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ABSTRACT  

We address the batch arrival  
/ /1

X
M G  systems with finite capacity under partial batch acceptance 

strategy where service times or rates oscillate between two forms according to the evolution of the number 

of customers in the system. Applying the theory of Markov regenerative processes and resorting to Markov 

chain embedding, we present a new algorithm for computing limit distributions of the number customers in 

the system. The numerical results are given in the paper for a clearer expression of the proposed 

computational methodologies. 
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1.  INTRODUCTION 

One way to increase server utilization while keeping 

customer waiting times under control is to consider 

queuing systems whose characteristics (such as service 

rate or input rate) depend on the evolution of the state of 

the system (such as the number of customers in the system 

or the workload). For instance, Choi et al. [6], [7], Harris  

[14], [15], Larsen and Agrawala [21], Ramalhoto [25], 

Rhee and Sivazlian [26] and Welch [30] studied queuing 

systems whose service characteristics depend on the 

evolution of the number of customers in the system; 

Chydzinski [9] and Takagi [28] studied queuing systems 

with an input rate depending on the evolution of the 

number of customers in the system; Ivnitskiy [16], Li [22] 

and Lu and Serfozo [24] studied queuing systems with 

input rates and service rates depending on the evolution of 

the number of customers in the system; Altman et al. [1] 

studied queuing systems with workload dependent service 

times; and Bekker et al. [3] and Golubchik and Lui [13] 

studied queuing systems in which the arrival rate and 

service rate depend on the system workload. 

In this paper, we investigate the limit distribution of the 

number of customers in oscillating 
 

/ /1
X

M G  systems with 

finite capacity. We use the term (service) oscillating 

systems in the sense used in [4], [8] and [10], i.e., as a 

queuing system that oscillates between two operating 

phases, 1 and 2, which impact the service rates or service 

characteristics, as described below. 

The limit distribution of the number of customers in a 

queuing system is an important characteristic of the 

system, as it provides information about the evolution of 

its congestion level over time. Federgruen and Tijms [12] 

compute the limit distribution of the queue length in 

oscillating / /1M G  systems recursively by using the 

theory of Markov regenerative processes (MRGP). 

Bratiychuk and Chydzinski [4] and Chydzinski [8] have 

addressed the limit analysis of the number of customers in 

oscillating systems with infinite capacity, and Chydzinski 

[10] has studied steady state characteristics of oscillating 

systems with single arrivals and finite capacity using the 

potential method. 

In general terms, when an oscillating system is in phase 

1 the number of customers moves between 0 and b-1, and 

when it is in phase 2 the number of customers moves 

between a+1 and n, 0 a b n    , with the integers a 

and b denoting the lower barrier and the upper barrier of 

the system, respectively. More precisely, if at time t the 

system is operating in phase 1, so that the number of 

customers in the system is smaller than the upper barrier 

b, then the system remains in phase 1 until the first 

subsequent epoch at which the number of customers in the 

system becomes greater or equal to the upper barrier b. At 

this epoch, the system changes to phase 2 and remains in 

this phase until the first subsequent epoch at which the 

number of customers in the system becomes (smaller or) 

equal to the lower barrier a, at this time the system 

changes again to phase 1, and so on. 

We consider two types of oscillating systems (i.e., I 

and II), that are characterized in terms of two distribution 

functions 
1A
 
and 

2A as follows: 

 In type I systems, a customer service time that is 

initiated in phase j has distribution
jA , 1,2,j   and is 

independent of the both customer arrival process and 

previous customer service times. 
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 In type II systems, a customer service initiated in phase 

2 has customer service time distribution
2A , and is 

independent of the both customer arrival process and 

previous customer service times. Conversely, a 

customer service initiated in phase 1 is started with 

service time distribution
1A . However, if Before this 

service time finish the system moves to phase 2 (due to 

the number of customer in the system becoming greater 

or equal to the upper barrier b) then a reset of the 

service is done at the instant the system changes phases 

and an additional time with distribution function 
2A  is 

added to the customer service time. This time also is 

independent of the customer arrival process and of 

previous customer service times. 

Type I oscillating systems have been addressed by 

several authors, including Bahary and Kolesar [2], Choi 

and Choi [5], Sriram et al. [27], Loris-Teghem [23] and 

[4], [7] and [12]. In particular, type I oscillating systems 

introduced in [5], [7] and [27] the analysis of cell-

discarding schemes for voice packets in ATM networks by 

allowing dropping of low-priority (less significant) bits of 

information during congestion periods. It is noteworthy 

that [22] uses similar models for overload control in 

message storage buffers such that both the input and 

service rates or characteristics may depend on the phase of 

the system. In addition, type II oscillating systems 

coincide with the queuing systems defined in [8] and [10]. 

In this paper, we address oscillating batch arrival 
 

/ /1
X

M G  systems with finite capacity n. These are 

queuing systems with a single server, at which customers 

arrive in batches, with independent and identically 

distributed (i.i.d) sizes, according to a Poisson process. 

The sequences of batch sizes and batch inter-arrival times 

are independent, and the system has finite capacity n, 

including the customer in service (if any). As regards the 

customer acceptance policy, we consider what is known as 

partial blocking (see e.g., Vijaya Laxmi and Gupta [29]) in 

which if at the arrival of a batch of l customers there are 

only m, m < l, free positions available in the system, then 

m customers of the batch enter the system and the 

remaining l-m customers of the batch are blocked. 

Our approach to investigate the limit distribution of the 

state of the system based on the fact that the state process 

in these systems constitutes a MRGP associated with 

appropriate Markov renewal sequences by means of  the 

embedded Markov chain (EMC) (see e.g., Kendall [17], 

[18]). Specifically, the information on the state of the 

system in continuous time is obtained from the analysis of 

the embedded discrete time Markov chains (DTMCs) 

associated with the sequence Post-customer departure 

instants. We remark that other authors have used the 

theory of MRGP to derive recursive relations in / /1M G  
systems, as, e.g., Fakinos and Economou [11] and [12]. 

We end this introduction with a brief outline of the 

paper. In Section 2, we present a Markov renewal process 

formed by the number of customers in the system at the 

departure epochs. We use this Markov chain embedding to 

characterize the limit distribution of the state of the system 

at post-customer departure epochs in Section 3 and then 

resort to the Markov regenerative structure of the state of 

the system to obtain the limit distribution of the state of 

the system in continuous time in Section 4. We detail in 

Section 5 how the computation of the limit distribution of 

the state of the system may be implemented for the 

considered system. In sequence, we provide in Section 6 

numerical results for the limit distribution of the state of 

the system obtained using the proposed computational 

methodologies. 

2.  THE EMBEDDED MARKOV CHAIN (EMC) 

We denote the oscillating batch arrival  
/ /1

X
M G  

systems with finite capacity n and with lower barrier a and 

upper barrier b as  
1 2/ /1/ /( , )

X
M G G n a b

 
systems, the 

service times oscillate between two forms according to 

evolution of the number of customers in the system, as 

described in the introduction. 

We assume ( 0)    denote the batch arrival rate and 

( )i if

denote the batch size probability function, where 

 1,2,3,... ,N   
and ( )r

if  
denotes the probability that the 

total number of customers in r customer batches is equal 

to i. Note that (0)

0j jf = , and  

(1) 
( ) ( )

j
r r

j j i i

i r

f f f






 

 
1

1

1

 

for r N  and , +1,...,j r r  where 
i j is the Kronecker 

delta function, i.e., 1 i j  if i j  and 0i j   otherwise. 

As mentioned in the Introduction, we let 
1A  and 

2A denote the distribution function associated with 

operating phases 1 and 2, respectively, in 
 

1 2/ /1/ /( , )
X

M G G n a b  systems. Moreover, we let 
11  , 

21  denote the expected values of the distributions 
1A  

and
2A , respectively. 

In addition, we let ( ),ijr A  0,1,2,...j N  , denote the 

probability that j customers arrive during a customer 

service time with distribution .iA  Then, by conditioning 

on the number of batches arriving during a customer 

service time with distribution
iA , we have 

(2) 
( )

0

( ) ( ), 1 2
j

l

j i j l i

l

r A f A i or


   

where ( )l iA is l–th mixed-Poisson probability with 

arrival rate   and mixing distribution
iA , i.e. (see e.g., 
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[20], [31]), 

(3) 
0

( )
( ) ( ).

!

t l

l i i

e t
A A dt

l

 





   

We also assume that  1 2( ) ( ( ), ( )), 0Y Y t Y t Y t t  
 

denotes the (continuous time) state process in 
 

1 2/ /1/ /( , )
X

M G G n a b
 
system, where 

1( )Y t is the number 

of customers in the system at time t and 
2 ( )Y t is the phase 

of the system at time t, and Y has state space 

  ( , , ) ( , , ) (0,1) ,n a b n a bE E   

with  

    ( , , )

1 1 1 1
( ,1) :1 1 ( ,2) : 1 .n a b

E c c b c a c n         

We now use the method of the EMC and apply it to our 

considered systems. The fundamental idea behind this 

method is that we select a special set of points in the state 

process Y. These special epochs in this approach must 

have the property that, if we specify the number in the 

system at one such point, then at the next suitable point in 

time we can again calculate the number in system. There 

are many such sets in the state process Y. An extremely 

convenient set of points with this property is the set of 

departure instants from service. Therefore, we define 

 m m N
T

 
 as the time sequence of customer service 

completion epochs, i.e.,  

mT  is the instant at which the m-th 

service completion takes place. In addition, we let 

 1 2( , ),p p p p

m m mY Y Y Y m N    denote the post-customer 

departure state process in this system, where 

1 1( )p

m mY Y T  is the number of customers that stay in the 

system after the m-th service completion and 

2 2( )p

m mY Y T  is the phase of the system after the m-th 

service completion. Clearly, because of the Markov 

property of the Poisson distribution the process 
pY is a 

Markov chain with discrete-parameter and because of the 

imbedded nature of the process it is known as an 

embedded Markov chain.  

3.  POST-CUSTOMER DEPARTURE STATE IN OSCILLATING 

SYSTEMS  

In this section, we present the derivation of the limit 

distribution of the post-customer departure state in type I 

and type II  
1 2/ /1/ /( , )

X
M G G n a b  systems, i.e., the limit 

distribution of 
pY . 

Note that the transitions in state process 
pY  are 

depending on the number of customers that arrive to the 

system during the successive customer service times. 

Thus, to characterize 
pY  it is useful to first characterize 

the probability that l customers arrive to the system during 

a customer service initiated in state c, denoted by ( )b
clr , 

for l N and ( , , )n a bc E . In lemma 1 we show how the 

probabilities ( )b
clr  may be computed for both type I and 

type II  
1 2/ /1/ /( , )

X
M G G n a b  systems. 

Lemma 1: In type I  
1 2/ /1/ /( , )

X
M G G n a b

 

systems, the 
( )

( , )

b

i j lr  probabilities are computed as: 

(4) 
( )

( , ) ( )b

i j l l jr r A  

for ( , , )( , ) n a bi j E and l N , where, as defined in (2), 

( )l jr A is the probability that l customers arrive during a 

customer service time with distribution .jA
 

and in type II  
1 2/ /1/ /( , )

X
M G G n a b  systems, the 

( )

( , )

b

i j lr  probabilities are such that  

1

( ) *

( , ) , 1 2

2

( ) 1 0 1

( , ) 1

( ) 2

l

b

i j l b i l

l

r A j and l b i

r r A A j and b i l

r A j



    


   




 

(5)  

where 

(6) 
*

, ( , ) ( ) ( ), 1
l

m l mu l u

u m

r A B q A r B m l



    

for distribution functions A and B of nonnegative random 

variables, with ( )muq A , 1 .m l   denoting the 

probability that during a customer service with 

distribution A, m or more customer arrivals take place and 

exactly u customers arrive until the first moment at which 

m or more customer arrivals have occurred. 

Moreover, 

(7) 

1 1
( )

0

( ) ( )
m m

s

mu v u v s

s v s

q A f f A 
 



 

   

with 

(8) 
0 ( , )

( )
( ) ( )

!

s s

s
t

e t
A A u du dt

s

 






    

denoting the s-th mixed-Poisson expected value with rate 

 and mixing distribution A, satisfying 

(9) 0 0

1
( ) (1 ( ))A A 


 

 

(10) 1

1
( ) ( ) ( ), 1s s sA A A s  


  

 

where ( ),s A the s-th mixed-Poisson probability with rate 

  and mixing distribution A is defined in (3). 

Proof: In type I  
1 2/ /1/ /( , )

X
M G G n a b  system, we 

obtain (4) by considering the number of  batches arriving 

during a customer service, as described in (2), since the 
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customer service time distribution is 
1A  if the service 

starts with the system in phase 1, and is 
2A  if the service 

starts with the system in phase 2. Similarly, the 
( )

( ,2)

b

i lr
 

probabilities in (5) for type II  
1 2/ /1/ /( , )

X
M G G n a b

 
systems follow by conditioning on the number of batches 

arriving during a customer service that starts with the 

system in phase 2, which has distribution 
2A . In the same 

way,  the 
( )

( ,1)

b

i lr  probabilities, 1l b i   , in (5) for type 

II  
1 2/ /1/ /( , )

X
M G G n a b

 
systems follow by conditioning 

on the number of batches arriving during a customer 

service that starts with i customers in the system and the 

system being in phase 1, which has distribution 
1A  if 

fewer than b i  customers arrive during the service time. 

We now address the computation of 
( )

( ,1)

b

i lr
 

probabilities, ,l b i  for type II  
1 2/ /1/ /( , )

X
M G G n a b

 
systems. These probabilities are associated to customer 

services initiated with the system in phase 1 such that the 

system changes from phase 1 to 2 during the customer 

service. For that, let 
mlC

 
denote the event that during a 

random time with distribution 
1A , independent of the 

customer arrival process, m or more customer arrivals take 

place and exactly l customers arrive until the first moment 

at which m or more customer arrivals have occurred, 

whose probability is 
1( ).mlq A  Moreover, let 

uD
 
denote 

the event that during a random time with distribution 
2A , 

independent of the both customer arrival process and the 

events  
1

,ml m l
C

 
u customer arrivals take place, whose 

probability is 
2( ).ur A  Then, for 1 1i b    and ,l b i   

we have: 

( )

( ,1) , ,

*

, 1 2 , 1 2

( ) ( ) ( )

( ) ( ) ( , ).

l l
b

i l b i u l u b i u l u

u b i u b i

l

b i u l u b i l

u b i

r P C D P C P D

q A r A r A A

   

   

  

 

  

 

 



 

As the previous relations leads to (6), it remains to show 

(7) to conclude the proof. The Equation (7) follows since, 

by conditioning on the value of the product of the time it 

takes to observe m or more customer arrivals by the 

indicator function of this time being smaller than an 

independent random variable with distribution A, we 

conclude that, for 1 m l  : 
1 1

( )

0 (0, )
0

1 1
( )

0

( )
( ) ( )

!

( ).

sm m
t s

ml v l v
u

s v s

m m
s

v l v s

s v s

t
q A e f f dt A du

s

f f A

 


 

 




 

 



 





  

 

 

Finally, (9) and (10) follow since, from Kwiatkowska et 

al. ([20], Theorem 2), 

(11) 
1

1
( ) ( ).s j

j s

A A 




 

   

                                          

We are now able to characterize the post-customer 

departure state process 
pY . We first note that 

pY is a 

DTMC with state space  ( , , ) ( , , )ˆ (0,1)n a b n a bE E   

where  

   

   
1 1 1 1( , , )

1 1 1 1

( ,1) :1 2 ( ,2) : 1 1 , 1
ˆ

( ,1) :1 1 ( ,2) : 1 1 , 1

n a b
c c b c a c n a b

E
c c b c a c n a b

         
 

         

 

Moreover, by a careful inspection, we can conclude the 

following theorem 1 for the transition probability matrix 

of .pY  

Theorem 1: The (one-step) transition probability 

matrix  cdP p , where c and 
( , , )n a bd E , of the DTMC 

pY  is such that for (0,1)c  , 

1 1

1 1

1

( )

, 1 2 2 1 1

( )

, 1 2 2 1 1

( )

0

( )

1

1 2

max ( 1, 1) 2

( , ) (( 1,2), ( ,1))

1

0

b

c d c

b

c d c

b

cd c

b

cll n c

r c d and c d b

r c d and b c d n

p r c d a a

r d n

otherwise

 

 

 

     


     


  


 





 

(12) 

with 
( )b

clr  defined in Lemma 1. Moreover, 

1

1

1

1 ( )

( ,1) 1 11

(0,1)( ,1) 1 ( ) ( )

( ,1) ( ,2)0 11

1

1

d b

l l d ll

d b b b

l l b l b bl

f r d b
p

f r f r d b a



 





  
 

   




 

(13) 

and 

1

1 1 1

1

1 1( ) ( )

(0,1)( ,1) ( ,1) 1 ( ,2) 1 11

1 ( ) ( )

( ,1) ( ,2) 11 ( )

0 1 1

1 1

1

b db b

d l l d l l l d ll l b

b b b

l l j l l n jl j n l l b j n l

a d b

p f r f r b d n

f r f r d n

 

    



     

    



     


  

 

   
 

(14) 

with max( ,0)x x   and min( , ).x y x y   

4.  CONTINUOUS TIME STATE IN OSCILLATING SYSTEMS  

In this section, we characterize the limit distribution of 

the continuous time state process for the type I and type II 
 

1 2/ /1/ /( , )
X

M G G n a b  systems, i.e., the limit 

distribution Y.  

To begin, we assume that ( )lS A  denotes a random 

variable, whose distribution is the distribution of the 

duration of a customer service time, S , with distribution 

function A  given that l customers arrive to the system 

during this customer service time. Furthermore, let 

, , 1 ,j lS j l 
 

denote random variables with the same 

distribution as the accumulated service time until the first 
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epoch at which j or more customer arrivals take place, 

given that exactly l customers arrive until the first moment 

at which j or more arrivals have occurred in a service 

period with a distribution function 
1A . 

The following lemma shows how absolute moments of 

the conditional random variables ( )lS A  and 
k

jlS  may be 

computed.  

Lemma 2: The absolute moment of order k N , of  

conditional random variables ( )l iS A and 
k

jlS , satisfies 

(15) 
( )

0

( )!
( ) [ ( )] ( )

!

l
k j
ll k j lk

j

k j
r A E S A A f

j








  

for ,l N and 

2
( )

1 0 0

( )!
( ) [ ( )] [ ( )] ( )

!

n l
k k j
ll k j lk

l n l j

k j
r A E S A E S A A f

j








   


   

(16) 

moreover, 

(17) 
1 1

( )

1 1

0

( )!
( ) [ ] ( ) .

!

j j
k m

jl jl m k s l sk
m s m

m k
q A E S A f f

m
 



 

 

 


    

Proof: Let G denotes the number of customer arrivals 

in duration of service a customer. For k N and ,l N  

we have: 
 

 

( )

0
0

( ) [ ( )] ( )1

( )
( )

!

k k
ll G l

jl
k u j

l

j

r A E S A E S A

u
u e f A du

j

 








 
 

 

 

( )

0
0

( )

0

( )! ( )
( )

! ( )!

( )!
( )

!

k jl
u j

lk
j

l
j

k j lk
j

k j u
e A du f

j k j

k j
A f

j

 

























 


 

Finally, equation (16) follows from equation (15) since  
2

1 0

( ) [ ( )] [ ( )] ( ) [ ( )],
n

k kk
l ll l

l n l

r A E S A E S A r A E S A


  

    

by taking into account that 

0

[ ( )] ( ) [ ( )].
km
ll

l

E S A r A E S A


   

We now address the computation of [ ],k

jlE S  which 

goes as follows:

 1 ( )

1 1
0

0

1
1 ( )

1
0

0

( )
( ) [ ] ( )

!

( )! ( )
( )

! ( )!

ml
jk k u m

jl jl s l ss m
m

m kj
ju m

s l sk s m
m

u
q A E S u e f f A u du

m

m k u
e A u du f f

m m k













 





 











 

 
 

which leads to (17), in view of (2).          
                                                                                 
We use the above lemma to address the limit 

distribution Y. We first note that the state process Y is a 

MRGP with state space
( , , )n a bE associated with the time 

sequence ( )k k NT  
of post-customer departure epochs. 

Therefore, using Kulkarni [19] (Theorem 9.30), we 

conclude that the limit probability vector of Y, 

( , , )( ) n a bd d E
p p


 , given by the following function of the 

limit post-customer departure state probability vector, 

( , , )( ) ,n a bc c E
 




 

(18) 
( , , )

( , , )

n a b

n a b

c cdc E
d

c cc E

p
 

 








 

with 
( , , )n a bd E , where: 

 
   c denotes the mean time elapsed between two 

consecutive service completions conditioned on the 

state of the system after the first of these service 

completions being c, i.e.,  

           
1[ ( ) ]c k k kE T T Y T c 

     

       for 
( , , )n a bc E . 

 
cd denotes the expected sojourn time of Y in state d 

in-between two consecutive service completions 

conditioned on the state of the system after the first 

of these service completions being c, i.e., 

         

1

{ ( ) }1 ( )
k

k

T

Y t d k
Tcd E dt Y T c

 


  
    

         for 
( , , ) ( , , ), .n a b n a bc E d E   

Theorem 2: The mean time elapsed between two 

consecutive service completions conditioned on the state 

of the system after the first of these service completions 

being c, ,c  obtains in type I  
1 2/ /1/ /( , )

X
M G G n a b

 
systems as: 

 

2

1

2 1

1

2

2

1 1
(0,1) 1

1 1
(0,1) 1

1
1 0

1
2

c

c and b

c and b

c and c

c

 

 







  




  


 
  


 
   

(19) 

and, in type II  
1 2/ /1/ /( , )

X
M G G n a b

 
systems 

1

1

1 1

1

2

2

1 1
( 1)

1 1

0 12

1
( 1)

1 2 1

1 1

1

( ,1)

1 2

1
2

1 1
( ) ( )

1
( ) 1 0

1 1
(0,1)

b c l
j

l j l

l b c l j

c b c b c
l

s u m

l s l u l m b c u

b

l l l

l l b

c

r A j A f

l A f f c and c

f f c




 







 

  


   

  


      



 










 
  




  


  

   

 

(20). 

Proof: We first note that equation (19) for type I 

oscillating systems follow similarly to the case of regular 

systems taking into account that the duration of a service 
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initiated with the system in phase i has expected value 

21 , 1,2.i   

Suppose now that the oscillating system is of type II. 

The first branch of (20) follows from the fact that a service 

time initiated with the system in phase 2 has distribution 

function 
2A with mean 

21 .  In addition, if 

1 1( ,1), 0c c c  , then c  
is the mean duration of a service 

time initiated with the system in state c, for which 

conditioning on the number of customers that arrive to the 

system during the first service time, we obtain  
1

1 11

1

1 10

, 1 ,

2

( ) [ ( )]

1
( ) [ ] .

b c

c l ll

b c l b c ll b c

r A E S A

q A E S





 



  



 
  

 




 

(21) 

Now, taking into account Lemma 2, we have 

1 1

1

1 1 ( )

1 1 1 10 0 0

1 1 ( 1)

10 1

1
( ) [ ( )] ( 1) ( )

1
( ) .

b c b c l j

l l j ll l j

b c l j

j ll j

r A E S A j A f

j A f







   

  

   

 

 



  

 

  

(22) 

Similarly, taking into account equation (17), in Lemma 2, 

and (11), we have 

1 1

1 1

, 1 ,

1 ( 1)

11 1

( ) [ ]

1
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b c m b c m

b c b c l

s u m ul s l u l

q A E S

l A f f
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for 
1,m b c   so that  

1 11

1 1

1

, 1 ,

1 ( 1)

11 1
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1
( ) .

b c m b c mm b c

b c b c l

s u m ul s l u l m b c

q A E S
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(23) 

Now, the validation of the second branch of (20) follows 

from (21), by taking into account (22)-(23) and the fact 

that 
11 1
, 1 1( ) ( ).b c m ll b c l b c

q A r A   
   

Finally, the third branch of (20) follows from the facts 

already established by conditioning on the size of the first 

batch arriving after a service completion that leaves the 

system empty, taking into account that the mean waiting 

time for this batch to arrive to the system is equal to1  . 

 
By conditioning on the number of customer arrivals in 

the first service that takes place after a service completion 

that leaves the system in state c, we conclude the 

following result. 

Theorem 3: In  
1 2/ /1/ /( , )

X
M G G n a b  systems, 

0,cd   if 
1 1d c . In type I and type II systems, 
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2 1 1
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2 1
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c d
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(24) 

In turn, in type I systems, 
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(

( ) ( 1) ( 2)

0 2

( )

d c

d

ll n c

c

r A d c and d or b d n and d

d b and d

r A d n





 

     



  




 

(25) 

and in type II systems,  

1 1

1 1

1 1 11

1

1

1 1

1 1 1 2
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, 1 2 1 2,1)

, 1 2 1
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(
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(26) 

if 
1 0.c   Moreover, 
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(27) 

 

in type I and type II systems. 

5.  ALGORITHMIC ANALYSIS 

We summarize the obtained results in previous sections 

as a procedure to calculate the limit distributions of the 

post-customer departure state and the continuous time 

state in type I and type II  
1 2/ /1/ /( , )

X
M G G n a b  systems 

by the algorithm given in Figure 1.  

This algorithm requires as input the mixed-Poisson 

probabilities  1 0 2
( )l l n
A

  
and  2 0 2

( )l l n
A

  
, along with 

the batch size probabilities 
1 2( )l l nf   

. The algorithm 

consists of eleven steps, with the first six steps including 

the computation of auxiliary quantities that are used in 

steps 7-11. The computation of the limit probability vector 

of the post-customer departure state ( )c   is done in 

Step 8, where 1 denotes a vector of ones. The computation 

of the limit probability vector of the continuous time 

state ( )cp p , is done in Step 11 and requires the 

quantities computed in steps 8-10. We note that in the 

considered oscillating systems, the lower and upper 

barriers (respectively, a and b) are smaller or equal to n. 
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ALGORITHM  

Input:
1 2,  ,  , , ,n a b    , 

1 2( )l l nf   
‚  1 2 0 2

( ), ( )l l l n
A A 

  
 

1- Compute  ( )

0 2

j

l j l n
f

   

using (1). 

2- Compute  1 2 0 2
( ), ( )l l l n
A A 

  
using (9) and (10).  

3- Compute  
1 1, 2

( )ml m b m l n
q A

     
 using (7) if the 

system is of type II. 

4- Compute  1 2 0 2
( ), ( )

l nl lr A r A
  

 using (2). 

5- Compute  
1

1 1

( )

( ,1)
1 1, 2

b

c l
c b b c l n

r
      

using (5) if the 

system is of type II.  

6- Compute  1 2 0 2
( ), ( )

l nl lr A r A
  

 using ( )

0
( ) ( )

l j

i j i ljlr A A f


 .

 

7- Compute   ( , , ), n a bij i j E
P p


  using (12)-(14). 

8- Compute   such that P   and 1 1  . 

9- Compute   ( , , )n a bc c E



using (19) if the system of 

type I and using (20) if the system is of type II. 

10- Compute   ( , , ) ( , , ),n a b n a bc E d Ecd
 

using (24)-(27). 

11- Compute 
( , , )( ) n a bc c E

p p


 using (18). 

Output: 
( , , )( ) n a bc c E

 


 and 
( , , )( ) n a bc c E

p p


  

Figure 1: Algorithm to compute the limit distributions 

of the post-customer departure state and the 

continuous time state in type I and type II 
 

1 2/ /1/ /( , )
X

M G G n a b
 
system. 

6.  NUMERICAL RESULTS  

In this section, we use the result proposed in the 

previous sections to solve several oscillating 
 

/ /1/
X

M G n  systems and illustrate the sensitivity of their 

associated limit distribution and performance measures 

with respect to batch size and service time distributions. 

Specifically, to evaluate the influence of the batch size 

distribution we consider the following batch size 

distributions with common mean  : deterministic - the 

constant  , ( )D  ; geometric with success probability 

1/ν , Geo (1/ν) ; shifted binomial - a binomial with m trials 

and success probability (ν-1)/m added of one unit, 

1+ ( ,( -1)/ )B m n m ; and, discrete uniform on the set 

 1,2,...,2ν-1 , Unif (1,2ν-1).  

The service time distributions presented in this section 

have the following parameterization with positive mean 
-1 : deterministic with value -1 , 1( )D  ; exponential 

with rate  , ( )M  ; Erlang with k phases, ( )k kE E k ; 

and, Pareto with parameters ( , )k with 1   and 

( 1) /k    , ( ,( 1) / ).P     

We let also 
0 1( )i i n    

  denote the limit probability 

vector of the number of customer in the system at post-

customer departures, and 
0( )i i np p  

  denote the limit 

probability vector of the number of customer in the system 

in continuous time, so that 

( ,1)

( ,1) ( ,2)

( ,2)

0

1 1

i

i i i

i

i a

a i b

b i n



  



  


      


 

 

and 

( ,1)

( ,1) ( ,2)

( ,2)

0

1 1

i

i i i

i

p i a

p p p a i b

p b i n

  


      


 

 

First, to illustrate the methodology, we present in tables 

1, 2 and 3 the limit probability vector of the number of 

customers at post-customer departures, 
0 1( )i i n    

  , and 

in continuous time, 
0( )i i np p  

  , of regular and type I 

and type II oscillating  
/ /1/

X
M G n  systems. 

TABLE 1 

LIMIT PROBABILITY VECTORS OF THE NUMBER OF CUSTOMERS IN 

THE SYSTEM AT POST-CUSTOMER DEPARTURES IN REGULAR AND IN 

TYPE I OSCILLATING (2/3) / /1/ 20GeoM D  SYSTEMS WITH BATCH 

ARRIVAL RATE 2 / 3 . 

k 

(2/3)
/ (4 / 3) (2 / 3) / 1 / 20

Geo
M D D

 with barriers (5,12)-

Type I 

(2/3) 1
/ ( ) / 1 / 20

Geo
M D 

  
-1 2 / 3   -1 1.09   -1 4 / 3   

k   
k   

k   
k   

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

1.2034.10-2 

2.1249.10-2 

3.1666.10-2 

4.4862.10-2 

6.2532.10-2 

8.6708.10-2 

9.8208.10-2 

1.0344.10-1 

1.0325.10-1 

9.7780.10-2 

8.6561.10-2 

6.8463.10-2 

5.3697.10-2 

4.0162.10-2 

2.9311.10-2 

2.1115.10-2 

1.5104.10-2 

1.0763.10-2 

7.6544.10-3 

5.4376.10-3 

2.2251.10-1 

1.9869.10-1 

1.5761.10-1 

1.1847.10-1 

8.6671.10-2 

6.2506.10-2 

4.4736.10-2 

3.1888.10-2 

2.2680.10-2 

1.6113.10-2 

1.1440.10-2 

8.1201.10-3 

5.7626.10-3 

4.0892.10-3 

2.9016.10-3 

2.0589.10-3 

1.4609.10-3 

1.0366.10-3 

7.3551.10-4 

5.2188.10-2 

1.2831.10-2 

1.7986.10-2 

2.1492.10-2 

2.4308.10-2 

2.6926.10-2 

2.9589.10-2 

3.2417.10-2 

3.5476.10-2 

3.8807.10-2 

4.2445.10-2 

4.6422.10-2 

5.0770.10-2 

5.5525.10-2 

6.0725.10-2 

6.6413.10-2 

7.2633.10-2 

7.9436.10-2 

8.6876.10-2 

9.5012.10-2 

1.0391.10-1 

4.0928.10-4 

7.2269.10-4 

1.0770.10-3 

1.5258.10-3 

2.1268.10-3 

2.9491.10-3 

4.0827.10-3 

5.6493.10-3 

7.8158.10-3 

1.0813.10-2 

1.4959.10-2 

2.0695.10-2 

2.8630.10-2 

3.9608.10-2 

5.4795.10-2 

7.5805.10-2 

1.0487.10-1 

1.4508.10-1 

2.0071.10-1 

2.7767.10-1 

Mean 

St.Dev. 

8.1002 

3.8230 

2.8083 

2.9441 

12.4549 

5.2285 

16.4273 

2.9541 
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TABLE 2 

LIMIT PROBABILITY VECTORS OF THE NUMBER OF CUSTOMERS IN 

CONTINUOUS TIME IN REGULAR AND IN TYPE I OSCILLATING 

(2/3) / /1/ 20GeoM D  SYSTEMS WITH BATCH ARRIVAL RATE 2 / 3 . 

k 

(2/3)
/ (4 / 3) (2 / 3) / 1 / 20

Geo
M D D

 with barriers 

(5,12)-Type I 

(2/3) 1
/ ( ) / 1 / 20

Geo
M D 

  
-1 2 / 3   -1 1.09   -1 4 / 3   

kp  
kp  

kp  
kp  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

1.7971.10-2 

2.5742.10-2 

3.6711.10-2 

5.1237.10-2 

7.1052.10-2 

9.8361.10-2 

1.3050.10-1 

1.0559.10-1 

1.0270.10-1 

9.4626.10-2 

8.0549.10-2 

5.9152.10-2 

4.6109.10-2 

3.3247.10-2 

2.3781.10-2 

1.6942.10-2 

1.2045.10-2 

8.5550.10-3 

6.0731.10-3 

4.3101.10-3 

1.7058.10-3 

3.3362.10-1 

1.8670.10-1 

1.2606.10-1 

9.0523.10-2 

6.5973.10-2 

4.7982.10-2 

3.4684.10-2 

2.4927.10-2 

1.7835.10-2 

1.2722.10-2 

9.0567.10-3 

6.4390.10-3 

4.5743.10-3 

3.2480.10-3 

2.3055.10-3 

1.6363.10-3 

1. 1612.10-3 

8.2399.10-4 

5.8469.10-4 

4.l488.10-4 

2.8730.10-2 

1.7347.10-2 

1.8535.10-2 

1.9679.10-2 

2.2137.10-2 

2.4810.10-2 

2.7521.10-2 

3.0316.10-2 

3.3267.10-2 

3.6439.10-2 

3.9878.10-2 

4.3626.10-2 

4.7717.10-2 

5.2189.10-2 

5.7078.10-2 

6.2424.10-2 

6.8271.10-2 

7.4665.10-2 

8.1659.10-2 

8.9307.10-2 

9.7671.10-2 

5.5463.10-2 

4.6023.10-4 

6.5925.10-4 

8.9447.10-4 

1.2733.10-3 

1.7949.10-3 

2.5050.10-3 

3.4781.10-3 

4.8184.10-3 

6.6694.10-3 

9.2284.10-3 

1.2768.10-2 

1.7664.10-2 

2.4437.10-2 

3.3807.10-2 

4.6770.10-2 

6.4703.10-2 

8. 9512.10-2 

1.2383.10-1 

1.7132.10-1 

2.3701.10-1 

1.4640.10-1 

Mean 

St.Dev. 

7.6549 

3.8052 

2.7949 

4.0829 

12.8091 

5.4386 

16.9493 

3.0111 

 

Tables 1 and 2 show how the number of customers in 

the system evolves in regular (2/3) / (2 /3) /1/ 20,GeoM D  
(2/3) / (1.09) /1/ 20GeoM D  

and (2/3) / (4 /3) /1/ 20GeoM D  

systems and in type I (2/3) / (4 /3) (2 /3) /1/ 20/(7,11)GeoM D D  
systems with customer batch arrival rate 2/3.   The 

second regular system considered has the same mean 

service rate of the overall mean service rate in the 

oscillating system, i.e., 

 

1
1

0 1

4 2
( ,1) ( ,2) 1.09

3 3

a n

i i a

p i p i




  

     

where, for instance, 
1

0

( ,1)
a

i

p i




  is the proportion of time 

the oscillating system is in phase 1.  

In Table 3 we can compare type I and type II 
(1/ 4) / (2) (5/ 4) /1/ 20/(7,11)GeoM D D systems. The results 

show that the limit probability vectors of the number of 

customer at post-customer departure and in continuous 

time are similar for the compared type I and type II 

oscillating systems and the barriers of oscillating systems  
 

 

TABLE 3 

LIMIT PROBABILITY VECTORS OF THE NUMBER OF CUSTOMERS AT 

POST-CUSTOMER DEPARTURES EPOCHS AND IN CONTINUOUS TIME IN 

TYPE I AND TYPE II (1/ 4) / (2) (5/ 4) /1/ 20/(7,11)GeoM D D  

SYSTEMS WITH BATCH ARRIVAL RATE 1/ 4  .  

k 
 

Type I 

 
 

Type II 

k   
kp  

k   
kp  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

4.6378.10-3 
6.4870.10-3 
8.8699.10-3 
1.1978.10-2 
1.6061.10-2 
2.1450.10-2 
2.8581.10-2 
3.8031.10-2 
4.3690.10-2 
4.8890.10-2 
5.3317.10-2 
5.7881.10-2 
6.2644.10-2 
6.7651.10-2 
7.2945.10-2 
7.8565.10-2 
8.4549.10-2 
9.0936.10-2 
9.7764.10-2 
1.0507.10-1 

- 

1.3358.10-2 
8:6658.10-3 
1.1534.10-2 
1.5338.10-2 
2.0386.10-2 
2.7087.10-2 
3.5984.10-2 
4.7799.10-2 
4.3685.10-2 
4.6437.10-2 
4.7955.10-2 
5.2511.10-2 
5.6159.10-2 
6.0126.10-2 
6.4426.10-2 
6.9074.10-2 
7.4090.10-2 
7.9496.10-2 
8.5317.10-2 
9.1580.10-2 
4.8992.10-2 

4.5711.10-3 
6.3937.10-3 
8.7423.10-3 
1.1805.10-2 
1.5830.10-2 
2.1142.10-2 
2.8170.10-2 
3.7484.10-2 
4.3062.10-2 
4.8187.10-2 
5.2550.10-2 
5.7504.10-2 
6.2572.10-2 
6.7823.10-2 
7.3315.10-2 
7.9100.10-2 
8.5226.10-2 
9.1739.10-2 
9.8683.10-2 
1.0610.10-1 

- 

1.3185.10-2 

8.5534.10-3 

1.1385.10-2 

1.5140.10-2 

2.0122.10-2 

2.6736.10-2 

3.5518.10-2 

4.7179.10-2 

4.3119.10-2 

4.5835.10-2 

4.7334.10-2 

5.2182.10-2 

5.6086.10-2 

6.0267.10-2 

6.4748.10-2 

6.9554.10-2 

7.4710.10-2 

8.0243.10-2 

8.6182.10-2 

9.2559.10-2 

4.9365.10-2 

Mean 

St.Dev. 

13.1145 

4.57138 

12.8558 

5.0917 

13.1568 

4.5603 

12.9020 

5.0822 

 

has a big effect on the number of customers in the 

system. 

We next proceed to illustrate the sensitivity of 

performance measures associated with oscillating type II 
 

/ /1/
X

M G n  systems with respect to batch size and 

service time distributions. 

In Figure 2 we consider type II 
[ ] / (0.6) (1.1) /1/ 20XM M M

 
systems with service rate 

0.6 in phase 1 and service rate 1.1 in phase 2. The figure 

shows how the mean number of customers in the system 

depends on the batch size distribution and how it evolves 

as a function of the lower and upper barriers. 

Figure 3 shows how the mean number of customers in 

the system evolves as the lower and upper barriers 

increase, for several service time distributions. The 

systems considered have deterministic batch size 

distribution with mean 3, and batch arrival rate 1/3. The 

service time distributions have service rate 0.6 in phase 1 

and service rate 1.1 in phase 2. From figures 2 and 3 we 

can conclude that the batch size and service time 

distributions influence the mean number of customers in 

the system. 
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Figure 2: Mean number of customers in type II 
[ ] / (0.6) (1.1) /1/ 20/( , )XM M M a b systems with a batch 

arrival rate 1/3, for several batch size distributions 

with mean 3. 

 

 

Figure 3: Mean number of customers in type II 
(3) / (0.6) (1.1) /1/ 20/( , )DM G G a b systems with batch 

arrival rate 1/3, for several batch size distributions. 

 

 

Figure 4: Mean number of customers in type II 
[ ] / (0.6) (1.1) /1/ 20XM G G  systems with unit customer 

arrival rate and shifted binomial batch size 

distribution on the first one, and geometric batch size 

distribution on the next one, as a function of the mean 

batch size for several service time distributions. 

 

Figure 4 gives the mean number of customers in type II 
[ ] / (0.6) (1.1) /1/ 20/(8,15)XM G G  systems with customer 

arrival rate ( )f  kept fixed equal to the unit; and shifted 

binomial batch size distribution on the left hand-side, and 

geometric batch size distribution on the right hand-side. 

We observe that for a given service time distribution, the 

mean number of customers in the system depends on the 

both batch size distribution and its mean. 

7.  CONCLUSION 

We addressed oscillating batch arrival  
/ /1

X
M G  

systems with finite capacity n and computed the limit 

distribution of the both state of the system at post-

customer departure epochs and the state of the system in 

continuous time. We also explained how the computation 

of the limit distribution of the state of the system may be 

implemented for the considered system by represented an 

algorithm. The numerical results showed that the limit 

probability vectors of the number of customer at post-

customer departure and in continuous time are similar for 

type I and type II the oscillating systems and the barriers 

of oscillating systems has a big effect on the number of 

customers in the system. Also, the batch size and service 

time distributions influence the mean number of customers 

in the system. 
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