are the maximum lags for the system output, input, and error, respectively. [.]F  is an unknown 

nonlinear mapping.   

Consider (1) and make the following reasonable assumptions: 

A1) the system (1) is a relaxed system so 

0,1,...
(0, ) ( 1, ) ... ( , ) ( 1, ) ( 2, ) ... ( , ) 0y u

i
y i y i y n i u i u i y n i

=
= − = = − = − = − = = − =   

3. Iterative learning identification 

A multilayer perceptron neural network is used as an iterative learning identifier. Since the mapping 

between the input and output of a time-varying system changes over time, the mapping between the input 

and output of the neural network must also be able to change over time, so the proposed neural network is 

time-varying [40]. Also, we propose the structure of MLPNN in such a way that it is affine in input ( , )u t i

(see Fig. 1). The proposed MLPNN is shown in matrix form as follows: 

( )ˆ( 1, ) ( , ) ( , ) ( , ) ( , ) ( , )
0,1,..., , 0,1,...

Ty t i w t i h V t i x t i b t i u t i
t N i

+ = + +

= =
                                                                           (2)                

( , ) ( , ) ( 1, ) ... ( , ) ( 1, ) ... ( , ) T
y ux t i y t i y t i y t n i u t i u t n i= − − − −                      (3) 

5 
 

The underlying dynamic system to be identified and controlled is a general unknown and 

repeatable discrete  time-varying nonlinear non-affine system described by NARMAX which is 

displayed as follows: 

( 1, ) ( , ), ( 1, ),..., ( , ), ( , ), ( 1, ),..., ( , ),

0,1,..., , 0,1,..
y uy t i F y t i y t i y t n i u t i u t i u t n i t

t N i

+ = − − − −
= =

                                  (1)                         

where ( , )u t i R  and ( , )y t i R  are the controlled (i.e. exogenous) input and the output of the system, 

respectively. The index 0,1,...i =  is the iteration or trial number, and [0, ]t N  is the finite time interval 

a given trial, N  denotes the time duration of the repetitions which is assumed to be fixed and known. yn   

and un  are the maximum lags for the system output, input, and error, respectively. [.]F  is an unknown 

nonlinear mapping.   

Consider (1) and make the following reasonable assumptions: 

A1) the system (1) is a relaxed system so 

0,1,...
(0, ) ( 1, ) ... ( , ) ( 1, ) ( 2, ) ... ( , ) 0y u

i
y i y i y n i u i u i y n i

=
= − = = − = − = − = = − =   

3. Iterative learning identification 

A multilayer perceptron neural network is used as an iterative learning identifier. Since the mapping 

between the input and output of a time-varying system changes over time, the mapping between the input 

and output of the neural network must also be able to change over time, so the proposed neural network is 

time-varying [40]. Also, we propose the structure of MLPNN in such a way that it is affine in input ( , )u t i

(see Fig. 1). The proposed MLPNN is shown in matrix form as follows: 

( )ˆ( 1, ) ( , ) ( , ) ( , ) ( , ) ( , )
0,1,..., , 0,1,...

Ty t i w t i h V t i x t i b t i u t i
t N i

+ = + +

= =
                                                                           (2)                

( , ) ( , ) ( 1, ) ... ( , ) ( 1, ) ... ( , ) T
y ux t i y t i y t i y t n i u t i u t n i= − − − −                      (3) 

Fig. 1.  General structure of iterative learning control based on 
neural networks

 )مقاله انگلیسی(نویسندگان   درخواستی ازاصلاحات : خجدول 

Corrections made Paragraph/Figure/Table 
number 

Page 
number Item 

 1   اصلاحاتی خواسته نشده است. 
   2 
   3 
   4 
   5 
   6 
   7 
   8 
   9 
   10 

 

plant

Neural 
network 

( 1, )y t i

memory

Time
 

delays

memory

ILC ˆ( 1, )y t i
( 1, )t i

( 1)dy t

ˆ( 1, )y t i
( 1, )e t i

( , 1)u t i ( , )u t i

( , )u t i

•( , )x t i

 

Fig. 1. General structure of iterative learning control based on neural networks 

 



201

F. Afsharnia et al., AUT J. Model. Simul., 51(2) (2019) 199-210, DOI: ﻿ 10.22060/miscj.2019.16029.5151

propose the structure of MLPNN in such a way that it is affine 
in input ( , )u t i (see Fig. 1). The proposed MLPNN is shown 
in matrix form as follows:

( , ) ( , )
ˆ( 1, ) ( , ) ( , )

( , )
0,1,..., , 0,1,...

T V t i x t i
y t i w t i h u t i

b t i
t N i

+ 
+ = + 

 
= =

� (2)               

� (3)

Where 1( , ) mw t i R ×∈ and ( , ) m pV t i R ×∈ are the output-hidden 
weight matrix and hidden-input weight matrix, respectively, in 
which 1u yp n n= + +  and  m  is the number of hidden neurons. 

1( , ) px t i R ×∈  and ( , )u t i  are inputs of the neural network. The 
term ( , ) ( , ) ( , )V t i x t i b t i+  can be rewritten as

 [ ]
( , )

( , )

( , )
( , ) ( , )

1
a

a

V t i
x t i

x t i
V t i b t i  

 
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, so form (3) rewritten as:

( )ˆ( 1, ) ( , ) ( , ) ( , ) ( , )T
a ay t i w t i h V t i x t i u t i+ = + � (4)

Where ( 1) 1( , ) [ ( , ) ,1]T T p
ax t i x t i R + ×= ∈  and ( 1)( , ) m p

aV t i R × +∈  are 
the augmented neural input vector (the –1 term signifies the 
input bias) and the augmented output-hidden weight matrix. 

The vector . ( )( , ) ( , )ah V t i x t i  is defined as:

( )
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( )
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Where 1u yp n n= + +  and  m  is the number of hidden 
neurons. ( ).h  is a sigmoid function.

We define identification error ( , )t iε  and cost function as:
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Using gradient descendant algorithm [41], the 
parameters of the neural network are updating with the 
following learning laws as:              
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 Where ( )w iα  and ( )V iα  are learning gains of the identifier 
neural network.

( , ) ( 1, )( 1, )
( , ) ( , )

J t i t it i
w t i w t i

εε∂ ∂ +
= +

∂ ∂
� (9)

( , ) ( 1, )( 1, )
( , ) ( , )a a

J t i t it i
V t i V t i

εε ∂ +
= +

∂
� (10)

ˆ( 1, ) ( 1, )
( , ) ( , )

t i y t i
w t i w t i

ε∂ + ∂ +
= −

∂ ∂
� (11)

ˆ( 1, ) ( 1, )
( , ) ( , )a a

t i y t i
V t i V t i
ε∂ + ∂ +

= −
∂ ∂

� (12)

We define ( , ) ( , 1) ( , )Tw t i w t i w t i∆ = + −  and
( , ) ( , 1) ( , )a a aV t i V t i V t i∆ = + −  . From equations (7)-(10), we have:
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Remark 1. ( )( , ) ( , ) m m
a aH V t i x t i R ×′ ∈  is a diagonal matrix 

with elements on the main diagonal ( )( , ) ( , )T
al ah v t i x t i′ which in 

(.)T
alv is l th raw of matrix ( , )aV t i  for 1,...,l m= .

Theorem 1. Consider system (1), The proposed multilayer 
neural network (4) is proposed as an iterative learning 
identifier for (1). Using adaptive iterative updating laws (7) 
and (8), the convergence of the proposed neural network is 
guaranteed if  learning gains are designed as follows:

2

10 ( )
( ( ))w

w

i
i

α
µ

< < � (18)

2

10 ( )
( ( ))V

V

i
i

α
µ

< < � (19) 

( )w iµ  and ( )V iµ  are defined as:

( )

ˆ( 1, )( ) max
( , )

max ( , ) ( , )

w t

T
a at

y t ii
w t i

h V t i x t i

µ ∂ +
=

∂


�

(20)

( )

ˆ( 1, )( ) max ˆ ( , )

max ( , ) ( , ) ( , ) ( , )

V t
a f

T
a a a ft

y t ii
V t i

H V t i x t i w t i x t i

µ ∂ +
=

∂

′



� (21)

Where . is the Euclidean norm and .
f

 is the Frobenius 
norm. If a  and A  are a vector and a matrix:

( )

T

T
f

a a a

A tr A A

 =


=

Proof: We define a Lyapunov’s function as:

2

0,1,..., , 0,1,...

1( , ) ( 1, )
2

t N i

t i t iε
= =

Φ = + � (22)

The difference between Lyapunov functions of two 
consecutive iterations is defined as :

0,1,..., , 0,1,...
( , ) ( , 1) ( , )

t N i
t i t i t i

= =
∆Φ = Φ + −Φ � (23)

( )2 21( , ) ( 1, 1) ( 1, )
2

t i t i t iε ε∆Φ = + + − + � (24)

We can rewrite (18) as:

[ ]

[ ]

1( , ) ( 1, 1) ( 1, )
2

( 1, 1) ( 1, )

1( 1, ) ( 1, ) ( 1, )
2

t i t i t i

t i t i

t i t i t i

ε ε

ε ε

ε ε ε

∆Φ = + + + +

+ + − +

 = ∆ + + + ∆ +  

� (25)

Where ( 1, ) ( 1, 1) ( 1, )t i t i t iε ε ε∆ + = + + − +  is the error 
difference that can be substituted by using Taylor series 
expansion as follows [41-43] :

( 1, )( 1, ) ( , )
( , )

( 1, )( , )
( , )

T

T
a T

a

t it i w t i
w t i

t itr V t i
V t i

εε

ε

 ∂ +
∆ + = ∆ + 

 
  ∂ +
∆  

  

� (26)

where ( , ) ( , 1) ( , )w t i w t i w t i∆ = + − and ( , ) ( , 1) ( , )a a aV t i V t i V t i∆ = + − .
Substituting ( 1, )t iε∆ +  from (26) into (25) gives:

( 1, )( , )
ˆ ( , )

( , )
( 1, )( , )

( , )

1 ( 1, )( 1, ) ( , )
2 ( , )

1 ( 1, )( , )
2 ( , )

T

T
a T

a

T

T
a T

a

t iw t i
w t i

t i
t itr V t i

V t i

t it i w t i
w t i

t itr V t i
V t i

ε

ε

εε

ε

  ∂ +
∆ +  

  ∆Φ = ∗   ∂ + ∆      
  ∂ +

+ + ∆ +  
  

   ∂ + ∆      

� (27)

We consider ( , )t i∆Φ  as follow: 

1 2 3( , ) ( , ) ( , ) ( , )t i t i t i t i∆Φ = ∆Φ + ∆Φ + ∆Φ � (28)

 Where 
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1
( 1, )( , ) ( , )
ˆ ( , )

1 ( 1, )( 1, ) ( , )
2 ( , )

T

T

t it i w t i
w t i

t it i w t i
w t i

ε

εε

  ∂ +
∆Φ = ∆  

  
  ∂ +

+ + ∆  
   �

(29)

2
( 1, )( , ) ( , )

( , )

1 ( 1, )( 1, ) ( , )
2 ( , )

T
a T

a

T
a T

a

t it i tr V t i
V t i

t it i tr V t i
V t i

ε

εε

   ∂ +
∆Φ = ∆       
   ∂ +

+ + ∆       

� (30)

3
( 1, )( , ) ( , )

( , )

( 1, )( , )
( , )

T

a

T
a T

a

t it i w t i
w t i

t itr V t i
V t i

ε

ε

  ∂ +
∆Φ = ∆     
   ∂ +

∆       

� (31)

Substituting (11) - (14) into (29) - (31), we have:  

1

2

2
4

2

( , )

ˆ( 1, )( )
( , )

( 1, )
ˆ1 ( 1, )( )

2 ( , )

w

w

t i

y t ii
w t i

t i
y t ii

w t i

α
ε

α

∆Φ =

 ∂ +
 − +

∂ 
= + 

∂ + 
 ∂ 

� (32)

2

1

2
2

ˆ( 1, )( , ) ( )
( , )

ˆ1 ( 1, )1 ( ) ( , )
2 ( , )

w

w

y t it i i
w t i

y t ii t i
w t i

α

α ε

∂ +
∆Φ =

∂

 ∂ +
 − +
 ∂ 

� (33)

Also

2

2

2
2

ˆ( 1, )( , ) ( )
( , )

ˆ1 ( 1, )1 ( ) ( 1, )
2 ( , )

V T
a f

V T
a f

y t it i i
V t i

y t ii t i
V t i

α

α ε

∂ +
∆Φ =

∂

 ∂ + − + +
 ∂ 

� (34)

2

3

2
2

ˆ( 1, )( , ) ( ) ( )
( , )

ˆ( 1, ) ( 1, )
( , )

w V

T
a f

y t it i i i
w t i

y t i t i
V t i

α α

ε

∂ +
∆Φ =

∂

∂ +
+

∂

� (35)                       

We define
 

2

1
ˆ( 1, )( , ) ( )

( , )w
y t it i i

w t i
ψ α ∂ +

=
∂  

2

2
ˆ( 1, )( , ) ( )

( , )V T
a f

y t it i i
V t i

ψ α ∂ +
=

∂ and 

substitute them into (33) – (35), so we have:

2
1 1 1

1( , ) ( , ) 1 ( , ) ( 1, )
2

t i t i t i t iψ ψ ε ∆Φ = − + + 
 

� (36)

2
2 2 2

1( , ) ( , ) 1 ( , ) ( 1, )
2

t i t i t i t iψ ψ ε ∆Φ = − + + 
 

� (37)

2
3 1 2( , ) ( , ) ( , ) ( , )t i t i t i t iψ ψ ε∆Φ = � (38)

 Using (36) - (38) and substituting into (28), we have:

( )2 2
1 2 1 2 1 2

1( , ) ( , ) ( , )
2

t i t i t iψ ψ ψ ψ ψ ψ∆Φ = + + − − � (39)

( )

( )

1 2

1 2

( , ) ( , ) ( , )

11 ( , ) ( , )
2

t i t i t i

t i t i

ψ ψ

ψ ψ

∆Φ = +

 − + + 
  �

(40)

( , )t i∆Φ is negative if 

( )1 2
11 ( , ) ( , ) 0
2

t i t iψ ψ− + + <   

so the following condition must be satisfied:

1 20 ( , ) ( , ) 2t i t iψ ψ< + < � (41)

If we design 2

1( )
( )w

w

i
i

α
µ

<  and 2

1( )
( )V

V

i
i

α
µ

<  Since ( )w iµ  and 
( )v iµ  are defined by (20) and (21), so 1( , )t iψ  and 2 ( , )t iψ  are:

10 ( , ) 1t iψ< <   and 20 ( , ) 1t iψ< <
Therefore the condition (41) is satisfied, so ( , ) 0t i∆Φ <

, consequently, the convergence of the proposed neural 
network is guaranteed.  

the proof of theorem 1 is completed.
Remark2.We have , since ( ).h  is a sigmoidal function 

therefore ( )max ( , ) ( , )T
a at

h V t i x t i m=  and so ( )w iα is designed 

2

1( )w wi
m

α α <

.

4. Iterative learning control based on neural network 
A neural network based ILC for system (1) is presented 

in this section. Since the structure of the proposed neural 
identifier is affine in control input, so proposed ILC can 
be easily applied to it. Iterative learning law is proposed as 
following:

0,1,..., 0,1,...
( , 1) ( , ) ( , )

t N i
u t i u t i u t i

= =
+ = + ∆ � (42)
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Which in

( )

( )
0,1,..., 0,1,...

( , ) ( 1, ) ( , 1) ( , )

( , ) ( , ) ( , )

T
a

t N i

T T
a a a

u t i ke t i w t i h t i

w t i h V t i x t i
= =

∆ = + − + ∆ −

∆
� (43)

( )
( )

( , ) ( , 1) ( , 1)

( , ) ( , )

T
a a a

T
a a

h t i h V t i x t i

h V t i x t i

∆ = + + −
� (44)

Where k  and ˆ( 1, ) ( 1) ( 1, )de t i y t y t i+ = + − +  are 
the learning gain and the tracking error respectively

Theorem 2: Iterative learning control based on the 
neural network that presented in the previous section and 
theorem 1, with learning law (42-44) is applied to (2) such 
that ˆ( 1, )y t i+  tracks ( 1)dy t + .  The convergence of the 
proposed ILC is guaranteed if we design the learning gain k  
such that 1 1k− < .

Proof:

( )
( 1, 1) ( 1, )

ˆ ˆ( 1, 1) ( 1, )
e t i e t i

y t i y t i
+ + − + =

− + + − +
� (45)

� (46)   
( )

( ) ( )

( 1, 1) ( 1, )

( , 1) ( , 1) ( , 1)

( , ) ( , ) ( , ) ( , 1) ( , )

T T
a a

T T
a a

e t i e t i

w t i h V t i x t i

w t i h V t i x t i u t i u t i

+ + − + =

− + + +

+ − + −

After adding and subtracting ( )( , 1) ( , ) ( , )T T
a aw t i h V t i x t i+  to 

(46), we have

( ) ( )( )
( )

( 1, 1) ( 1, ) ( , ) ( , 1)

( , 1) ( , 1) ( , ) ( , )

( , ) ( , ) ( , )

T

T T
a a a a

T T
a a a

e t i e t i u t i w t i

h V t i x t i h V t i x t i

w t i h V t i x t i

+ + − + = −∆ − +

+ + −

−∆

�

(47)

Using learning law (42-44), we have

( 1, 1) (1 ) ( 1, )e t i k e t i+ + = − + � (48)

If  we design the learning gain k  such that 1 1k− <  so  

( 1, 1) ( 1, )e t i e t i+ + < + � (49)

According to (49), the convergence of the proposed ILC is 
guaranteed and the proof of theorem 2 is completed. 

By applying the proposed iterative control law to system 
(1), within a time-limited range, ˆ( 1, )y t i+  follows the desired 
output trajectory ( 1)dy t +  , simultaneously ( 1, )y t i+  follows 

ˆ( 1, )y t i+ . Therefore tracking the desired output trajectory 
( 1)dy t + by ( 1, )y t i+  is guaranteed as the iteration number i  

tends to infinity, consequently, the control and identification 
aims are achieved simultaneously.

5. SIMULATION STUDY
To show the effectiveness of the proposed based neural 

network ILC, we consider results of the computer simulation 
an example. The example is done in three different cases to 
evaluate different aspects of algorithm. We also present a 
comparison between our proposed method and the neural 
controller proposed in [39] that mentioned in section 1 
(the newest ILC that has been applied to dynamic systems 
represented by  NARMAX models).

Example 1: Consider non-BIBO iterative time-varying 
NARMAX system [41,44]  in three cases. The system is 
presented as:

( )( )
( )( )

2( 1, ) 0.2 ( 1, ) 0.2 ( , )
0.4sin 0.5 ( , ) ( 1, )

cos 0.5 ( , ) ( 1, ) 1.2 ( , ) cos( )

y t i y t i y t i
y t i y t i

y t i y t i u t i t

+ = − + +

+ −

+ − + +

 

  

 

 

 

 

 

  

 
Fig. 3. Tracking and identification performance 

at the second iteration for the case1 
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Fig.4. Tracking and identification performance 

at the iteration 40i =  for the case1 

 

Fig. 3. Tracking and identification performance at the second 
iteration for the case1

Fig.4. Tracking and identification performance at the iteration 

40i =  for the case1
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Which [0,100]t∈  and 3p = . The desired trajectory is 
produced by the following system:

( 1) 0.6 ( ) ( )
2 2( ) sin( ) sin( )
25 10

d dy t y t r t

r t t tπ π
+ = +

= +

 

 In case 1, (0, )y i is iteration –invariant as 
(0, ) 0.5y i = . We design learning gain 0.9k = , neural 

network gain 0.01wα = ,  number of  hidden neurons 12m = . 
Control input and weights are designed randomly with values 
in interval [ 1,1]−  at iteration 0i = . The trajectories of the desired 
output ( 1, )dy t i+  (green-solid), the neural ILI output ( 1, )y t i+

(blue-solid) and the system output ( 1, )y t i+ (red-dashed), at 
2th and 40th  are shown in Figs. 3 and 4 (for case 1). These 
Figures demonstrate that by increasing the iterations number, 

the neural network output is rapidly converted to the given 
desired output trajectory (in the initial iterations), but to 
converge the system output to the desired output trajectory 
must firstly identification be reached precisely. Also the 
control input is shown in Fig. 5. For a more precise evaluation 
of the convergence rate, the norm 2  of the tracking error 

( 1, )e t i+  is shown in Figs. 6. The norm 2  of the tracking error 
in log scale is shown in Fig. 7. The results of the comparison 
between the proposed method in this paper and the 
method presented in [39] is shown in Fig. 8. Elapsed time 
of simulation of the proposed method is 5.276404 seconds 
and Elapsed time of simulation of the method presented in 
[39] is 11.134760. the results of comparison is represented 
in remarks 3-5.   

Remark 3. According to the results of the comparison 
Fig. 8, the proposed method in this paper has better and 

 

 

 

 

 

 

 

 

  

 

Fig. 5. Control signal at the iteration  for the case1  

 

 

 

 

 

  
 

Fig. 6. The norm  of the tracking error  with respect to  for the case1 

Fig. 5. Control signal ( , )u t i at the iteration 40i =  for the case1

Fig. 6. The norm 2  of the tracking error ( , )ce t i  with respect to i  for the case1

 

 

 

 

 

  

 

Fig. 7. The norm 2  of the tracking error ( , )ce t i  with respect to i , in log scale, for the case1 

  

 Fig. 7. The norm 2  of the tracking error ( , )ce t i  with respect to i , in log scale, for the case1
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more accurate performance than the method presented 
in [39]. Also, in the method presented in [39], there 
is the identification process in every control iteration 
(identification process  and control process are not 
simultaneously), so it takes more time than our proposed 
method.

Remark 4. In the method presented in [39], the 
convergence is not monotonic, so, it must use a law pass 
Q-filter to achieve the monotonic convergence. While the 

convergence of tracking error in our proposed 
ILC is monotonic (see Fig. 6).
In case 2, (0, )y i is iteration –variant as 

(0, ) sin( )
20
iy i π

= , we design parameters same as case 1. The 
trajectories of the desired output ( 1, )dy t i+  (green-solid), the 
neural ILI output ( 1, )y t i+ (blue-solid) and the system output 

( 1, )y t i+ (red-dashed), at 2th and 40th  are shown in Figs. 
9 and 10. Also the control input is shown in Fig. 13. For a 
more precise evaluation of the convergence rate, the norm 
2  of the tracking error ( 1, )e t i+  is shown in Figs. 11. The 
norm 2  of the tracking error in log scale is shown in Fig. 12. 

The results of case 2 shows that the proposed method 
in this paper can be applied to the system with iteration –
variant initial conditions, whereas the neural controller 
proposed in [39] is applied to the system returns to the same 
initial conditions at the start of each trial.

Remark 5. The results of case 2 shows that the proposed 
method in this paper can be also applied to the system with 
iteration –variant initial conditions, whereas the neural 
controller proposed in [39] is only applied to the system with 
iteration –invariant initial conditions.

In case 3, (0, )y i is iteration –invariant as 
(0, ) 0.5y i = . We change learning gain k  and design it 

0.2k = , other parameters are designed same as case1.  The 
trajectories of the desired output ( 1, )dy t i+  (green-solid), the 
neural ILI output ( 1, )y t i+ (blue-solid) and the system output 

( 1, )y t i+ (red-dashed), at 2th and 40th  are shown in Figs. 14 
and 15 (for case 3). Also the control input is shown in Fig. 16. 
The norm 2  of the tracking error ( 1, )e t i+  is shown in Figs. 
17. 

The results of case 3 demonstrate that the neural 
network output is slower than converted to the given desired 
output trajectory (at the initial iterations) , but the tracking 
performance of system output is finally more accurate than 
case 1.  

Remark 6. By decreasing the learning gain k , the speed of 
the convergence decreases but the accuracy increases.

Remark 7. According to three cases have been represented 
above, in the proposed ILC based on the proposed neural 
network, the perfect tracking of the desired output by system 
output is achieved only after perfect identification. 

 

 

 

 

 

 

 

 

 

  

 

Fig. 8. Reference tracking (green), the proposed ILC (red), the neural controller [39] (blue) , 
for the case1  
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Fig. 10. Tracking and identification performance    

                                                                                                                           at the iteration 40i =  for the case2 
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6. Conclusion 
This paper presents a new iterative learning controller 

is composed of ILI and ILC for a general unknown discrete 
time-varying nonlinear non-affine system described by 
NARMAX model. A multi-layer neural network is used for 
identification. Since the system is time-varying, we propose 
a time-varying neural network that is affine in the control 
input. The new proposed ILC based on the proposed neural 
network applied to the system. Weights of the neural network 
are updated along the control iteration , so we have ILC and 
ILI simultaneously, consequently, the proposed approach  in 
comparison with approach that has perfect identification 
process at each iteration takes less time. The convergence of 
both the trajectory tracking error and identification error 
is guaranteed along the iteration domain with repeating 
the process within a time-limited range. By increasing the 
iterations number, the neural network output is converted 
to the given desired output trajectory but to converge the 
system output to the desired output trajectory must firstly 
identification be reached precisely. Illustrative example and 
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                          Fig.12. The norm 2  of the tracking error ( , )ce t i  with respect to i , in log scale, for the case2 
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10 20 30 40 50 60 70 80 90 100

-6

-5

-4

-3

-2

-1

0

1

2

3

Time(t)

Co
ntr

ol I
npu

t

 

 

 

 

 

 

 

                                                                                                                       

                                                                                                                              

  

  

 Fig. 14. Tracking and identification performance  

at the second iteration for the case 3 

 

Fig. 11. The norm 2  of the tracking error ( , )ce t i  with respect to i , for the case2

Fig.12. The norm 2  of the tracking error ( , )ce t i  with respect to i , in log scale, for the case2

Fig. 13. Control signal ( , )u t i at the iteration 40i =  for the case2

Fig. 14. Tracking and identification performance at the second 
iteration for the case 3
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results of the comparison show to be useful the proposed 
method in this paper. It should be mentioned that the system 
initial condition can be iteration variant in the proposed 
controller   , whereas in most ILC approaches the system 
initial condition are iteration-invariant. 

This paper consider discrete time nonlinear non-affine 
system, future studies could consider nonlinear non-affine 
continuous system. 
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