[1] M.-S. Lee, D. Kim, S. Eom, H.-Y. Cha, K.-S. Seo, A compact 30-W AlGaN/GaN HEMTs on silicon substrate with output power density of 8.1 W/mm at 8 GHz, IEEE
Electron Device Letters, 35(10) (2014) 995-997.
[2] R.C. Fitch, D.E. Walker, A.J. Green, S.E. Tetlak, J.K. Gillespie, R.D. Gilbert, K.A. Sutherlin, W.D. Gouty, J.P. Theimer, G.D. Via, Implementation of High-Power-Density $ X $-Band AlGaN/GaN High Electron Mobility Transistors in a Millimeter-Wave Monolithic Microwave Integrated Circuit Process, IEEE electron device letters, 36(10) (2015) 1004-1007.
[3] T. Torii, S. Imai, H. Maehara, M. Miyashita, T. Kunii, T. Morimoto, A. Inoue, A. Ohta, H. Katayama, N. Yunoue, 60% PAE, 30W X-band and 33% PAE, 100W Ku-band PAs utilizing 0.15 μm GaN HEMT technology, in: 2016 46th European Microwave Conference (EuMC), IEEE, 2016, pp. 568-571.
[4] M. Kojima, M. Nagasaka, S. Nakazawa, K. Saito, S. Tanaka, T. Torii, H. Utsumi, K. Yamanaka, 16APSK transmission experiments over 12GHz-band satellite with 100W class GaN power amplifier, in: 2016 Asia-Pacific Microwave Conference (APMC), IEEE, 2016, pp. 1-3.
[5] J.i. Sone, Y. Takayama, Y. Aono, 14-GHz band 1 watt GaAs fet amplifier, Electronics Letters, 15(7) (1979)
212-213.
[6] S.C. Binari, P. Klein, T.E. Kazior, Trapping effects in GaN and SiC microwave FETs, Proceedings of the IEEE, 90(6) (2002) 1048-1058.
[7] A. Zhang, L. Rowland, E. Kaminsky, J. Kretchmer, V. Tilak, A. Allen, B. Edward, Performance of AlGaN/GaN HEMTs for 2.8 GHz and 10 GHz power amplifier applications, in: IEEE MTT-S International Microwave Symposium Digest, 2003, IEEE, 2003, pp. 251-254.
[8] A.H. Jarndal, Large signal modeling of gan device for high power amplifier design, kassel university press GmbH, 2006.
[9] J.-W. Lee, K.J. Webb, A temperature-dependent nonlinear analytic model for AlGaN-GaN HEMTs on SiC, IEEE Transactions on Microwave Theory and Techniques, 52(1) (2004) 2-9.
[10] W.R. Curtice, M. Ettenberg, A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers, IEEE Transactions on Microwave Theory and Techniques, 33(12) (1985) 1383-1394.
[11] P. Jansen, D. Schreurs, W. De Raedt, B. Nauwelaers, M. Van Rossum, Consistent small-signal and large-signal extraction techniques for heterojunction FET’s, IEEE transactions on microwave theory and techniques, 43(1) (1995) 87-93.
[12] S. Sheppard, K. Doverspike, W. Pribble, S. Allen, J. Palmour, L. Kehias, T. Jenkins, High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates, IEEE Electron Device Letters, 20(4) (1999) 161-163.
[13] J. Wood, D.E. Root, Bias-dependent linear scalable millimeter-wave FET model, IEEE Transactions on Microwave Theory and Techniques, 48(12) (2000) 2352-2360.
[14] A.E. Fathy, S.-W. Lee, D. Kalokitis, A simplified design approach for radial power combiners, IEEE Transactions on Microwave Theory and Techniques, 54(1) (2006) 247-255.
[15] J. Nevarez, G. Herskowitz, Output Power and Loss Analysis of 2/sup n/Injection-Locked Oscillators Combined through an Ideal and Symmetric Hybrid Combiner, IEEE Transactions on Microwave Theory and Techniques, 17(1) (1969) 2-10.
[16] H. Kuno, D.L. English, Millimeter-wave IMPATT power amplifier/combiner, IEEE Transactions on Microwave Theory and Techniques, 24(11) (1976) 758-767.
[17] G. Gonzalez, Microwave transistor amplifiers: analysis and design, Prentice hall New Jersey, 1997.