Numerical study on influence of a type of nanoparticles and volume fraction on turbulent heat transfer coefficient and pressure loss inside a tube

Document Type : Research Article


Chemical Engineering Department, Faculty of Engineering, Arak University, Arak, Iran


Conventional liquids have some limitations regarding the thermal properties. The nanoparticles addition is one of the techniques which can transcend them. In this research, heat transfer coefficient (h) and pressure loss (Δp) of various nanofluids containing Al2O3, SiO2, and MgO nanoparticles dispersed in water in an annular tube with constant wall temperature is considered. According to the literature, five different nanofluid volume concentrations (1%, 2%, 3%, 4% and 5%) are selected. Two models involving the mixture and VOF are applied, and the results are compared. The average convective heat transfer coefficient and pressure loss is enhanced with volume fraction and Reynolds number (Re) increment (3000<Re<10000) although the friction factor (f) is decreased. It is concluded that the simulated data for pressure loss and heat transfer coefficient were in good agreement with the experimental ones specially for SiO2 nanoparticles (particularly in low concentrations). The SiO2 nanofluid showed the best heat transfer compared to the other nanofluids. Moreover, the simulated data obtained from the mixture method showed more agreement with the experimental ones specially the high Reynolds numbers. 


Main Subjects

[1] P. Bhattacharya, S.K. Saha, A. Yadav, P.E. Phelan, R.S. Prasher, Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids, Journal of Applied Physics, 95(11) (2004) 6492-6494.
[2] T.T. Baby, S. Ramaprabhu, Enhanced convective heat transfer using graphene dispersed nanofluids, Nanoscale Research Letters, 6(1) (2011) 289.
[3] S.K. Das, S.U. Choi, W. Yu, T. Pradeep, Nanofluids: science and technology, John Wiley & Sons, 2007.
[4] H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid, Journal of Materials Science Letters, 21(19) (2002) 1469-1471.
[5] J. Buongiorno, D.C. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, Y.V. Tolmachev, P. Keblinski, L.-w. Hu, J.L. Alvarado, I.C. Bang, S.W. Bishnoi, M. Bonetti, F. Botz, A. Cecere, Y. Chang, G. Chen, H. Chen, S.J. Chung, M.K. Chyu, S.K. Das, R. Di Paola, Y. Ding, F. Dubois, G. Dzido, J. Eapen, W. Escher, D. Funfschilling, Q. Galand, J. Gao, P.E. Gharagozloo, K.E. Goodson, J.G. Gutierrez, H. Hong, M. Horton, K.S. Hwang, C.S. Iorio, S.P. Jang, A.B. Jarzebski, Y. Jiang, L. Jin, S. Kabelac, A. Kamath, M.A. Kedzierski, L.G. Kieng, C. Kim, J.-H. Kim, S. Kim, S.H. Lee, K.C. Leong, I. Manna, B. Michel, R. Ni, H.E. Patel, J. Philip, D. Poulikakos, C. Reynaud, R. Savino, P.K. Singh, P. Song, T. Sundararajan, E. Timofeeva, T. Tritcak, A.N. Turanov, S. Van Vaerenbergh, D. Wen, S. Witharana, C. Yang, W.-H. Yeh, X.-Z. Zhao, S.-Q. Zhou, A benchmark study on the thermal conductivity of nanofluids, Journal of Applied Physics, 106(9) (2009) 094312.
[6] H.-H. Ting, S.-S. Hou, Numerical study of laminar flow and convective heat transfer utilizing nanofluids in equilateral triangular ducts with constant heat flux, Materials, 9(7) (2016) 576.
[7] S. Zeinali Heris, M. Nasr Esfahany, S.G. Etemad, Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube, International Journal of Heat and Fluid Flow, 28(2) (2007) 203-210.
[8] G.C. Nikiforidis, E.D. Skouras, G.C. Bourantas, V.C. Loukopoulos, Natural convection of nanofluids flow with “nanofluid.oriented” models of thermal conductivity and dynamic viscosity in the presence of heat source, International Journal of Numerical Methods for Heat & Fluid Flow, 23(2) (2013) 248-274.
[9] A.M. Hussein, H.K. Dawood, R.A. Bakara, K. Kadirgamaa, Numerical study on turbulent forced convective heat transfer using nanofluids TiO2 in an automotive cooling system, Case Studies in Thermal Engineering, 9 (2017) 72-78.
[10] R. Davarnejad, M. Jamshidzadeh, CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow, Engineering Science and Technology, an International Journal, 18(4) (2015) 536-542.
[11] M. Hemmat Esfe, S. Saedodin, M. Mahmoodi, Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow, Experimental Thermal and Fluid Science, 52 (2014) 68-78.
[12] S. Zeinali Heris, S.G. Etemad, M. Nasr Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, International Communications in Heat and Mass Transfer, 33(4) (2006) 529-535.
[13] A. Meriläinen, A. Seppälä, K. Saari, J. Seitsonen, J. Ruokolainen, S. Puisto, N. Rostedt, T. Ala-Nissila, Influence of particle size and shape on turbulent heat transfer characteristics and pressure losses in water-based nanofluids, International Journal of Heat and Mass Transfer, 61 (2013) 439-448.
[14] R. Davarnejad, S. Barati, M. Zakeri, Simulation of convective heat transfer of a nanofluid in a circular crosssection, International Journal of Engineering-Transactions C: Aspects, 26(6) (2012) 571.
[15] H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method, Pearson education, 2007.
[16] S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab., IL (United States), 1995.
[17] R.L. Hamilton, O.K. Crosser, Thermal Conductivity of Heterogeneous Two-Component Systems, Industrial & Engineering Chemistry Fundamentals, 1(3) (1962) 187-191.
[18] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer an International Journal, 11(2) (1998) 151-170.
[19] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, International Journal of Heat and Mass Transfer, 43(19) (2000) 3701-3707.
[20] X. Wang, X. Xu, S.U. S. Choi, Thermal conductivity of nanoparticle-fluid mixture, Journal of thermophysics and heat transfer, 13(4) (1999) 474-480.
[21] F.P. Incropera, A.S. Lavine, T.L. Bergman, D.P. DeWitt, Fundamentals of heat and mass transfer, Wiley, 2007.
[22] K.B. Anoop, T. Sundararajan, S.K. Das, Effect of particle size on the convective heat transfer in nanofluid in the developing region, International Journal of Heat and Mass Transfer, 52(9) (2009) 2189-2195.
[23] F. Vahidinia, M. Miri, Numerical study of the effect of the Reynolds numbers on thermal and hydrodynamic parameters of turbulent flow mixed convection heat transfer in an inclined tube/Numericna raziskava vpliva Reynoldsovega stevila na toplotne in hidrodinamicne parametre mesanega konvektivnega prenosa toplote s turbulentnim tokom v posevni cevi, Strojniski Vestnik-Journal of Mechanical Engineering, 61(11) (2015) 669-681.
[24] A.M. Hussein, K.V. Sharma, R.A. Bakar, K. Kadirgama, The effect of nanofluid volume concentration on heat transfer and friction factor inside a horizontal tube, Journal of Nanomaterials, 2013 (2013) 1.