[1] Altman, E. and A. Jean-Marie (1998). Loss probabilities for messages with redundant packets feeding a finite buffer. IEEE Journal of Selected Areas in Communications 16 (5), 779-787.
[2] Bahary, E. and P. Kolesar (1972). Multilevel bulk service queues. Operations Research 20, 406-420.
[3] Bekker, R., S. C. Borst, O. J. Boxma, and O. Kella (2004). Queues with workload-dependent arrival and service rates. Queuing Systems 46 (3-4), 537-556.
[4] Bratiychuk, M. and A. Chydzinski (2003). On the ergodic distribution of oscillating queuing systems. Journal of Applied Mathematics and Stochastic Analysis 16 (4), 311-326.
[5] Choi, B. D. and D.I. Choi (1996). Queuing system with queue length dependent service times and its application to cell discarding scheme in ATM networks. IEE Proceedings Communications 143 (1), 5-11.
[6] Choi, B. D., Y. C. Kim, Y. W. Shin, and C. E. M. Pearce (2001). The M/G/1 queue with queue length dependent service times. Journal of Applied Mathematics and Stochastic Analysis 14 (4), 399-419.
[7] Choi, D. I., C. Knessl, and C. Tier (1999). A queuing system with queue length dependent service times, with applications to cell discarding in ATM networks. Journal of Applied Mathematics and Stochastic Analysis 12 (1), 35-62
[8] Chydzinski, A. (2002). The M/G-G/1 oscillating queuing system. Queuing Systems 42 (3), 255-268.
[9] Chydzinski, A. (2003). The M-M/G/1-type oscillating systems. Cybernetics and Systems Analysis 39 (2), 316-324.
[10] Chydzinski, A. (2004). The oscillating queue with finite buffer. Performance Evaluation 57 (3), 341-355.
[11] Fakinos, D. and A. Economou (2001). A new approach for the study of the M/G/1 queue using renewal arguments. Stochastic Analysis and Applications 19, 151-156.
[12] Federgruen, A. and H. C. Tijms (1980). Computation of the stationary distribution of the queue size in an M/G/1 queuing system with variable service rate. Journal of Applied Probability 17 (2), 515-522.
[13] Golubchik, L. and J. C. S. Lui (2002). Bounding of performance measures for threshold-based queuing systems: Theory and application to dynamic resource management in video-ondemand servers. IEEE Transactions on Computers 51 (4), 353-372.
[14] Harris, C. M. (1967). Queues with state-dependent stochastic service rates. Operations Research 15 (1), 117-130.
[15] Harris, C. M. (1970). Some results for bulk-arrival queues with state-dependent service times. Management Science 16 (5), 313-326.
[16] Ivnitskiy, V. A. (1975). A stationary regime of a queuing system with parameters dependent on the queue length and with nonordinary flow. Engineering Cybernetics 13 (85-90).
[17] Kendall, D. G. (1951). Some problems in the theory of queues. Journal of the Royal Statistical Society B 13 (2), 151-185.
[18] Kendall, D. G. (1953). Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain. The Annals of Mathematical Statistics 24 (3), 338-354.
[19] Kulkarni,V.G. (1995). Modeling and analysis of stochastic systems. London: Chapmanand Hall.
[20] Kwiatkowska, M., G. Norman, and A. Pacheco (2002). Mo del checking CSL until formulae with random time bounds. Lecture Notes in Computer Science 2399, 152-168.
[21] Larsen, R. L. and A. K. Agrawala (1983). Control of a heterogeneous two-server exponential queuing system. IEEE Transactions on Software Engineering 9 (4), 522-526.
[22] Li, S.-Q. (1989). Overload control in a finite message storage buffer. IEEE/ACM Transactions Communications 37 (12), 1330-1337.
[23] Loris-Teghem, J. (1981). Hysteretic control of an M/G/1 queuing system with two service time distributions and removable server. In Point Processes and Queuing Problems, Volume 24 of Col loq. Math. Soc. Janos Bolyai, pp. 291-305. Amsterdam: North-Holland.
[24] Lu, F. V. and R. F. Serfozo (1984). M/M/1 queuing decision processes with monotone hysteretic optimal policies. Operations Research 32 (5), 1116-1132.
[25] Ramalhoto, M. F. (1991). Some inventory control concepts in the control of queues. In W. C. Vogt and M. H. Mickie (Eds.), Model ling and Simulations, Volume 22, pp. 639-647. University of Pittsburg Press.
[26] Rhee, H.-K. and B. D. Sivazlian (1990). Distribution of the busy period in a controllable M/M/2 queue operating under the triadic (0; K; N; M) policy. Journal of Applied Probability 27 (2), 425-432.
[27] Sriram, K., R. S. McKinney, and M. H. Sherif (1991). Voice packetization and compression in broadband ATM networks. IEEE Journal on Selected Areas in Communications 9 (3), 294-304.
[28] Takagi, H. (1985). Analysis of a finite-capacity M/G/1 queue with a resume level. Performance Evaluation 5 (3), 197-203.
[29] Vijaya Laxmi, P., , U.C. Gupta (2000). Analysis of finite-buffer multi-server queues with Group arrivals: . Queuing Systems 36(1-3): 125-140.
[30] Welch, P. D. (1964). On a generalized M/G/1 queuing process in which the first customer of each busy period receives exceptional service. Operations Research 12 (5), 736-752.
[31] Willmot, G. E. (1993). On recursive evaluation of mixed-Poisson probabilities and related quantities. Scandinavian Actuarial Journal 2, 114-133.