[1] Z. Liu, Y. Zhang, Y.J.I.T.o.S. Wang, Man,, P.C. Cybernetics, A type-2 fuzzy switching control system for biped robots, 37(6) (2007) 1202-1213.
[2] T.-H.S. Li, Y.-T. Su, S.-W. Lai, J.-J.J.I.T.o.S. Hu, Man,, P.B. Cybernetics, Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic, 41(3) (2011) 736-748.
[3] G. Dip, V. Prahlad, P.D.J.R. Kien, Genetic algorithm-based optimal bipedal walking gait synthesis considering tradeoff between stability margin and speed, 27(3) (2009) 355-365.
[4] P.N. Mousavi, C. Nataraj, A. Bagheri, M.A.J.A.M.M. Entezari, Mathematical simulation of combined trajectory paths of a seven link biped robot, 32(7) (2008) 1445-1462.
[5] S. Ito, S. Amano, M. Sasaki, P. Kulvanitt, In-place lateral stepping motion of biped robot adapting to slope change, in: 2007 IEEE International Conference on Systems, Man and Cybernetics, IEEE, 2007, pp. 1274-1279.
[6] M.T. Khorsandi, B. Miripour-Fard, A. Bagheri, Optimal tracking control of a biped robot walking in the lateral plane, in: 2011 International Symposium on Innovations in Intelligent Systems and Applications, IEEE, 2011, pp. 560-564.
[7] D.A. Shook, P.N. Roschke, P.-Y. Lin, C.-H.J.E.s. Loh, GA-optimized fuzzy logic control of a large-scale building for seismic loads, 30(2) (2008) 436-449.
[8] H. Shayeghi, A. Jalili, H.J.E.C. Shayanfar, Management, Multi-stage fuzzy load frequency control using PSO, 49(10) (2008) 2570-2580.
[9] Z. Bingül, O.J.E.S.w.A. Karahan, A Fuzzy Logic Controller tuned with PSO for 2 DOF robot trajectory control, 38(1) (2011) 1017-1031.
[10] R. Eberhart, J. Kennedy, Particle swarm optimization, in: Proceedings of the IEEE international conference on neural networks, Citeseer, 1995, pp. 1942-1948.
[11] P.J. Angeline, Using selection to improve particle swarm optimization, in: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), IEEE, 1998, pp. 84-89.
[12] R.C. Eberhart, Y. Shi, Comparison between genetic algorithms and particle swarm optimization, in: International conference on evolutionary programming, Springer, 1998, pp. 611-616.
[13] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y.J.I.T.o.p.s. Nakanishi, A particle swarm optimization for reactive power and voltage control considering voltage security assessment, 15(4) (2000) 1232-1239.
[14] X. Hu, R. Eberhart, Multiobjective optimization using dynamic neighborhood particle swarm optimization, in: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), Ieee, 2002, pp. 1677-1681.
[15] J.E. Fieldsend, S. Singh, A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence, (2002).
[16] S. Mostaghim, J. Teich, Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO), in: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706), IEEE, 2003, pp. 26-33.
[17] K.E. Parsopoulos, D.K. Tasoulis, M.N. Vrahatis, Multiobjective optimization using parallel vector evaluated particle swarm optimization, in: Proceedings of the IASTED international conference on artificial intelligence and applications, Acta Press, 2004, pp. 823-828.
[18] D.A. Winter, Biomechanics and motor control of human movement, John Wiley & Sons, 2009.
[19] L.-X. Wang, L.-X. Wang, A course in fuzzy systems and control, Prentice Hall PTR Upper Saddle River, NJ, 1997.
[20] R. Eberhart, P. Simpson, R. Dobbins, Computational intelligence PC tools, Academic Press Professional, Inc., 1996.
[21] A.P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Wiley & Sons, Inc., 2006.
[22] A. Ratnaweera, S.K. Halgamuge, H.C.J.I.T.o.e.c. Watson, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, 8(3) (2004) 240-255.
[23] M.J. Mahmoodabadi, A. Bagheri, S.A. Mostaghim, M.J.M. Bisheban, C. Modelling, Simulation of stability using Java application for Pareto design of controllers based on a new multi-objective particle swarm optimization, 54(5-6) (2011) 1584-1607.
[24] M. Mahmoodabadi, A. Bagheri, N. Nariman-Zadeh, A.J.E.O. Jamali, A new optimization algorithm based on a combination of particle swarm optimization, convergence and divergence operators for single-objective and multi-objective problems, 44(10) (2012) 1167-1186.
[25] J.-J. Liang, P.N. Suganthan, Dynamic multi-swarm particle swarm optimizer, in: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., IEEE, 2005, pp. 124-129.
[26] Z.-H. Zhan, J. Zhang, Y. Li, H.S.-H.J.I.T.o.S. Chung, Man,, P.B. Cybernetics, Adaptive particle swarm optimization, 39(6) (2009) 1362-1381.
[27] J.J. Durillo, J. García-Nieto, A.J. Nebro, C.A.C. Coello, F. Luna, E. Alba, Multi-objective particle swarm optimizers: An experimental comparison, in: International conference on evolutionary multi-criterion optimization, Springer, 2009, pp. 495-509.
[28] M. Reyes-Sierra, C.C.J.I.j.o.c.i.r. Coello, Multi-objective particle swarm optimizers: A survey of the state-of-the-art, 2(3) (2006) 287-308.
[29] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, in: International conference on parallel problem solving from nature, Springer, 2000, pp. 849-858.
[30] R.J.J.o.p.c. Toscano, A simple robust PI/PID controller design via numerical optimization approach, 15(1) (2005) 81-88.
[31] F. Golnaraghi, B.C. Kuo, Automatic Control Systems, Wiley Publishing, 2009.
[32] K. Atashkari, N. Nariman-Zadeh, M. Gölcü, A. Khalkhali, A.J.E.C. Jamali, Management, Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms, 48(3) (2007) 1029-1041.