[1] J. Xiong, G. Zhang, J. Hu, L. Wu, Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis, Journal of Intelligent Manufacturing, 25(1) (2014) 157-163.
[2] Y. Zhang, Y. Chen, P. Li, A.T. Male, Weld deposition-based rapid prototyping: a preliminary study, Journal of Materials Processing Technology, 135(2) (2003) 347-357.
[3] Y.-A. Song, S. Park, Experimental investigations into rapid prototyping of composites by novel hybrid deposition process, Journal of Materials Processing Technology, 171(1) (2006) 35-40.
[4] K. Karunakaran, S. Suryakumar, V. Pushpa, S. Akula, Retrofitment of a CNC machine for hybrid layered manufacturing, The International Journal of Advanced Manufacturing Technology, 45(7) (2009) 690-703.
[5] I. Kim, J. Son, C. Park, C. Lee, Y.K. Prasad, A study on prediction of bead height in robotic arc welding using a neural network, Journal of Materials Processing Technology, 130 (2002) 229-234.
[6] F. Kollahan, M. Hydari, Modeling and optimization of Gas Metal Arc Welding process using statistical methods and Simulated Annealing algorithm, Journal of Mechanical Eng., 40(1) (2010) 4.
[7] W. Huang, R. Kovacevic, A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures, Journal of Intelligent Manufacturing, 22(2) (2011) 131-143.
[8] M.A. Moghaddam, R. Golmezergi, F. Kolahan, Multi-variable measurements and optimization of GMAW parameters for API-X42 steel alloy using a hybrid BPNN–PSO approach, Measurement, 92 (2016) 279-287.
[9] J.S. Panchagnula, S. Simhambhatla, Manufacture of complex thin-walled metallic objects using weld-deposition based additive manufacturing, Robotics and Computer-Integrated Manufacturing, 49 (2018) 194-203.
[10]J. Xiong, Y. Lei, H. Chen, G. Zhang, Fabrication of inclined thin-walled parts in multi-layer single-pass GMAW-based additive manufacturing with flat position deposition, Journal of Materials Processing Technology, 240 (2017) 397-403.
[11]A. Olabi, F. Alsinani, A. Alabdulkarim, A. Ruggiero, L. Tricarico, K. Benyounis, Optimizing the CO2 laser welding process for dissimilar materials, Optics and Lasers in Engineering, 51(7) (2013) 832-839.
[12]V.V. Murugan, V. Gunaraj, Effects of process parameters on angular distortion of gas metal arc welded structural steel plates, Welding journal, 84(11) (2005) 165-171.
[13]K. Li, Y. Zhang, Consumable double-electrode GMAW-Part 1: The process, WELDING JOURNAL-NEW YORK-, 87(1) (2008) 11.
[14]L. Yang, R. Chandel, M. Bibby, An analysis of curvilinear regression equations for modeling the submerged-arc welding process, Journal of Materials Processing Technology, 37(1-4) (1993) 601-611.
[15] S. Kumanan, J. Dhas, K. Gowthaman, Determination of submerged arc welding process parameters using Taguchi method and regression analysis, (2007).
[16]D. Kim, S. Rhee, H. Park, Modelling and optimization of a GMA welding process by genetic algorithm and response surface methodology, International Journal of Production Research, 40(7) (2002) 1699-1711.
[17]M. Sen, M. Mukherjee, T. Pal, Evaluation of correlations between DPGMAW process parameters and bead geometry, Weld. J, 94(8) (2015) 265s-279s.
[18]R.P. Singh, R. Garg, D.K. Shukla, Mathematical modeling of effect of polarity on weld bead geometry in submerged arc welding, Journal of Manufacturing Processes, 21 (2016) 14-22.
[19]A. Babkin, E. Gladkov, Identification of Welding Parameters for Quality Welds in GMAW, Welding Journal, (2016).
[20]R.C. Deo, M. Şahin, Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia, Atmospheric Research, 153 (2015) 512-525.
[21]G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications, Neurocomputing, 70(1-3) (2006) 489-501.
[22]G.-B. Huang, X. Ding, H. Zhou, Optimization method based extreme learning machine for classification, Neurocomputing, 74(1-3) (2010) 155-163.
[23]G.-B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multiclass classification, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2) (2012) 513-529.
[24]C. Wan, Z. Xu, P. Pinson, Z.Y. Dong, K.P. Wong, Probabilistic forecasting of wind power generation using extreme learning machine, IEEE Transactions on Power Systems, 29(3) (2014) 1033-1044.
[25]V.N. Vapnik, V. Vapnik, Statistical learning theory, Wiley New York, 1998.
[26]C. Cortes, V. Vapnik, Support-vector networks, Machine learning, 20(3) (1995) 273-297.
[27]D. Meyer, F. Leisch, K. Hornik, The support vector machine under test, Neurocomputing, 55(1) (2003) 169-186.
[28]N. Cristianini, J. Shawe-Taylor, An introduction to support vector machines and other kernel-based learning methods, Cambridge university press, 2000
[29] F. Parrella, "Online support vector regression," Master's Thesis, Department of Information Science, University of Genoa, Italy, 2007.
[30]MATLAB Codes of ELM Algorithm (for ELM with kernels), in, 2018.
[31]K. Pelckmans, J.A.K. Suykens, T.V. Gestel, J.D. Brabanter, L. Lukas, B. Hamers, B.D. Moor, J. Vandewalle, LS-SVMlab: a matlab/c toolbox for least squares support vector machines, Tutorial. KULeuven-ESAT. Leuven, Belgium, 142 (2002) 1-2.