Molecular Dynamics Simulation of Al Energetic Nano Cluster Impact (ECI) onto the Surface

Document Type : Research Article



On the atomic scale, Molecular Dynamic (MD) Simulation of Nano Al cluster impact on Al (100) substrate surface has been carried out for energies of 1-20 eV/atom to understand quantitatively the interaction mechanisms between the cluster atoms and the substrate atoms. The many body Embedded Atom Method (EAM) was used in this simulation. We investigated the maximum substrate temperature Tmax  and the time tmax within which this temperature is reached as a function of cluster sizes. The temperature Tmax is linearly proportional to both energy per atom and total cluster energy. For the constant energy per atom and the cluster size increase, the correlated collisions rapidly transferred energy to the substrate, and the time tmax approached a constant value. We investigated the temperature Tmax dependence on the total energy ET and the cluster size. We showed that the cluster implantation and sputtering atoms from the surface are affected by the cluster size and kinetic energy of the clusters.  Finally, time dependence of the number Ndis of disordered atoms in the substrate was observed.  


[1]     Haberland, H.; Mall, M.; Moseler, M.; Qiang, Y.; Reiners, Y. Th. ; Thurner, Y. Filling of micron-sized contact holes with copper by energetic cluster impact, J. Vac. Sci. and Technol. 1994,  A12, 2925-2930
[2]     Yamada, I.; Taksoka, H. Low temperature epitaxy by ionized-cluster beam, J.Vac.Sci.Technol. 1986, A 4, 722-727
[3]     Beuhler, R.J.; Friedlander, G. Cluster-impact fusion, Phys. Rev. Lett. 1989, 63, 1292 - 1295
[4]     Echenique, P.M.; Manson, J.R. Cluster-impact fusion, Phys. Rev. Lett. 1990, 64, 1413 - 1416
[5]     Yamada, I.; Takaoka, G.H. Ionized Cluster Beams, Physics and Technology, Jpn. I. Appl. Phys. 1993, 32, 2121-2124.
[6]     I. Yamada, H. Inokawa and T. Takagi, .I. Appl. Phys. 1984, 56, 2764-2782
[7]     Tagaki, T. Ionized Cluster Beam Deposition, 1988 Noyes, New Jersey,chap.5,p.106
[8]     I. Yamada, G.H. Takaoka, X-ray characteristics of atomically flat gold films deposited by ICB, Nucl. Instr. and Meth. B, 1991, 59/60, 216-218.
[9]     M. Adachi, S. Ikuni, K. Yamada, Optical Characteristics of High-Power Excimer Laser Mirrors of Single-Crystal Aluminum Film With High Reflectance and Durability ,Nucl. Instr. and Meth. B, 1991, 59/60 , 940
[10]  C. Cleveland and U. Landman, Dynamics of Cluster-Surface Collisions ,Science, 1992, 257, 355-361
[11]  H. Haberland , Zinetulla Insepov , Michael Moseler, Molecular-dynamics simulation of thin-film growth by energetic cluster impact , Phys. Rev. B, 1995,51, 11061-11067
[12]  R.S. Averback and Mai Chaly. Sputtering of nanoparticles: Molecular dynamics study of Au impact on 20 nm sized Au nanoparticles, Nucl. Instr. and Meth. B , 1994,90, 191-194.
[13]  C. Anders, S. Meblinger, H.M. Urbassek, Deformation of slow liquid and solid clusters upon deposition: A molecular-dynamics study of Al cluster impact on an Al surface, Surface Science , 2006, 600,2587–2593
[14]  K.-H. Meiwes-Broer, Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry, 2000, Springer Series in Cluster Physics, Springer, Berlin.
[15]  C. Binns, Nanoclusters deposited on surfaces ,Surf. Sci. Rep., 2001, 44, 1-49.
[16]  Y. Xia, N.J. Halas , Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures, MRS Bull., 2005, vol. 30 ,5
[17]  S. Pratontep, P. Preece, C. Xirouchaki, R.E. Palmer, C.F. Sanz Navarro, S.D. Kenny, R. Smith, Scaling Relations for Implantation of Size-Selected Au, Ag, and Si Clusters into Graphite, Phys. Rev. Lett. , 2003,90, 055503-055507.
[18]  R. Smith, C. Nock, S. Kenny, J.J. Belbruno, M. Di Vece, S. Palomba, R.E. Palmer, Modeling the pinning of Au and Al clusters on graphite,Phys. Rev. B , 2006,73 , 125429-125434.
[19]  K. Meinander, K. Nordlund, J. Keinonen, Size dependent epitaxial cluster deposition: The effect of deposition energy, Nucl. Instrum. Meth. B, 2006, 242, 161-163
[20]  S. M. Foiles, M. I. Baskes, and M. S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B , 1986,33 , 7893-7991
[21]  Daw, Baskes, Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,Phys Rev Lett, 50, 1983,1285-1288Periodicals: