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ABSTRACT: In this paper, a dynamical model-based SMC (Sliding Mode Control) is proposed for 
trajectory tracking of a 3-RPS (Revolute, Prismatic, Spherical) parallel manipulator. With ignoring small 
inertial effects of all legs and joints compared with those of the end-effector of 3-RPS, the dynamical model of 
the manipulator is developed based on Lagrange method. By removing the unknown Lagrange multipliers, the 
distribution matrix of control input vector disappears from the dynamical equations. Therefore, the calculation 
of the aforementioned matrix is not required for modeling the manipulator. It in trun results in decreased 
mathematical manipulation and low computational burden. As a robust nonlinear control technique, a SMC 
system is designed for the tracking of the 3-RPS manipulator. According to Lyapunov’s direct method, the 
asymptotic stability and the convergence of 3-RPS manipulator to the desired reference trajectories are 
proved. Based on computer simulations, the robust performance of the proposed SMC system is evaluated 
with respect to FL (feedback linearization) method. The proposed model and control algorithms can be 
extended to different kinds of holonomic and non-holonomic constrained parallel manipulators. 
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1- Introduction
In recent decades, parallel manipulators have been widely 
studied because of their satisfactory performance criteria such 
as rigidity, accuracy and high weight/load ratio. These kinds 
of manipulators are widely used in practical applications, 
including flight vehicle simulators, high-precision machining 
centers, assembly lines, and pick and place robotic arms and 
are becoming increasingly popular in the industry. On the 
other hand, the main drawbacks of these manipulators are 
small workspace and difficult mathematical modeling. 
Generally speaking, forward kinematic modeling of parallel 
robots is regarded as a challenge. In spite of developing 
analytical direct kinematic models of some special structures 
[1-3], the generalized coordinates of the end-effector cannot 
be usually expressed as analytical terms of actuated joints 
coordinates . Since the solution of the forward kinematic is 
not unique, some techniques have been presented to find all 
the possible solutions of the forward kinematic problem. It 
should be noted that there exists no algorithm that addresses 
the current pose of the platform among the set of solutions. 
Numerical methods using a-priori information on the current 
pose are also developed. These methods are more compatible 
with a real-time approach [4]. One of the most popular 
methods is the Newton’s method which is used in this paper. 
If the initial approximation for the coordinates of the moving 
platform is sufficiently close to its real coordinates, this 
method yields the exact solution [5, 6].
By the same token, the dynamical model of parallel 
manipulators which is particularly required to build up a 
control system has a tendency to be very complicated due 
to kinematic constraints and closed-loop structure [7]. Most 

studies on the dynamics of these manipulators are based 
on the Newton–Euler method, the Lagrangian formulation, 
and the principle of virtual work. The aforementioned 
dynamical equations are accurate by containing actuating 
legs having connections to each other in their formulation. 
The computation of the dynamics is very time-consuming 
[8]. In [9], developing forward dynamical model for the six 
limbs Stewart platform based on Kane’s equation is proposed. 
Khalil and Guegan [10] presented closed-form solutions for 
the complete inverse and forward dynamical models of the 
Stewart manipulator robot. The models are established in 
terms of the dynamical models of the legs. For modeling a 
3-RPS parallel manipulator using Lagrange method, Pendar 
et al. [11] introduces a formulation scheme in which the 
natural orthogonal complement matrix for omitting Lagrange 
multipliers can be found by the inverse calculation of some 
of 2×2 matrices instead 9×9 ones. A linear modeling method 
for parallel robots based on observable kinematic elements 
is proposed in [12]. In [13], by implementing an approach 
that deals with a reduced dynamical model with a physically 
feasible set of parameters, a simplified model based on a 
set of relevant parameters is developed. There, it is shown 
that the controller design for the reduced model leads to a 
better trajectory tracking compared with the control system 
developed based on the complete set of dynamic parameters. 
The problem of controlling robotic manipulators has earned 
the interest of many authors during the present decade. Like 
many engineering applications, in robotics, it is impossible 
or rather challenging to attain an exact dynamical model of a 
robot, due to the existence of flexibility, backlash, Coulomb 
friction, a variation of payload, unidentified disturbances, 
the coupling of limbs, and time-varying parameters [14, 
15]. Therefore, the mathematical model of a robot is always 
an approximation of the real robot. Accordingly, control 
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schemes considered for controlling a robot should be robust, 
fast convergent and have a simple structure. Sirouspour and 
Salcudean [16] focus on the control problem of hydraulic 
robot manipulators where a controller is further improved with 
adaptation laws to compensate for parameter uncertainties in 
the system dynamics. In the research work by Davliakos and 
Papadopoulos [17] a model-based controller is developed 
for an electro-hydraulic Stewart manipulator in which rigid 
body equations of motion and hydraulics dynamics, including 
friction and servo valve models, are considered. Khosravi and 
Taghirad study PID control of fully-constrained cable-driven 
parallel robots in the presence of structured and unstructured 
uncertainties in the dynamics of the robot [18]. As a approach 
to the robust control, sliding mode control is receiving 
attention. The advantages of using sliding mode control are 
its fast response, good transient performance and robustness 
against disturbances and noises [14, 19-21]. 
In the current paper, following the inverse and forward 
kinematical modeling, under the assumption that the leg inertia 
is negligible, the dynamical model of the 3-RPS manipulator 
is obtained using Lagrange method. Considering six 
dependent generalized coordinates in the modeling process, 
and by applying the principle of virtual work, the distribution 
matrix of control input vector in the formulation appears as 
an identity matrix. Therefore, mathematical manipulation 
and computational burden significantly decrease. The 
present method can be applied to nonholonomic systems 
as well. With following linearization, the error dynamics of 
the 3-RPS through the computed torque method, an SMC 
law is applied to stabilize the robot around its reference 
trajectories even in the presence of exogenous disturbances, 
and uncertainties in the model . Through software simulation, 
the superiority of the proposed control system is compared 
with a FL control method. As can be seen, both the SMC and 
FL control systems yield the convergence of the end-effector 
to the reference trajectory when there is no disturbance 
and no parameter uncertainty. Although disturbances do 
not affect the performance of the FL controller, parameter 
uncertainties especially uncertain geometrical specifications 
lead to malfunction of the FL controller. However, as a 
robust control approach, the proposed SMC system results 
in satisfactory tracking performance against all the above-
mentioned uncertainties and exogenous inputs.
The rest of the paper is organized as follows. In section 2 
kinematic and dynamic models of the 3-RPS is obtained. The 
the control system design is explained in section 3. In section 
4, to assess the significance of the proposed SMC system, the 
tracking of sinusoidal paths is simulated. Concluding remarks 
and analyses are presented in section 5.

2- Modelling of the manipulator

2- 1- Kinematic Modelling
To develop the kinematical model of the 3-RPS parallel 
manipulator, at first, the closed form solution of inverse 
kinematics is represented for displacement, velocity, and 
acceleration based on the method proposed in [4] and [22]. 
With the use of the inverse kinematical model, the linear 
displacement, velocity, and acceleration of the three links are 
given in terms of three  dimensional position and Euler angles 
of the end-effector.
The most classical way for describing the pose of a moving 

platform is to use the coordinates of a reference frame at a 
given point C in the body and three or more parameters to 
express its orientation. In this research work, by considering 
the workspace of the manipulator, a set of Euler angles 
(j,q,y) which uniquely determines the orientation of a rigid 
body by the sequence of rotations x-y-z (or 1-2-3) is used. The 
kinematic sketch of the 3-RPS manipulator and coordinate 
systems used for describing position and orientation of the 
moving platform are depicted in Figures 1 and 2, respectively.

Fig. 1. Schematics of the structure for a typical 3-RPS

Fig. 2. Coordinate systems used for describing the pose of the 
end-effector
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The frame XYZ is a fixed coordinate system located at the 
center of the base platform in which Z-axis is vertically 
upward and the X-axis is pointing toward the revolute joint 
P1. The frame X’Y’Z’ is a nonrotating coordinate system that 
translates with the end-effector and its axes are parallel to 
the axes of XYZ frame. The frame xyz is a body coordinate 
system that rotates with the end-effector. It is attached to 
the center of the end-effector, with the z-axis normal to the 
moving platform and the x-axis pointing towards the ball 
joint B1. The end-effector is connected to the limbs by means 
of ball joints.
As shown in Figure 2, it is considered that both ball and 
revolute joints are placed at vertices of the two equilateral 
triangles which are laid at the moving and base platform, 
respectively. The ball joints are set at radius r from the moving 
platform center while the revolute joints are connected to the 
base platform radius R from the center of the base platform. 
As the link length varies, the end-effector is manipulated with 
respect to the base platform.
The transformation from the body to the fixed coordinate 
frame is described by the following equation [23]:

Before proceeding to the inverse kinematic modeling, it is 
useful to express the angular velocity w=(wx wy wz)T and the 
angular acceleration a=(ax ay az)T of the moving platform 
with respect to frame XYZ as functions of the first and the 
second-time derivatives of the Euler angles.

Refer to Figure 2. the coordinates of the i-th joint on the 
moving platform, with respect to the fixed coordinate system 
XYZ is attained using the following equation.

In equation (4), bi is the coordinates of the i-th spherical joint 
Bi on the moving platform, described with respect to xyz 

frame and C=(Xc Yc Zc)T is the position vector of the moving 
platform center (origin of the xyz frame) with respect to the 
XYZ coordinate system. Once the position of the attachment 
Bi is determined, the vector Li is simply computed as:

where Pi is the position vector of the i-th revolute joint 
defined in XYZ coordinate system. The length and the 
direction of the i-th link can be simply computed from the 
following equations:

It should be noted that the links l1, l2 and l3 are constrained by 
the revolute joints. Therefore, according to the chosen structure 
of the manipulator, the ball joints B1, B2 and B3 are constrained 
to move in the planes Y=0, Y=−√3X, and Y=√3X respectively. 
Inserting these constraints in equation (4) leads to the following 
constraint equations:

where tij is the entry of transformation matrix T that is 
placed in the i-th row and j-th column. Considering the 
constraints equations, it can be seen that the manipulator 
has two orientational degrees of freedom and one degree of 
translation freedom.
In order to solve the inverse rate kinematics problem, the 
velocity of point Bi should be obtained first. This can be 
accomplished by calculating time derivative of equation (4) 
which leads to the following equation.

The i-th link extension rate is the projection of this velocity 
vector along the direction vector of the link. Thus, the links 
extension rate can be calculated using equation (12).

The above equation represents the solution to the inverse 
rate kinematics problem. Considering the fact that for a 
triple scalar product a×b.c the dot and cross products can 
be changed yielding a.b×c, equation (12) can be rewritten 
by:
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where:

The matrix W constitutes the first three rows of the Jacobian 
matrix. To achieve a 6×6 full inverse kinematic jacobian 
matrix, the other rows are obtained from time derivatives of 
the constraint equations (8), (9) and (10). This leads to the 
following inverse Jacobian matrix:

The acceleration of point Bi can be calculated by differentiating 
equation (11) with respect to time.

Now,   can be simply obtained from the time-derivative 
equation (12).

By rewriting equation (5) in the form                              ,  
is computed as:

The forward kinematic problem is indeed more complicated 
for parallel manipulators. It is equivalent to solve the 
nonlinear system of inverse kinematics equations and there 
exists usually more than one solution. For a given set of 
link lengths, the  number of solutions corresponds to the 
number of configurations into which the mechanism can be 

assembled. [4, 24]. 
A standard method to  solve  a non-linear system of equations 
is the Newton iterative scheme. Considering the generalized 
coordinate vector of the moving platform, q is a function of 
the known joint variables vector                                 as:

and that q0 is the initial estimate for the solution of the 
forward kinematic problem, the iterative Newton formulation 
at iteration k is:

The iterating stops when                                    where e is a 

constant threshold. It can be shown that the matrix

is the same as the inverse Jacobian matrix J-1 given by 
equation (16) [25].

2- 2- Dynamical model
In order to accurately control a manipulator, a dynamic 
model is essential. As it follows, the relations between 
the generalized accelerations, velocities, coordinates of 
the end-effector and the joint forces are determined using 
Lagrange method. Although the 3-RPS manipulator has three 
holonomic constraints, a method is adopted which  can also be 
used for nonholonomic systems. With ignoring small inertial 
effects of all legs and joints compared with that of the end-
effector of 3-RPS, generalized coordinates and Lagrangian 
are considered as:

With applying the Lagrange method, the following equation 
is obtained:

And the kinematic constraints are written in the form:

where M(q)∈R6×6 is a positive definite matrix; 
is the term which may include centripetal and Coriolis forces; 
D(q) is a 6×3 full rank distribution matrix of input control 
vector; A(q) is a 3×6 full rank matrix associated with the 
constraints. F=[F1 F2 F3]T is the control input vector and l∈R3 
is the constraint force vector. Let Ni = Ni(q), i = 1,2,3 be a set 
of smooth and linearly independent functions such that :
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(24) it follows that             , that is, there exists  a 3-dimensional 
pseudo-velocity vector S=[S1 S2 S3]T such that:

where N6×3=[N1(q)  N2(q)  N3(q)]. In order to satisfy equations 
(25) and (26), S and N are chosen as:

Differentiating from (26), we obtain:

Substituting (29) in (23) and premultiplying by NT, we have:

It should be noted that there is no need to premultiply (30) 
by (NTD)-1. Because NTD will be a 3×3 identity matrix 
and automatically disappears from the equation. The 
aforementioned statement can be proven by applying the 
principle of virtual work [26] for the 3-RPS manipulator.

where t∈R6 is the generalized forces vector and d represents 
the virtual displacement. Regarding equation (13), we can 
write:

With substituting (32) in  (31) leads to:

Since in equation (23), D(q)F represents the generalized 
forces, it can be concluded that:

Thus NTD is calculated as:

This fact considerably lowers mathematical manipulation 
of Lagrange method applied to the constrained parallel 
manipulators. The distribution matrix of input control 
vector D(q) disappears from the dynamical equations and 
the inversion of NTD is not required. Now the mechanical 
systems (23) can be reduced to the following form:

where                       is a 3×3 matrix and

is a 3×1 matrix.
The represented method for mathematically modeling of the 
3-RPS could be extended to different kinds of constrained 
parallel manipulators.

3- Controller design

3- 1- Problem statement
The purpose of SMC design is to generate the control inputs, 
F=[F1 F2 F3]T which makes the 3-RPS track a feasible desired 
trajectory. The six-dimensional posture variables of reference 
trajectory are defined as qr=[Xcr Ycr Zcr jr qr yr]T. The reference 
velocity and acceleration vectors are 
and                                         respectively, which are obtained 
from qr and its time derivatives. In the reference trajectory 
qr, the dependent components are computed based on the 
constraint equations (8) to (10).
Considering inherent perturbations like parameter uncertainties, 
disturbances, and nonlinearities, we have:

where Fp=[F1p F2p F3p]T is defined as perturbation to the 
dynamic equation (36).  It is assumed that Fp is bounded and is 
a multiplier of matrix       , i.e. satisfies the uncertainty matching 
condition.

f1m, f2m and fm are upper bounds of perturbations.

3- 2- Controller design
Let the position and orientation errors be

To satisfy the tracking requirements, sliding surfaces are 
defined by:

where g1, g2, and g3 are positive constants. If the sliding 
surfaces are stabilized, the convergence of the 3-RPS 
manipulator to the reference trajectory is guaranteed. Control 
inputs are defined by the computed-torque method as a 
feedback-linearization method [27] as:
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where U=[u1 u2 u3]T is the control law. Applying control input 
(42) in the dynamic equation of the 3-RPS (36), we have the 
feedback-linearized dynamic equation as:

In what  follows, the control laws u1, u2 and u3 which stabilize 
the sliding surfaces s1, s2 and s3 are proposed.

where hi, gi, bi, and ei are real positive constant values for 
i=1,2,3 and bi > hi , ei > fim .
To prove the stability of s1, s2 and s3 when u1, u2 and u3 are 
applied, Lyapunov direct method is used. With inserting u1 , 
u2 and u3 in (41),                             are derived as:

According to the Lyapunov direct method, we introduce the 
following Lyapunov function:

The time derivative of V along the trajectory is given by:

From (45), (46),  (47), and (49), one attains

Therefore, s1, s2, and s3 are asymptotically stable and the 
3-RPS manipulator converges to the reference trajectory. 
The block diagram of the proposed control system is shown 

in Figure 3. It should be noted that using sign function in 
controller design when posture errors are negligible causes 
chattering. To weaken this phenomenon, we can use some 
continuous functions to approximate sign function. For 
instance, saturation or sigmoid function can be used instead.

4- Simulation results
To verify the effectiveness of the proposed SMC, a software 
simulation is run for tracking the sinusoidal trajectories of 
desired position and orientation of the end-effector. The 
performance of the proposed SMC system is compared with 
the classic FL control method under large initial off-tracks. 
According to Figures 4 through 6, when using both the FL and 
SMC systems, the end-effector of the 3-RPS converges to the 
corresponding desired values. As an important performance 
index, the actuator forces of both the FL and SMC systems are 
shown in Figures 7 to 9. In the reaching phase to the desired 
trajectories, in spite of a large upper bound on actuator forces, 
the reaching time obtained from the FL control system is 
larger than that the SMC yields. Consequently, the superior 
performance of the proposed SMC is concluded.
In order to investigate the robustness of the proposed control 
systems against disturbances and parameter uncertainties, two 
kinds of disturbance vectors are considered in simulations. 
The first disturbance is a step of magnitude 100 N; and the 
second is a 1 Hz sinusoidal disturbance of amplitude 100 
N. Finally, with considering uncertainty on the geometrical 
and inertial parameters of the manipulator as in Table 1, the 
performance of the control methods is investigated.

The tracking errors of the angles j and q and the displacement 
along axis Z in the presence of the step disturbance are depicted 
in Figures 10 through 12. The steady state tracking errors along 
the desired trajectories of angles j and q by the FL method are 
smaller than those achieved from the SMC system. However, 
unlike the SMC, there is a remarkable steady-state error in the 
tracked path along the Z axis. Through imposing the sinusoidal 
disturbance, the above-explained tracking errors are denoted 
in Figures 13 to 15. In this case, the SMC shows an accurate 
performance when compared to the FL system in the tracking 
of all independent coordinates, j, q and Zc.
The main advantage of the SMC method appears when there 
exist geometrical and inertial uncertainties. As  can be seen 
in Figures 16 and 17, the parameter uncertainties, especially 
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Fig. 3. Block diagram of proposed SMC system

TABLE 1. Strouhal number for different geometric cases

Manipulator 
parameters Certain values Uncertain 

values
R (m) 0.4 0.35
r (m) 0.3 0.25

mp (kg) 50 45
Ixx (kg m2) 5 4.5
Iyy (kg m2) 5 4.5
Izz (kg m2) 10 9
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Fig. 4. Tracking performance of angle, j

Fig. 7. Produced force by the first prismatic joint

Fig. 8. Produced force by the second prismatic joint

Fig. 9. Produced force by the third prismatic jointFig. 5. Tracking performance of angle, q

Fig. 6. Tracking performance along Z axis Fig. 10. Tracking error of angle, j under step disturbance

Fig. 11. Tracking error of angle, q under step disturbance
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geometrical ones lead to the weak performance of the FL 
controller unlike the superior performance of the SMC 
system. Since the geometrical uncertainties in Table 1 do not 
significantly affect the performance of the manipulator along 
the Z axis, the corresponding tracking error is short by the FL 
control system, see Figure 18.

5- Conclusion
This paper outlined mathematical modeling and control 
problem of a 3-RPS parallel robot. Although the 3-RPS 
has three holonomic constraints, six dependent generalized 
coordinates were used for dynamical modeling. It was shown 
that by choosing links extension rates as the components 
of a pseudo-velocity vector, and the first three columns 
of Jacobian matrix as a natural orthogonal complement, 
removing unknown Lagrange multipliers leads to a reduced 

Fig. 13. Tracking error of angle, j under sinusoidal disturbance

Fig. 16. Tracking error of angle, j in the presence of 
parameter uncertainties

Fig. 14. Tracking error of angle, q under sinusoidal disturbance

Fig. 17. Tracking error of angle, q in the presence of 
parameter uncertainties

Fig. 12. Tracking error along Z axis under step disturbance

Fig. 15. Tracking error along Z axis under sinusoidal disturbance

Fig. 18. Tracking error along Z axis in  presence of 
parameter uncertainties
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dynamical model in which the distribution matrix of control 
input vector is identity. While Lagrange method is widely 
used in the modeling of parallel robots, this paper proposed 
a new and straightforward modeling algorithm for modeling 
constrained parallel manipulators. As a robust nonlinear 
control approach, the SMC system was used for the trajectory 
tracking of the manipulator. Using Lyapunov direct method, 
the asymptotic stability of the proposed control system is 
proved. Simulations with the typical desired trajectory inputs 
were presented, and the results were compared with an FL 
control system. It was shown the proposed SMC system leads 
to a faster compensation of the initial off-tracks while the 
produced force by the prismatic joints is lower than that of 
the FL. Given uncertainties in both inertial and geometrical 
parameters of the manipulator, through simulation under step 
and sinusoidal disturbances, the satisfactory performance of 
the SMC controller was investigated.

Appendix A.
The detailed expressions of the matrices M(q) and A(q) and 
vector             are given by:

Where:
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