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ABSTRACT: In this paper an adaptive neuro fuzzy inference system based on interval Gaussian type-
2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination
of input variables in the consequent part is presented. The capability of the proposed method (we
named ANFIS2) to function approximation and dynamical system identification is shown. The ANFIS2
structure is very similar to ANFIS, but in ANFIS2, a layer has been added for the purpose of type

reduction. An adaptive learning rate based backpropagation with convergence guaranteed is used for

parameter learning. Finally, the proposed ANFIS2 are used to control of a flexible joint robot arm that  Keywords:
can be use?d in rob(.)t arm. Slm.ulatllon res.ults shov&./s the Proposed ANFIS2 with Gaussian type-1 fuzzy set g o0 Joint Robot
as coefficients of linear combination of input variables in the consequent part has good performance and ANFIS

high accuracy but more training time. In the simulation, ANFIS2 is compared with conventional ANFIS.

The results show that, in abrupt changes, the type-2 fuzzy system proof of efficiency and excellence to  nterval Type-2 Fuzzy Sets

the type-1 fuzzy system.

1. Introduction

Parallel processing, adaptability and high computation
ability are the important advantages of neural networks [1].
Using the knowledge of expert man as if-then rules and having
real concept of parameters are the advantages of fuzzy systems.
Among hybrid fuzzy neural networks, ANFIS is very popular
and widespread. ANFIS is very simple and intelligible so it
has affected many areas such as geography, medical Sciences,
meteorological science, chemical and petroleum engineering
and etc. [2, 3]. A flexible link arm is a distributed parameter
system of infinite order, but must be approximated by a lower-
order model and controlled by a finite-order controller due to
onboard computer limitations, sensor inaccuracy, and system
noise. The so-called “control spillover” and “observation
spillover” effects then occur, which under certain conditions
can lead to instability [4].

In recent ten years, type-2 fuzzy logic with more
capabilities and more flexibility than type-1 fuzzy logic has
been investigated. Castillo et al. investigated type-2 fuzzy logic
in more details [5]. Huang and Chen [6] used the combination
of quantum inspired bacterial foraging algorithm (QBFA) and
recursive least squares (RLS) to tune a type-2 fuzzy system.
Tavoosi et al. proposed a different architecture of interval
type-2 takagi-sugeno-kang fuzzy neural network [7]. They
proposed an ANFIS based on type-2 fuzzy sets. Shahnazi
[8] used type-2 fuzzy systems to approximate the unknown
nonlinearities in MIMO systems control problem. He derived
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all the adaptive laws via Lyapunov synthesis approach.

Not much study has been done on fuzzy systems with
type-1 (or type-2) fuzzy sets in the consequent part. In most of
papers the consequent part is singleton [9] or interval type-1
fuzzy sets [10-12] up to now. In continue some of the works in
this area are reviewed. In [13] interval type-2 fuzzy integrators
in ensembles of ANFIS models for the time series prediction
is used. Genetic algorithm is used to optimize of the proposed
model. The equations of Type-2 ANFIS and its optimization
are not presented. In [14] interval type-2 adaptive network-
based fuzzy inference system with type-2 non-singleton
fuzzification have introduced. Interval type-1 fuzzy sets have
been used as consequent parameters. Mendez and Hernandez
[15] presented a type-2 fuzzy ANFIS that interval type-1 non-
singleton fuzzy numbers are the inputs and type-2 TSK FLS
is the output and the consequent parameters are estimated by
the recursive least-squares (RLS) method. They didn't provide
further details of learning equations. Bhattacharyya et al. [16]
proposed a type-2 fuzzy ANFIS that an interval type-2 fuzzy
logic is used to combine the different outputs of the ANFIS
classifiers to produce a final optimal result.

Tavoosi and Badamchizadeh [17] proposed a type-
2 Takagi-Sugeno-Kang fuzzy neural network with linear
consequent part to system identification and modeling. Rule
pruning was the novelty of that paper. Higher learning speed
was the goal by reducing the parameter in both antecedent
and consequent parts. Tavoosi et al. [18] presented a new
method to stability analysis of a class of type-2 fuzzy system.
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Fig. 1. Gaussian primary and secondary membership functions

Jahangiri et al. [19] proposed a method for stability analysis
of a class of neural networks. In [20] a new method to MIMO
type-2 fuzzy stability analysis has been presented. Robot
manipulators have become increasingly important in the field
of flexible automation. So modeling and control of robots
in automation will be very important. Some literatures used
fuzzy logic to robot control [21-24]. In [28], a type-1 fuzzy
adaptive system that makes use of intuitionistic fuzzy sets
was presented to the identification and model-based control
of a flexible-joint robot arm. The proposed fuzzy system in
[28] trains offline. In [29], an observer based on RBF neural
network was proposed for flexible joint manipulators. Type-1
Takagi-Sugeno (T-S) fuzzy approach for control of a flexible
joint robot was presented in [30]. The Control method in [30]
is based on parallel distributed compensation approach. In
[31], nonlinear state feedback position control scheme with
energy shaping was proposed for flexible joint robot system.
The method presented in [31] is highly dependent on the
model.

This paper presents a novel ANFIS based on type-2 fuzzy
named ANFIS2. The proposed method uses Interval Gaussian
type-2 fuzzy sets in the antecedent part and Gaussian type-
1 fuzzy sets as coefficients of linear combination of input
variables in the consequent part. The paper is organized
as follows. In section 2, type-2 fuzzy systems is viewed. In
section 3, the structure of ANFIS2 is investigated. Parameter
identification is given at the end of this section. In section 4,
learning convergence of ANFIS2 based on lyapunov theory
is derived. In section 5, the simulation studies are presented
for identification of three nonlinear systems. Finally, Section
6 gives the conclusions of the advocated design methodology.

2. A Review on Type-2 Fuzzy Systems

In dealing with a lot of uncertainties, the performance
and efficiency of type-1 fuzzy systems is not suitable. The
membership degree of type-1 fuzzy sets is a crisp number
while the membership degree of type-2 fuzzy sets is a type-1
fuzzy number.

Some difficulties of type-1 fuzzy logic can be solved by
using type-2 fuzzy logic. In some systems such as time-series
prediction, the exact membership degree is determined in
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a very difficult manner due to their complexity and their
noisy information [25]. So using type-2 fuzzy systems for
describing behavior of these systems can be useful. In [26],
some disadvantages of type-1 fuzzy sets are mentioned.

Fig. 1 shows the Gaussian primary membership function
and Gaussian secondary membership function. For example

ifm = 0,0 = 1and x = 1 then degree of membership is 0.6,
if this membership degree is too fuzzy or 0.6 then primary

membership is Gaussian type-1 fuzzy set withm =0, =1
and secondary membership is Gaussian type-1 fuzzy set with

m=0.6,0 =0.1

Note that, when secondary membership is not Gaussian
type-1 fuzzy set and it is equal to one and in other words
secondary membership function is interval set with one
magnitude, then fuzzy set called interval type-2 fuzzy set.

Two cases of interval type-2 fuzzy sets are shown in Fig.
2.In Fig. 2-a, a case of a fuzzy set characterized by a Gaussian
membership function with mean m and a standard deviation

that can take values in [g,,05]
and in Fig. 2-b, a case of a fuzzy set with a Gaussian
membership function with a fixed standard deviation o, but

an uncertain mean, taking values in [m;, m] and are shown.
In this paper Gaussian membership function with fixed
standard deviation o and uncertain mean is used (Fig. 2. b).

3. Adaptive Neuro Fuzzy Inference System by Type-2 Fuzzy
Sets (ANFIS2)

Similar to type-1 TSK fuzzy systems, the output of type-2
TSK fuzzy systems is a function of their inputs. But in type-2
fuzzy systems the output and its coefficients are type-1 fuzzy
sets. In this paper, the proposed ANFIS2 has seven layers that
its structure is shown in Fig 3. The two rules of ANFIS2 can
be described as follows:

RY:if x, is A, and x, is B, then §; = 7, + P1x; + §1x,

(1)

R?:if x, is A, and x, is BY then ¥, = %, + Prx; + G %,

Where x;(i = 1,2) are inputs, ¥, (k= 1,2) is output of
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Fig. 3. The structure of ANFIS

the kth rule which it is type-1 fuzzy set (since it is a linear
combination of Gaussian type-1 fuzzy sets), A¥ are antecedent
interval type-2 fuzzy sets, fi,p, and §, (k= 12) are
Gaussian type-1 fuzzy sets. For simplicity in description we
select only two inputs and two rules but the proposed ANFIS2

can be generalized to n-inputs and m-rules (n, m € N).

The forward-propagation procedure is described as
follows:

Layer 0: This layer is inputs layer. The number of nodes in
this layer is equal to the number of inputs.

Layer 1: This layer is fuzzification layer. The output of this
layer as follows:

1.“k,i (xi, [Uk,i' 1mk,i]) (2)

)

lek,i(xi» [Gk,i' ka,i])

Where my; € [ *my;, ?m;] is uncertain mean for kth
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rule and ith input.
1 1 1
:uk,i(xi' [Gk,i' mk,i])' Xp < My
R, (x;) = 1, "y <% < Pmyy (4)
2 2 2
:uk,i(xi' [Gk,i' mk,i])' Xi > My
2 2 1mk,i+ zmk,i
i (% [onp Pmu]), o < —Ho—
P (x) = i o2 (5)
- 1 1 My it "My i
tei (%0 [0 ), x> —

Where fi,,; is upper membership degree and p,,; is lower
membership degree. B
Layer 2: This is rule layer. Each output node represents the

lower (f¥) and upper ( f k) firing strength of a rule:

n n
zkzl_[ﬁk,i ; szl_[ﬁk,i
i=1 i=1

Layer 3: This is consequent layer.

(6)
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Fig. 5. The structure of the robot arm and ANFIS2 based controller

=7+ P1x + Gix;

(7)

=Ty + Dax1 + Gox;
Vi = T + Drx1 + Giexz

i, P and @, (k = 1,2) are consequent coefficient that
they are Gaussian type-1 fuzzy sets. Note that (7) can be

extended to ¥, (k= 1,...,n). In this paper for simplicity

k=2.
Layer 4: This layer is used for consequent lower-upper
firing points [27].

leg=1 f_k(mrkark + My Opr*1 + kaO-Qkxz) +
5= Shenar [ (Mr 0y + My, 04,20 + Mg, 00, %5)
1
-
Yk=1f" (Urk + op t UQk) +
M
Yk=n+1 /" (ark + 0, t+ GQk)

(8)

L k
k=1£ (mrkark + My, OppX1 + kaUQkXZ) +

5 = Yhei+1 fk(mrkO',,k +my, 0p %1 + mqkaquZ)
-

k=1 fk (Urk +op qu) +

py—y L (Grk + op t qu)
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Layer 5: The single node in this layer computes the
output.

yl"'yr
2

)

y =
Gradient descent with adaptive learning rate
backpropagation is used for learning phase (Appendix).

4. Flexible Joint Robot Arm

Consider a single-joint robotic manipulator coupled to
a brushed direct current motor with a no rigid joint. When
the joint is modeled as a linear torsional spring, from the
Euler-Lagrange equation, the equations of motion for such
an electromechanical system can be derived as:

. . K q: .
J2G2 + F24, +N(CI1 _N) = K;i
LDi + Ri + Ky, = u

where g, and g, are the angular positions of the joint and
the motor shaft, i is the armature current, and u is the armature
voltage. The inertias J;, J,, the viscous friction constants F;, F,
, the spring constant K, the torque constant &, , the back-emf
constant Ky, the armature resistance R and inductance L, the link
mass M, the position of the linK’s center of gravity d, the gear ratio
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Fig. 6. ANFIS2 based controller with sine angle reference
120
(L] S N .
£ e i e e
5
@ B0 ,J’ —
3 £ ———=TF
g B I[— Ref H
@ E o e TIF
= F
= an L -
3
3
20 4
f
]
0 | | | | | | | | |
0 2 4 B 8 10 12 14 18 18 20
Time (s)
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Fig. 8. ANFIS2 based controller with ramp angle reference
N and the acceleration of gravity g can all be unknown. using ANFIS2. The structure of the robot arm and ANFIS2
A flexible joint robot arm is shown in Fig. 4. based controller is shown in Fig 5. Where the reference signal
(desired angle in here) is applied to system then the error
5. Simulation Results between reference signal and the output of robot system (angle
of joint in here) is calculated. This error must be minimized,

In this section, a flexible joint robot arm is controlled
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Fig. 9. ANFIS2 based controller with ramp reference (losing a load in tenths of a second)
so ANFIS2 is adapted to minimize the error.
2 P m/A, K = 0.5868, K, = 0.9 N m/A, M = 4.34 kg,
In order to illustrate the effectiveness of the proposed
L=250x10-3H,g=9.8 N/kg, F; =1.625 x 10-2 Nm s/

results, the simulation will be conducted to control system,

where J,= 1.625 kg m2, J, = 1.625 kgm2, R= 0.5, K,= 09N  rad, F; =1.625x10-2Nms/rad, N=2,d=0.5m.
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The performance of ANFIS2 compared with ANFIS by
sine angle reference is shown in Fig. 6.

The performance of ANFIS2 compared with ANFIS by
step angle reference is shown in Fig. 7.

The performance of ANFIS2 compared with ANFIS by
ramp angle reference is shown in Fig. 8.

Figures 5-8 show that adaptive inverse control based on
ANFIS?2 is suitable and robust strategy to control of a flexible
joint robot arm. In continue, assumed that the robot loses half
of its weight in the tenths of a second; in other words, suppose
the robot carries a load of its own weight, which loses in the
tenths of a second. Figs 9,10 and 11 show the performance of
ANFIS2 and ANFISI with sin, step and ramp reference signal
respectively.

As seen in Figures 7, 8, and 9, in the face of sudden
changes, the type-2 fuzzy system performs better than type-1
fuzzy systems.

6. CONCLUSION

In this paper, a novel ANFIS2 was proposed for adaptive
inverse control of flexible joint robot arm system. The
proposed ANFIS2 is based on interval Gaussian type-2 fuzzy
sets in the antecedent part and Gaussian type-1 fuzzy sets as
coefficients of linear combination of input variables in the
consequent part that it helps to improve modeling of highly
nonlinear systems. Adaptive learning rate helps to prevent
the ANFIS2 from trapping into a local minima and it helps
to fast convergence of training algorithm. Losing half of the
weight of the robot during the work was investigated and it
was observed that type-2 fuzzy system has higher precision
than the type-1 fuzzy system in the face of such challenges.
The test results show the importance and necessity of ANFIS2
to modeling the inverse of uncertain robotic systems and
control it.
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Appendix: Parameter learning equations of ANFIS2 based
on gradient descent

In this method, for each input, the output of ANFIS2
is calculated then this output is compared with target to
calculate the error. Suppose, the pair of input-output data is

[(xp :ydp)} ¥p = 1,...,q, where p is the number of data, x

and y, are input and desired output respectively. The error of
ANFIS2 output can be described as follows:

€p =ydp_5>p’ (1)
1 1 2
_12_1 _ 5
E,= 28 =3 (ydp yp) 2)

E= Zq: E, (3)
p=1

Equations (32)-(40) is used for updating the parameters
of the consequent parts of rules

99
= e k2052, (amy > (4)
Tk
9y
— old
"Wmy, = my,, +nx05%e, (ka) (5)
99
" = g 40+ 05 v ey (amy > (6)
ak
99
newark — oldo_rk +nx 0.5 * ep <60y ) (7)
Tk
a9y
new old
Op, = apk+n*0.5*ep<aa )
Dk (8)
9y
newo.qk = oldUQk T 0.5 e <60'q ) (9)
k
ay
1 1
Mhingw = Mhiorg © 051 € * <a lm,“) (10)
ay
2 _ 2
My = Mg+ 0.5%n * e, * < kai) (11)
_ 99
Okinew = Tkiga T 0.5 %7 * ey * 00y (12)
Where 7 is learning rate. The derivative of output to
parameters is as follows.
k=N&Ek<L
9 _ froy, +
Omyy,  ERoa f* (0, + 0y +0g,) + iy f* (07, + 0y, + 04,
fon, (13)

=t f¥ (0, + Opy + 0g,) + Xiepr f* (07, + 0y, + 0g,)
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ﬂ _ fko'pkxl i
omy,, Py (O-Tk + 0yt qu) + Xiene fk (Urk +op t qu)
£k‘7pkx1 (14)
i:lz" (01 + Oy + 04,) + Zhe o1 [ (04, + 0y, + 05,)
ﬂ _ fkaquz +
aka le!:l fk (ark + apk + O-‘Ik) + Zg’:NH zk (Jrk + ka + UQk) (15)
zkaquz

Tt f* (O + Opy + 04,) + Xiepr f* (07, + 0y, + 0g,)

a9 A-B
v _ +

—k
(Zg:lf (Urk +o, + qu) + X [k (Urk +op t+ qu))

c-D

do,,

2
L gk P zk
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