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ABSTRACT: In this paper, a comparison among  the hybrid of Fourier Transform and Adomian 
Decomposition Method (FTADM) and Homotopy Perturbation Method (HPM) is investigated. 
The linear and non-linear Newell-Whitehead-Segel (NWS) equations are solved and the results are 
compared with the exact solution. The comparison reveals that for the same number of components 
of recursive sequences, the error of FTADM is much smaller than that of HPM. For the non-linear 
NWS equation, the accuracy of FTADM is more pronounced than HPM. Moreover, it is shown that 
as time increases, the results of FTADM, for the linear NWS equation, converges to zero. And for the 
non-linear NWS equation, the results of FTADM converges to 1 with only six recursive components. 
This is in agreement with the basic physical concept of NWS diffusion equation which is in turn in 
agreement with the exact solution.
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1- Introduction
Recently, a great deal of attention has been  dedicated to the semi-
analytical solution to the  mathematical differential equations 
associated with the real-life model that are intrinsically 
nonlinear. Most of the non-linear differential equations do not 
possess an analytical solution. The homotopy perturbation 
method (HPM) was first developed by He [1-4] in 1999. 
Later HPM as a semi-analytical method was used to solve the 
nonlinear and non-homogeneous partial differential equations. 
In 2011, the Newell-Whitehead-Segel (NWS) equation was 
solved using the Adomian decomposition and multi-quadric 
quasi-interpolation methods [5, 6]. They deduced that the 
Adomian decomposition and multi-quadric quasi-interpolation 
methods are rational methods to solve the NWS equation 
with a passable precision. Examples of applying homotopy 
analysis method in fluid mechanics are shown in [7-9]. More  
recently Nourazar [10,11] in 2012 and 2013, has developed 
a novel modification to Adomian decomposition method 
(ADM) and HPM and called them Fourier transform Adomian 
decomposition method (FTADM) and Fourier transform 
homotopy perturbation method (FTHPM), respectively. 
They showed that FTADM and FTHPM are more effective 
than ADM and HPM, respectively, in solving the non-linear 
differential equations. 
In this work, we solve three different non-homogeneous linear 
and non-linear partial differential equations, the Helmholtz 
and NWS equations, using FTADM and HPM and discuss the 
comparison between the results of FTADM and HPM with 
the exact solution. The closed form solutions for the three 
partial differential equations which are the same as the exact 
solutions are obtained. Furthermore, the trend that the results 
of FTADM converges to a constant value as time goes to 

infinity is compared to that of the  HPM. The effectiveness and 
the validity of FTADM are shown in comparison with HPM.
One of the most popular amplitude equations in two-
dimensional system is the NWS equation. This model portrays 
the appearance of the stripe schema in two dimensional 
systems. The NWS equation models the action and the 
reaction of the effect of the diffusion term with the non-linear 
effect of the response term [12].
Now, we assume the popular NWS equation of the 
following type:

subjected to the one initial condition and two boundary 
conditions,

where a and b take real values. k and q are positive integers.

2- Basic Idea Of Ftadm
The general formula of one-dimensional non-linear 
partial differential equations is assumed for illustrating the 
fundamental concept of the FTADM. Consider the following 
differential equation [10, 11]:

Usually, the operator E may be decomposed into two parts, 
the non-linear operator, and the linear operator L ,
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Taking the Fourier transform from both sides of Equation (4), 
we have

where the symbol F denotes the Fourier transform. With 
using the concept of ADM [13], the unknown function u(x,t) 
of the linear operator L in Equation (4) can be decomposed by 
a series solution as [14],

For the non-linear operator N (Equation (4)), we use the 
Taylor series expansion to expand the non-linear operator 
N(u(x,t)) around u0=u(x0,t0) as:

where the superscript n indicates the order of derivative 
with respect to the interdependent parameter u.
Inserting                         into Equation (7) and reordering 
terms, we have:

The Equation (8) can be written as the series expansion of the 
Adomian polynomial An as follows:

where the Adomian polynomials An are defined as,

Inserting  Equations (9) and (6) into Equation (5), we obtain:

Where the first five Adomian polynomials are,

Equation (11) may be rewritten by the following equation:

Using Equation (13), we represent the recursive relation as,

The recursive relation (14) can be rewritten as,

Using the Maple package software, the first portion of 
Equation (15) gives the value of F[u0]. Next applying the 
inverse Fourier transform to F[u0] gives the value of u0 that 
will define the Adomian polynomial A0 using the first portion 
of Equation (12). In the second portion of Equation (15) using 
the Adomian polynomial A0 will enable us to evaluate the value 
of F[u1]. Afterwards applying the inverse Fourier transform 
to F[u1] gives the value of u1 that will define the Adomian 
polynomial A1 using the second portion of Equation (12) and 
so on. This in turn will lead to the complete evaluation of the 
components of uk, k ≥ 0, upon using different corresponding 
parts of Eq. (15) and Eq. (12).

3- Case Study
Now, we clearly solve three partial differential equations, 
to ascertain the credibility and the effectiveness of the 
presented method FTADM in the whole limited area of the 
problem domain. In the first example, the two dimensional 
Helmholtz equation is solved. This equation emerges directly 
or indirectly in many wave-related problems arisen from 
various sciences, engineering, and industrial applications 

( ) ( ) [ ]( , ) ( , ) ( ) ,+ =      F N u x t F L u x t F g x (5)

(6)

(7)

(8)

(9)

(10)

(12)

(13)

(14)

(15)

(11)

( )

0

0

,

( , ) .

∞

=

∞

=

=

 =  
 

∑

∑

n
n

n
n

u u

L u x t L u

( ) ( ) ( )
0 0

0

1( , ) ( ),
!

∞

=

= −∑ n n

n
N u x t u u N u

n

0

∞

=
= ∑ nn

u u

0 1 0

2
2 0 1 0

3
3 0 1 2 0 1 0

2
4 0 2 1 3 0

2 4 (4)
1 2 0 1 0

( ( , ))
( ) ( ( ))

1( ) ( )
2!

1( ) ( ) ( )
3!

1( ) ( ) ( )
2! ...

1 1( ) ( )
2! 4!

=
′+ +

 ′ ′′+ + 
 
 ′ ′′ ′′′+ + + 
 
 ′ ′′+ + + 

+ 
 ′′′ + 
 

N u x t
N u u N u

u N u u N u

u N u u u N u u N u

u N u u u u N u

u u N u u N u

0
( ( , )) ,

∞

=

= ∑ n
n

N u x t A

0 0

1 .
! = =

  =   
  
∑

n n
i

n in
i

dA N u
n d

λ

λ
λ

( )
0 0

( ) .
∞ ∞

= =

    + =        
∑ ∑i i
i i

F L u F A F g x

0 0

1 1 0

2
2 2 0 1 0

3
3 3 0 1 2 0 1 0

2
4 4 0 2 1 3 0

2 4 (4)
1 2 0 1 0

( ),
( ),

1( ) ( ),
2!

1( ) ( ) ( ),
3!

1( ) ( )
2!

1 1       ( ) ( ).
2! 4!

=
′=

′ ′′= +

′ ′′ ′′′= + +

 ′ ′′= + + + 
 

′′′ +

A N u
A u N u

A u N u u N u

A u N u u u N u u N u

A u N u u u u N u

u u N u u N u

0 0
[ ( )] [ ] [ ].

∞ ∞

= =

+ =∑ ∑i i
i i

F L u F A F g

0

1 0

[ ( )] [ ],

[ ( )] [ ] 0.
∞ ∞

= =

=

+ =∑ ∑i i
i i

F L u F g

F L u F A

0

1 0

2 1

3 2

1

[ ( )] [ ],
[ ( )] [ ] 0,
[ ( )] [ ] 0,
[ ( )] [ ] 0,
[ ( )] [ ] 0.−

=
− =
− =
− =

− =k k

F L u F g
F L u F A
F L u F A
F L u F A
F L u F A



S. S. Nourazar et al., AUT J. Model. Simul., 49(2)(2017)227-238, DOI: 10.22060/miscj.2017.12051.4998

229

[15-17]. In  the next examples, the linear and nonlinear NWS 
equations are solved respectively. The NWS equation models 
the action and the reaction of the effect of the diffusion term 
with the non-linear effect of the response term
Example 1.
In Cartesian coordinate systems the two dimensional 
Helmholtz equation is written as:

where the wave number K is defined as the ratio of the 
frequency to the wave velocity, and u is the unknown 
dependent variable indicating the pressure of wave. Here we 
assume a case where A=1, B=1, C=-1 and K=1 as follows,

A) FTADM
To solve Equation (17) with FTADM, we take the Fourier 
transform of Equation (17) as,

     is Fourier transform of u

w is arbitrary Fourier transform parameter
Inserting  the recursive relation (Equation (14)) into Equation 
(18) we get,

The recursive relation inferred from Equation (19) may be 
written as:

After solving the recursive relation (20) and taking the 

inverse Fourier transform using the Maple package software, 
we obtain the followings:

Consequently, the series form solution of Equation (17) is,

The Taylor series expansion of ex is written as,

By inserting  Equation (23) into Equation (22),  Equation (22) 
can finally be simplified to,

The equation (24) is the real exact solution of Equation (17).
B) HPM
To solve Equation (17) with HPM, we create the following  
homotopy,

P is homotopy parameter
v is homotopy function
Or, equivalently,

where u0 is defined as an initial approximation to the solution 
of Equation (17).

In this manner, we utilize the homotopy parameter P to 
expand v as a power series:

The approximate solution of Equation (17) can be obtained 
by setting P equal to 1, i.e.,

Inserting  Equation (28) into Equation (26) and comparing 
the terms with the same powers of p , we have
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The above relations give the solution as,

Finally, the solution of Equation (17) is given in a series form by

Example 2.
Consider the NWS equation of the following form:

where a,b∈R ,k and q and  are positive integers. Here, let k=1, 
a=-2 and b=0 for a linear form of NWS as follows:

A) FTADM
The Fourier transform of Equation (34) is expressed as:

Inserting  the recursive relation (14) into Equation (35) yields

The recursive relation inferred from Equation (36) can be 
rewritten as,

After solving the recursive relation (37) and taking the 
inverse Fourier transform using the Maple package software, 
we obtain the following:

Consequently, the series form solution of Equation (34) is,

The Taylor series expansion form for e-t is written as,

By inserting Equation (40) into Equation (39),  Equation (39) 
can finally be simplified to

Equation (41) is the real exact solution of Equation (34).
B) HPM
To solve Equation (34) with HPM, we create the following 
homotopy,
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where u0 is defined as an initial approximation to the solution 
of Equation (34).

Now we utilize the homotopy parameter p to expand v in 
power series as:

The approximate solution of Equation (34) can be obtained 
by setting the value of p equal to 1, i.e.,

Replacing Equation (45) into Equation (43) and comparing 
the terms with the same powers of p, one obtains

Gives the solution as

Finally, the solution of Equation (34) is given in a series form by,

Example 3.
Consider the NWS equation of the following form:

where a,b∈R, and k and q are positive integers. Here, we 
consider a case with k=1, a=b=6 and q=2 for a nonlinear form 
of NWS equation as follows:

A) FTADM
The Fourier transform of Equation (51) may be expressed by:

where û is considered as the Fourier transform of u and F 
acts as the Fourier transform operator. Inserting  the recursive 
relation (14) into Equation (52), we have

where the first five Adomian polynomials for u2 are,

The recursive relation inferred from Equation (53) is written as,

After solving the recursive relation (55) and taking the inverse 
Fourier transform by using the Maple package software, we 
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Consequently, the series form the solution of Equation (51) is,

The above equation can ultimately be reduced to

The equation (58) is the real exact solution of Equation (51).
B) HPM
To solve Equation (51) with HPM, we create the follwoing 
homotopy,

Or, equivalently,

where u0 is defined as an initial approximation to the solution 
of Equation (51).

Now we utilize the homotopy parameter p to expand v as a 
power series:

The approximate solution of Equation (63) can be obtained 
by setting p equal to one, i.e.,

With substituting  Equation (62) into Equation (60) and 
comparing the terms with the same powers of p, it holds that

It gives the solution as

Finally, the solution of Equation (51) is given in a series form by,

4- Discussion
Table 1 shows the comparison of the relative error of 

the results for

and

recursive terms using the HPM and FTADM of Eq. (17) 
with the exact solution. The effectiveness and the monotonic 
convergence of the FTADM results towards the real exact 

0 2

1 3

2

2 4

3 2

3 5

1( , )
(1 )
10( , )

(1 )
25 (2 1)( , )

(1 )
125 (4 7 1)( , ) ,

3(1 )
... .

=
+

=
+

−
=

+

− +
=

+

x

x

x

x x

x

x x x

x

u x t
e
teu x t
e

t e eu x t
e

t e e eu x t
e

(56)

(57)

(65)

(66)

(67)

(58)

(59)

(60)

(61)

(62)

(64)

2 3
0

2 3 2

4 5

1 10( , )
(1 ) (1 )

25 (2 1) 125 (4 7 1) ...
(1 ) 3(1 )

∞

=

= = +
+ +

− − +
+ + +

+ +

∑
x

n x x
n

x x x x x

x x

teu x t u
e e

t e e t e e e
e e

5 2

1( , ) .
(1 )−=

+ x tu x t
e

( )
2 2 2

20
2 2 21 6 6 0.

   ∂ ∂ ∂ ∂
− − + − − + =   ∂ ∂ ∂ ∂   

v u v vp p v v
x x x t

2 2 2
20 0

2 2 26 6 ,
 ∂ ∂ ∂ ∂

− = + − − ∂ ∂ ∂ ∂ 

v u v up v v
x x t x

( )
( )

0 0

5
35

( , ) ( , ) (0, ) (0, )
1 1 (2 1) .

1
−

−

= = + =

− −
+

x

t

t

v x t u x t u t xu t

e x
e

2
0 1 2 ...= + + +v v pv p v

0 1 21
lim ...

→
= = + + +

p
u v v v v

2 2
0 0 0

2 2

2 2
1 21 0 0

0 02 2

2
2 22 1

1 12

2
3 23 2

2 22

: 0

: 6( ) 6( )

: 6( ) 6( )

: 6( ) 6( ).

∂ ∂
− =

∂ ∂
∂ ∂ ∂

+ = + −
∂ ∂ ∂
∂ ∂

= + −
∂ ∂
∂ ∂

= + −
∂ ∂

v up
x x
v u vp v v
x x t
v vp v v
x t
v vp v v
x t

( )
( )

( )
( )
( )

( )
( )

420 5 2 10 5

6 35 5

2 10 5 5

4

-5

0 3-5

1

5

2 1 3 2 3

8 1 1

5 3 2 3
         

1 (2 1)
( , )

1

( ,

  
3 1

)
− + − +

+ +

− +

− −

+

+

+

=

= −

+

t

t

t t t t

t t

t t t

t

e e x x e e x

e

e x
v x t

e

v x t
e

x e e x xe

e

2 10 10 15 20

25 30 35 40

35

2

45 10 15 20

25 30

[ (1960 4620 12915

             - 21000 21525 13860 5145

    

( , )

         -

9660

    

840 735 9660 21000

            26600

 

2

 

0

  

1

 

00

− −

− − −

+

= −

− + +

+ +

t t

t t t t

t t

t t

t t t t

t

v x t

e e xe x

x e xe e e

e e e

e

x e

e

xee x
40 2 5 3 5 2 10

3 10 4 10 2 15

3 15 2 20 3 20

4 20 5 20 2 25

3 25

   1960 630 1386 5670

            -1050 1680 7700

            2380 2100 1260

            1680 960 4410

            - 546

+ + − +

− +

+ + +

+ + −

−

t t t t

t t t

t t t

t t t

t

xe x e x e x e

x e x e x e

x e x e x e

x e x e x e

x e

( )
2 30 3 30 2 35

2 3 5 9

4970 14 1680

            - 560 224 / 840( 1))]

... .

+ −

+ +

t t t

t

x e x e x e

x x e

1 0
lim .

∞

→
=

= = ∑ ip i
u v v

2
2 0
( , ) ( , ),

=
= ∑ ii

s x y u x y
4

4 0
 ( , ) ( , ),

=
= ∑ ii

s x y u x y 6
6 0

 ( , ) ( , )
=

= ∑ ii
s x t u x t



S. S. Nourazar et al., AUT J. Model. Simul., 49(2)(2017)227-238, DOI: 10.22060/miscj.2017.12051.4998

233

Table 1. Comparison of relative errors of                                                                                             and                                                  from 
the HPM and FTADM for example 1 at different x and y-coordinates.

6

6 0
 ( , ) ( , )

=
= ∑ ii

s x y u x y
4

4 0
 ( , ) ( , )

=
= ∑ ii

s x y u x y2

2 0
( , ) ( , ),

=
= ∑ ii

s x y u x y

Table 2. Comparison of relative errors of                                                                                   and                                           of the HPM 
and FTADM results of example 2 (linear NWS equation) at different x-coordinates and at different times.

Percentage of relative error (%RE)
x=-1 x=-0.6 x=-0.2 x=0.2 x=0.6 x=1

y=-1

S2(x,y)
HPM 4.216E-01 4.241E-01 3.158E-01 5.053E-02 7.211E-01 1.312E+00

FTADM 6.346E-04 4.044E-05 7.665E-08 1.002E-07 7.899E-05 1.374E-03

S4(x,y)
HPM 4.225E-01 4.248E-01 3.162E-01 5.062E-02 7.218E-01 1.313E+00

FTADM 1.321E-07 1.071E-09 2.462E-14 3.150E-14 1.966E-09 2.577E-07

S6(x,y)
HPM 4.225E-01 4.248E-01 3.162E-01 5.062E-02 7.218E-01 1.313E+00

FTADM 5.626E-12 5.872E-15 1.000E-16 1.000E-16 1.041E-14 1.045E-11

y=0.1

S2(x,y)
HPM 6.546E-02 8.262E-02 1.536E-01 6.800E-02 1.045E-01 1.344E-01

FTADM 1.253E-04 1.088E-05 7.254E-08 2.831E-08 9.017E-06 1.265E-04

S4(x,y)
HPM 6.546E-02 8.262E-02 1.536E-01 6.800E-02 1.045E-01 1.344E-01

FTADM 2.607E-08 2.882E-10 2.330E-14 8.933E-15 2.244E-10 2.372E-08

S6(x,y)
HPM 6.546E-02 8.262E-02 1.536E-01 6.800E-02 1.045E-01 1.344E-01

FTADM 1.110E-12 1.620E-15 1.000E-16 1.000E-16 1.131E-15 9.622E-13

y=1

S2(x,y)
HPM 6.880E-01 1.663E+00 6.990E-01 3.051E-02 2.358E-01 3.625E-01

FTADM 1.032E-03 1.582E-04 1.694E-07 5.980E-08 2.576E-05 3.790E-04

S4(x,y)
HPM 6.870E-01 1.661E+00 6.988E-01 3.020E-02 2.354E-01 3.621E-01

FTADM 2.148E-07 4.190E-09 5.419E-14 1.872E-14 6.412E-10 7.108E-08

S6(x,y)
HPM 6.870E-01 1.661E+00 6.988E-01 3.020E-02 2.354E-01 3.621E-01

FTADM 9.148E-12 2.297E-14 1.000E-16 1.000E-16 3.394E-15 2.883E-12

Percentage of relative error (%RE)
x=0 x=0.4 x=0.8 x=1.2 x=1.6 x=2

t=0.05

S2(x,t)
HPM 1.750E-01 2.751E-01 3.163E-01 3.265E-01 3.163E-01 2.891E-01

FTADM 2.163E-05 2.163E-05 2.163E-05 2.163E-05 2.163E-05 2.163E-05

S4(x,t)
HPM 1.752E-01 2.765E-01 3.220E-01 3.424E-01 3.514E-01 3.551E-01

FTADM 2.715E-09 2.715E-09 2.715E-09 2.715E-09 2.715E-09 2.715E-09

S6(x,t)
HPM 1.752E-01 2.765E-01 3.220E-01 3.425E-01 3.516E-01 3.558E-01

FTADM 1.619E-13 1.619E-13 1.619E-13 1.620E-13 1.619E-13 1.619E-13

t=0.1

S2(x,t)
HPM 1.750E-01 2.751E-01 3.163E-01 3.265E-01 3.163E-01 2.891E-01

FTADM 1.797E-04 1.797E-04 1.797E-04 1.797E-04 1.797E-04 1.797E-04

S4(x,t)
HPM 1.752E-01 2.765E-01 3.220E-01 3.424E-01 3.514E-01 3.551E-01

FTADM 9.058E-08 9.058E-08 9.058E-08 9.058E-08 9.058E-08 9.058E-08

S6(x,t)
HPM 1.752E-01 2.765E-01 3.220E-01 3.425E-01 3.516E-01 3.558E-01

FTADM 2.166E-11 2.166E-11 2.166E-11 2.166E-11 2.166E-11 2.166E-11

t=0.2

S2(x,t)
HPM 1.750E-01 2.751E-01 3.163E-01 3.265E-01 3.163E-01 2.891E-01

FTADM 1.550E-03 1.550E-03 1.550E-03 1.550E-03 1.550E-03 1.550E-03

S4(x,t)
HPM 1.752E-01 2.765E-01 3.220E-01 3.424E-01 3.514E-01 3.551E-01

FTADM 3.152E-06 3.152E-06 3.152E-06 3.152E-06 3.152E-06 3.152E-06

S6(x,t)
HPM 1.752E-01 2.765E-01 3.220E-01 3.425E-01 3.516E-01 3.558E-01

FTADM 3.026E-09 3.026E-09 3.026E-09 3.026E-09 3.026E-09 3.026E-09

2
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= ∑ ii
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solution are clearly shown in the table when compared to that 
of the HPM.
Fig. 1 compares the results of HPM, FTADM and exact 
solutions for example 1 at different locations for the first six 
recursive terms. The plots show that the behavior of FTADM 
results is very close to the exact values in comparison with 
HPM results for the first six recursive terms.
Tables 2 and 3 show the comparison of the trend of the 
relative error of the results for

and

recursive terms using the HPM and FTADM of Eqs. (34) and 
(51) towards the exact solution, respectively. The very rapid 
and the monotonic approach of the results using the FTADM 
towards the real exact solution is clearly shown in the table 
when compared to that of the HPM. As the number of recursive 
terms increases, the effectiveness and the convergence rate of 
the results of FTADM toward the exact values become more 
pronounced.
Fig. 2 and Fig. 3 show a comparison between the results of 
HPM, FTADM and exact values of the linear and non-linear 
NWS equations, respectively for only the first six recursive 
terms. The plots show that the behavior of FTADM values 
is very close to the exact values in comparison to the HPM 
results. This is even more pronounced for the non-linear 
NWS equation (Fig. 3).
In Fig. 4, the residual errors of HPM and FTADM with 
respect to exact values of the non-linear NWS equation are 
compared for only the first six recursive terms. The figure 

shows that the residual error of FTADM is much smaller than 
HPM results and the behavior of FTADM values is much 
closer to the exact values in comparison to the HPM results. 
The errors of HPM and FTADM with respect to the 
exact values of the NWS equation are plotted in Table 
4. The root mean square (RMS) error of the results for

recursive terms are presented for 

HPM and FTADM. The RMS error for the first six recursive 
terms of HPM is much bigger than that of FTADM. This 
means that the FTADM has a much faster convergence rate 
towards the exact values than the HPM. This, in fact, shows 
the effectiveness of the FTADM in handling the nonlinear 
differential equations in comparison with the HPM. 
Figs. 5 and 6 show the comparison of the results of HPM, 
FTADM and exact values of the linear and non-linear NWS 
equations respectively for only the first six recursive terms. 
The results show that as time grows, the values of FTADM 
converges to zero monotonically, for the linear NWS equation, 
and converges to 1, for the non-linear NWS equation. This is in 
agreement with the basic concept of NWS diffusion equation. 
This does not occur for the results of HPM as time increases.

5- Conclusion
In this work, the exact solutions to linear and non-linear NWS 
diffusion equations are obtained through the FTADM and 
HPM.  The effectiveness and credibility of the FTADM are 
shown in comparison to HPM by solving three examples with 
linear and non-linear differential equations. The results of the 
series solution obtained by FTADM and HPM are compared 

Table 3. Comparison of relative error of                                                                                           and                                                    of 

the HPM and FTADM results of example 3 (nonlinear NWS equation) at different x-coordinates and at different times
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s x t u x t 6

6 0
 ( , ) ( , )

=
= ∑ ii

s x t u x t

Percentage of relative error (%RE)
x=0 x=0.2 x=0.4 x=0.6 x=0.8 x=1

t=0.05

S2(x,t)
HPM 2.061E-01 1.231E-01 6.455E-02 3.374E-02 2.988E-01 9.885E-01

FTADM 1.151E-03 8.785E-04 4.089E-04 2.577E-04 1.102E-03 2.089E-03

S4(x,t)
HPM 2.061E-01 1.268E-01 1.123E-01 2.361E-01 7.476E-01 2.338E+00

FTADM 7.528E-06 2.286E-06 5.232E-06 1.379E-05 2.168E-05 2.721E-05

S6(x,t)
HPM 2.061E-01 1.268E-01 1.135E-01 2.484E-01 8.376E-01 2.801E+00

FTADM 4.967E-08 1.304E-08 9.077E-08 1.560E-07 1.822E-07 1.554E-07
 

t=0.1

S2(x,t)
HPM 3.398E-01 2.408E-01 2.249E-01 2.320E-01 1.510E-01 2.378E-01

FTADM 8.180E-03 6.610E-03 3.835E-03 1.217E-04 5.120E-03 1.093E-02

S4(x,t)
HPM 3.398E-01 2.496E-01 3.177E-01 7.169E-01 1.950E+00 5.299E+00

FTADM 2.215E-04 9.473E-05 8.975E-05 3.009E-04 4.973E-04 6.380E-04

S6(x,t)
HPM 3.398E-01 2.497E-01 3.217E-01 7.637E-01 2.245E+00 6.621E+00

FTADM 6.025E-06 1.644E-07 7.982E-06 1.470E-05 1.771E-05 1.566E-05
 

t=0.2

S2(x,t)
HPM 9.236E-01 8.306E-01 1.125E+00 1.778E+00 2.764E+00 4.029E+00

FTADM 5.249E-02 4.580E-02 3.304E-02 1.458E-02 8.640E-03 3.530E-02

S4(x,t)
HPM 9.236E-01 8.960E-01 1.595E+00 3.756E+00 9.082E+00 2.126E+01

FTADM 5.981E-03 3.544E-03 1.338E-04 4.399E-03 8.419E-03 1.141E-02

S6(x,t)
HPM 9.236E-01 8.976E-01 1.654E+00 4.385E+00 1.287E+01 3.777E+01

FTADM 6.781E-04 1.809E-04 4.736E-04 1.060E-03 1.367E-03 1.291E-03
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with the real exact solution. For the same number of terms 
in the series solutions, the error of the FTADM results is 
much smaller than those obtained by HPM. However, this is 
more pronounced for the case of the non-linear differential 
equation. Moreover, as time increases, i.e. t→∞, the results 
of FTADM, for the linear NWS equation, converges to zero 
and for, the non-linear NWS equation, the results of FTADM 
converges to 1 with only six recursive terms. However, this 
is not the case for the results of HPM. It can be deduced that 
the FTADM is an efficient and powerful tool which can yield 
the exact solution of linear and non-linear differential NWS 
equations more effective than HPM.

Fig. 1a, 1b and 1c. comparison of variations of
                                                  with the exact values u(x,y) for 

example 1 using HPM and FTADM at (a) y=-1, (b) y=0.1, (c) y=1

6

6 0
 ( , ) ( , )

=
= ∑ ii

s x y u x y

Fig. 2a, 2b and 2c. comparison of variations of 

                                              with the exact values u(x,t)  for 

example 2 (linear NWS equation) using the HPM and FTADM 
at (a) t=0.05, (b) t=0.1, (c) t=0.2

6

6 0
 ( , ) ( , )

=
= ∑ ii

s x t u x t

t=0.05 t=0.1 t=0.2
RMS error of the

 HPM method 1.20E+00 2.88E+00 1.64E+01

RMS error of the
 FTADM method 1.24E-07 1.21E-05 9.47E-04

Table 4. Comparison of RMS error of
                                    of the HPM

 and FTADM results of example 3 (nonlinear NWS Equation)  
at different times .
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=
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Fig 5. Behavior of
                                                      for the results of HPM and 

FTADM of example 2 
(linear NWS equation).

6

6 0
 ( , ) ( , )

=
= ∑ ii

s x t u x t



S. S. Nourazar et al., AUT J. Model. Simul., 49(2)(2017)227-238, DOI: 10.22060/miscj.2017.12051.4998

236

REFERENCES
[1] J.-H. He, Application of homotopy perturbation method 

to nonlinear wave equations, Chaos, Solitons & Fractals, 
26(3) (2005) 695-700.

[2] J.-H. He, Homotopy perturbation method for bifurcation 
of nonlinear problems, International Journal of Nonlinear 

Sciences and Numerical Simulation, 6(2) (2005) 207-208.
[3] J.-H. He, Homotopy perturbation method for solving 

boundary value problems, Physics letters A, 350(1) 
(2006) 87-88.

[4] A.-M. Wazwaz, Partial differential equations and solitary 
waves theory, Springer Science & Business Media, 2010.

[5] A. Yildirim, Homotopy perturbation method for the 
mixed Volterra–Fredholm integral equations, Chaos, 
Solitons & Fractals, 42(5) (2009) 2760-2764.

[6] S.S. Nourazar, M. Soori, A. Nazari-Golshan, On the 
exact solution of Newell-Whitehead-Segel equation 
using the homotopy perturbation method, arXiv preprint 
arXiv:1502.08016,  (2015).

[7] M.M. Rashidi, H. Shahmohamadi, Analytical solution 
of three-dimensional Navier–Stokes equations for the 
flow near an infinite rotating disk, Communications in 
Nonlinear Science and Numerical Simulation, 14(7) 
(2009) 2999-3006.

[8] O.A. Bég, M. Rashidi, T.A. Bég, M. Asadi, Homotopy 
analysis of transient magneto-bio-fluid dynamics of 
micropolar squeeze film in a porous medium: a model 
for magneto-bio-rheological lubrication, Journal of 

Fig 6. Behavior of 

                                          for the results of HPM and 

FTADM of example 3 (nonlinear NWS equation).

6

6 0
 ( , ) ( , )

=
= ∑ ii

s x t u x t

Fig. 3a, 3b and 3c. comparison of variations of
                                                     with the exact values u(x,t)  for 
example 3 (nonlinear NWS equation) using HPM and FTADM 

at (a) t=0.05, (b) t=0.1, (c) t=0.2.

6

6 0
 ( , ) ( , )

=
= ∑ ii

s x t u x t

Fig. 4a, 4b and 4c. Comparsion of the residual errors of 

                                                      of the HPM and FTADM 

results of example 3 (nonlinear NWS Equation)  at (a) t=0.05, 
(b) t=0.1, (c) t=0.2. 

6

6 0
 ( , ) ( , )

=
= ∑ ii

s x t u x t



S. S. Nourazar et al., AUT J. Model. Simul., 49(2)(2017)227-238, DOI: 10.22060/miscj.2017.12051.4998

237

Mechanics in Medicine and Biology, 12(03) (2012) 
1250051.

[9] M.H. Abolbashari, N. Freidoonimehr, F. Nazari, M.M. 
Rashidi, Entropy analysis for an unsteady MHD flow 
past a stretching permeable surface in nano-fluid, Powder 
Technology, 267 (2014) 256-267.

[10] S. Nourazar, A. Nazari-Golshan, A. Yıldırım, M. 
Nourazar, On the hybrid of Fourier transform and 
Adomian decomposition method for the solution of 
nonlinear Cauchy problems of the reaction-diffusion 
equation, Zeitschrift für Naturforschung A, 67(6-7) 
(2012) 355-362.

[11] A. Nazari-Golshan, S. Nourazar, H. Ghafoori-Fard, A. 
Yildirim, A. Campo, A modified homotopy perturbation 
method coupled with the Fourier transform for 
nonlinear and singular Lane–Emden equations, Applied 
Mathematics Letters, 26(10) (2013) 1018-1025. 

[12] A. Saravanan, N. Magesh, A comparison between the 
reduced differential transform method and the Adomian 
decomposition method for the Newell–Whitehead–Segel 
equation, Journal of the Egyptian Mathematical Society, 
21(3) (2013) 259-265.

[13] G. Adomian, Solving Frontier Problems of Physics: The 
Decomposition MethodKluwer, Boston, MA, (1994).

[14] A.-M. Wazwaz, M.S. Mehanna, The combined Laplace-
Adomian method for handling singular integral equation 
of heat transfer, International Journal of Nonlinear 
Science, 10(2) (2010) 248-252.

[15] R.G. Pratt, C. Shin, G. Hick, Gauss–Newton and full 
Newton methods in frequency–space seismic waveform 
inversion, Geophysical Journal International, 133(2) 
(1998) 341-362.

[16] R.G. Pratt, M. Worthington, Inverse theory applied to 
multi-source cross-hole tomography. Part 1: Acoustic 
wave-equation method, Geophysical prospecting, 38(3) 
(1990) 287-310.

[17] T. Wu, Z. Chen, A dispersion minimizing subgridding 
finite difference scheme for the Helmholtz equation 
with PML, Journal of Computational and Applied 
Mathematics, 267 (2014) 82-95.

Please cite this article using:

S. S. Nourazar, H. Parsa, A. Sanjari, A Comparison Between Fourier Transform Adomian Decomposition 
Method and Homotopy Perturbation Method for Linear and Non-Linear Newell-Whitehead-Segel 
Equations, AUT J. Model. Simul., 49(2)(2017)227-238.

DOI: 10.22060/miscj.2017.12051.4998



S. S. Nourazar et al., AUT J. Model. Simul., 49(2)(2017)227-238, DOI: 10.22060/miscj.2017.12051.4998

238


