[1] H.K. Khalil, Nonlinear control, Pearson New York, 2015.
[2] J.-J.E. Slotine, W. Li, Applied nonlinear control, Prentice hall Englewood Cliffs, NJ, 1991.
[3] C.C. De Wit, H. Olsson, K.J. Astrom, P. Lischinsky, A new model for control of systems with friction, IEEE Transactions on automatic control, 40(3) (1995) 419-425.
[4] B. Armstrong-Hélouvry, P. Dupont, C.C. De Wit, A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica, 30(7) (1994) 1083-1138.
[5] F. Al-Bender, V. Lampaert, J. Swevers, The generalized Maxwell-slip model: a novel model for friction simulation and compensation, IEEE Transactions on automatic control, 50(11) (2005) 1883-1887.
[6] P. Dupont, V. Hayward, B. Armstrong, F. Altpeter, Single state elastoplastic friction models, IEEE Transactions on automatic control, 47(5) (2002) 787-792.
[7] M. Ruderman, T. Bertram, Two-state dynamic friction model with elasto-plasticity, Mechanical Systems and Signal Processing, 39(1-2) (2013) 316-332.
[8] H. Olsson, Control systems with friction,1997.
[9] S.A. Campbell, S. Crawford, K. Morris, Friction and the inverted pendulum stabilization problem, Journal of Dynamic Systems, Measurement, and Control, 130(5) (2008) 054502.
[10] M. Ruderman, T. Bertram, Two-state dynamic friction model with elasto-plasticity, Mechanical Systems and Signal Processing, 39(1-2) (2013) 316-332.
[11] C.C. De Wit, P. Lischinsky, Adaptive friction compensation with partially known dynamic friction model, International journal of adaptive control and signal processing, 11(1) (1997) 65-80.
[12] D.D. Rizos, S.D. Fassois, Friction identification based upon the LuGre and Maxwell slip models, IEEE Transactions on Control Systems Technology, 17(1) (2009) 153-160.
[13] R.H. Hensen, M.J. van de Molengraft, M. Steinbuch, Frequency domain identification of dynamic friction model parameters, IEEE Transactions on Control Systems Technology, 10(2) (2002) 191-196.
[14] L. Freidovich, A. Robertsson, A. Shiriaev, R. Johansson, LuGre-model-based friction compensation, IEEE Transactions on Control Systems Technology, 18(1) (2010) 194-200.
[15] A. Amthor, S. Zschaeck, C. Ament, High precision position control using an adaptive friction compensation approach, IEEE Transactions on automatic control, 55(1) (2010) 274-278.
[16] M.N. Monfared, M.J. Yazdanpanah, Adaptive compensation technique for nonlinear dynamic and static models of friction, in: 2015 23rd Iranian Conference on Electrical Engineering, IEEE, 2015, pp. 988-993.
[17] C. Makkar, G. Hu, W.G. Sawyer, W.E. Dixon, Lyapunov-based tracking control in the presence of uncertain nonlinear parameterizable friction, IEEE Transactions on Automatic Control, 52(10) (2007) 1988-1994.
[18] D.E. Kirk, Optimal control theory: an introduction Courier Corporation, 2012.
[19] C.L. Navasca, A.J. Krener, Solution of hamilton jacobi bellman equations, in: Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No. 00CH37187), IEEE, 2000, pp. 570-574.
[20] T. Hunt, A.J. Krener, Improved patchy solution to the Hamilton-Jacobi-Bellman equations, in: 49th IEEE Conference on Decision and Control (CDC), IEEE, 2010, pp. 5835-5839.
[21] R.M. Milasi, M.J. Yazdanpanah, C. Lucas, Nonlinear optimal control of washing machine based on approximate solution of HJB equation, Optimal Control Applications and Methods, 29(1) (2008) 1-18.
[22] M.N. Monfared, M.H. Dolatabadi, A. Fakharian, Nonlinear optimal control of magnetic levitation system based on HJB equation approximate solution, in: 2014 22nd Iranian Conference on Electrical Engineering (ICEE), IEEE, 2014, pp. 1360-1365.
[23] R.W. Beard, G.N. Saridis, J.T. Wen, Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation, Automatica, 33(12) (1997) 2159-2177.
[24] M. Nazari Monfared, M. Yazdanpanah, Friction Compensation for Dynamic and Static Models Using Nonlinear Adaptive Optimal Technique, AUT Journal of Modeling and Simulation, 46(1) (2014) 1-10.
[25] P. Ioannou, B. Fidan, Adaptive control tutorial, Society for Industrial and Applied Mathematics, in, SIAM books Philadelphia, 2006.
[26] H. Olsson, K.J. Åström, C.C. De Wit, M. Gäfvert, P. Lischinsky, Friction models and friction compensation, Eur. J. Control, 4(3) (1998) 176-195.
[27] F. Marques, P. Flores, J.P. Claro, H.M. Lankarani, A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems, Nonlinear Dynamics, 86(3) (2016) 1407-1443.
[28] E. Pennestrì, V. Rossi, P. Salvini, P.P. Valentini, Review and comparison of dry friction force models, Nonlinear dynamics, 83(4) (2016) 1785-1801.
[29] A.K. Padthe, B. Drincic, J. Oh, D.D. Rizos, S.D. Fassois, D.S. Bernstein, Duhem modeling of friction-induced hysteresis, IEEE Control Systems Magazine, 28(5) (2008) 90-107.
[30] P.-A. Bliman, Mathematical study of the Dahl’s friction model, European journal of mechanics. A. Solids, 11(6) (1992) 835-848.
[31] R. Hensen, M. van de Molengraft, M. Steinbuch, Friction induced limit cycling: Hunting, Automatica, 39(12) (2003) 2131-2137.
[32] B. Bukkems, Friction induced limit cycling: an experimental case study, DCT rapporten, 2001 (2001).
[33] N. Van De Wouw, R. Leine, Robust impulsive control of motion systems with uncertain friction, International Journal of Robust and Nonlinear Control, 22(4) (2012) 369-397.
[34] L. Márton, B. Lantos, Control of mechanical systems with Stribeck friction and backlash, Systems & Control Letters, 58(2) (2009) 141-147.
[35] B. Liu, S. Nie, Dynamic Parameters Identification of LuGre Friction Model Based on Chain Code Technique, in: Proceedings of the 14th IFToMM World Congress, ........., 2015, pp. 216-222.
[36] A. Nejadfard, M.J. Yazdanpanah, I. Hassanzadeh, Friction compensation of double inverted pendulum on a cart using locally linear neuro-fuzzy model, Neural Computing and Applications, 22(2) (2013) 337-347.