[1] J. Tavoosi, A. A. Suratgar, M. B. Menhaj, Nonlinear system identification based on a self-organizing type-2 fuzzy RBFN, Engineering Applications of Artificial Intelligence 54 (2016), 26-38.
[2] J. Tavoosi, M. Alaei, B. Jahani, Temperature Control of Water Bath by using Neuro-Fuzzy Controller, 5th Symposium on Advance in Science & Technology, 2011.
[3] J. Tavoosi, M. Alaei, B. Jahani, M.A. Daneshwar, A novel intelligent control system design for water bath temperature control, Australian Journal of Basic and Applied Sciences 5 (12) 1879-1885, 2011.
[4] G.C. Calafiore, A subsystems characterization of the zero modes for flexible mechanical structures, in: Proceedings of 36th IEEE Conference On Decision and Control, San Diego, CA, 1997, pp. 1375–1380.
[5] O. Castillo, P. Melin, Type-2 Fuzzy Logic: Theory and Applications, Springer-Verlag Berlin Heidelberg, 2008.
[6] S. Huang, M. Chen, Constructing optimized interval type-2 TSK neuro-fuzzy systems with noise reduction property by quantum inspired BFA, Neurocomputing 173 (2015) 1839-1850.
[7] J. Tavoosi, A. A. Suratgar, M. B. Menhaj, Stable ANFIS2 for Nonlinear System Identification, Neurocomputing 182 (2016) 235–246.
[8] R. Shahnazi, Observer-based adaptive interval type-2 fuzzy control of uncertain MIMO nonlinear systems with unknown asymmetric saturation actuators, Neurocomputing 171 (2016) 1053-1065.
[9] S.I. Han, J.M. Lee, Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems, ISA Transactions 53 (2014) 33–43.
[10] J Tavoosi, MA Badamchizadeh, S Ghaemi, Adaptive Inverse Control of Nonlinear Dynamical System Using Type-2 Fuzzy Neural Networks, Journal of Control 5 (2) (2011).
[11] YP Asad, A Shamsi, H Ivani, J Tavoosi, Adaptive Intelligent INnverse Control of Nonlinear Systems with Regard to Sensor Noise and Parameter Uncertainty (Magnetic Ball Levitaion System Case Study), International Journal on Smart Sensing and Intelligent Systems 9 (1) 148-169.
[12] T.C. Lin, C.H. Kuo, V.E. Balas, Real-time fuzzy system identification using uncertainty bounds, Neurocomputing 125 (2014) 195–216.
[13] J. Soto, P. Melin, Genetic Optimization of Type-2 Fuzzy Integrators in Ensembles of ANFIS Models for Time Series Prediction, Recent Advances on Hybrid Approaches for Designing Intelligent Systems Studies in Computational Intelligence 547 (2014) 79–97.
[14] H.M. Vaghefi, M.R. Sandgani, M. A. Shoorehdeli, Interval Type-2 Adaptive Network-based Fuzzy Inference System (ANFIS) with Type-2 non-singleton fuzzification, 13th Iranian Conference on Fuzzy Systems (2013) 1–6.
[15] G.M. Mendez, D.L.A Hernandez, Interval Type-2 ANFIS. In: Innovations in Hybrid Intelligent Systems, Springer, Heidelberg (2007) 64–71.
[16] S. Bhattacharyya, D. Basu, A. Konar, D.N. Tibarewala, Interval type-2 fuzzy logic based multiclass ANFIS algorithm for real-time EEG based movement control of a robot arm, Robotics and Autonomous Systems 68 (2015) 104–115.
[17] J. Tavoosi, M.A. Badamchizadeh, A Class of Type-2 Fuzzy Neural Networks for Nonlinear Dynamical System Identification, Neural Computing & Application 23 (3) (2013) 707–717.
[18] J Tavoosi, AA Suratgar, MB Menhaj, Stability analysis of recurrent type-2 TSK fuzzy systems with nonlinear consequent part, Neural Computing and Applications (2015) 1-10.
[19] F. Jahangiri, A. Doustmohammadi, M.B. Menhaj, An adaptive wavelet differential neural networks based identifier and its stability analysis, Neurocomputing 77(2012)12–19.
[20] J Tavoosi, AA Suratgar, MB Menhaj, Stability Analysis of a Class of MIMO Recurrent Type-2 Fuzzy Systems, International Journal of Fuzzy Systems (2016) 1-14.
[21] J. Tavoosi, A. Shamsi Jokandan, M. A. Daneshwar, A new method for position control of a 2-DOF robot arm using neuro-fuzzy controller, Indian Journal of Science and Technology 5 (3) (2012) 2253-2257.
[22] M.B.B. Sharifian, A. Mirlo, J. Tavoosi, M. Sabahi, Self-adaptive RBF neural network PID controller in linear elevator, International Conference on Electrical Machines and Systems (ICEMS), 2011.
[23] Jafar Tavoosi, Majid Alaei, Behrouz Jahani, Neuro – Fuzzy Controller for Position Control of Robot Arm, 5th Symposium on Advances in Science and Technology (5thsastech), 2011.
[24] M.B.B Sharifian Jafar Tavoosi, Ahad Mirloo, PMSM Position and Speed Estimation by Moving Horizon Estimation (MHE), ICEE19_207, 2011.
[25] T. Dereli, A. Baykasoglu, K. Altun, A. Durmusoglu, I.B. Turksen, Industrial applications of type-2 fuzzy sets and systems: A concise review, Computers in Industry 62 (2011) 125–137.
[26] J.R. Castro, O. Castillo, L.G. Martínez, an Interval Type-2 Fuzzy Logic Toolbox for Control Applications, IEEE International Conference on Fuzzy Systems, London (2007) 1–6.
[27] C.J. Chen, S.M. Yang, Z.C. Wung, System Identification by Neuro-Fuzzy Model with Sugeno and Mamdani Fuzzy Rules, Journal of Aeronautics, Astronautics and Aviation, Series A 41 (4) (2009) 263 – 270.
[28] Evren Gurkan, IIsmet Erkmen, Aydan M. Erkmen, Two-way fuzzy adaptive identification and control of a flexible-joint robot arm, Information Sciences 145 (2002) 13–43.
[29] Xin Liu, Chenguang Yang, Zhiguang Chen, Min Wang, Chun-Yi Su, Neuro-adaptive observer based control of flexible joint robot, Neurocomputing 275 (2018) 73–82.
[30] P.Nikdel, M.Hosseinpour, M.A.Badamchizadeh, M.A.Akbari, Improved Takagi–Sugeno fuzzy model-based control of flexible joint robot via Hybrid-Taguchi genetic algorithm, Engineering Applications of Artificial Intelligence33(2014)12–20.
[31] Wei Yin, Lei Sun, Meng Wang, Jingtai Liu, Nonlinear state feedback position control for flexible joint robot with energy shaping, Robotics and Autonomous Systems 99 (2018) 121–134.