
AUT Journal of Modeling and Simulation 

AUT J. Model. Simul., 49(2)(2017)1-2
DOI: 10.22060/mej.2016.503

Partial Observation in Distributed Supervisory Control of Discrete-Event Systems

V. Saeidi, A. Afzalian, D. Gharavian

Dept. of Electrical Engineering, Abbaspour School of Engineering, Shahid Beheshti University, Tehran, Iran

ABSTRACT: Distributed supervisory control is a method to synthesize local controllers in discrete-event 
systems with a systematic observation of the plant. Some works were reported on extending this method 
by which local controllers are constructed so that observation properties are preserved from monolithic to 
distributed supervisory control, in an up-down approach. In this paper, we find circumstances in which 
observation properties are preserved from monolithic to distributed supervisory control. Local observation 
properties, i.e. local normality and local relative observability are employed for investigating observation 
properties of each local controller, which are constructed by any localization algorithm that preserves control 
equivalency to the monolithic supervisor with respect to the plant. These properties enable us to investigate 
the observation properties from monolithic to distributed supervisory control. Moreover, observation 
equivalence property is defined according to the control equivalence in a distributed supervisory control 
with partial observation. It is proved that with preserving observation equivalence of the local controllers to 
the monolithic supervisor, the control equivalence is satisfied, if and only if the intersection of local event 
sets is a subset of or equal to the global observable event set.
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1- Introduction
The supervisory control theory handles small scale discrete 
event systems (DES) [1], Since, in the large scale DES the 
number of states grows with the number of components. 
Supervisory control synthesis for the monolithic specification 
encounters with computational complexity. In order to 
overcome the computational complexity, modular and 
decentralized [2, 3], hierarchical [4,5] and heterarchical  [6-9] 
approaches have been proposed in the supervisory control of 
DES. The decentralized supervisory control scheme reduces 
the computational complexity in large scale DES [10, 11]. 
Since a decentralized supervisor observes the plant partially, he  
does not have enough information about the other supervisors, 
and their decisions may be in conflict with each other. In [9], 
a method was introduced for synthesizing  the optimal non-
blocking decentralized supervisory control using Lm-observer 
and output control consistency (OCC) properties. In [11], 
decomposability and strong decomposability (conormality) 
were defined to construct the decentralized supervisory 
control in a top-down approach. Other accessible properties 
are co-observability and relative co-observability which were 
defined in [11] and [12], respectively. In order to remove 
conflict between decentralized supervisors, construction of a 
coordinator was proposed in the literature [13, 14]. In [15], a 
supervisor localization procedure was proposed to guarantee 
the optimality and the non-conflicting of the local controllers 
and the monolithic supervisor.
Observation properties e.g. normality [16], observability 
[16] and relative observability [17] describe the effect of 
observation on the control behavior.

The authors of [15] developed a Distributed supervisory 
control based on localization of the monolithic supervisor 
with full observation. The paper [18] proposed a method for 
recognizing the conflicts between the supervisors, using the 
observer property of a natural projection 
In [19], an abstraction method was proposed to construct a 
distributed supervisory control (in a top-down approach), in 
which the observation properties of monolithic supervisor is 
preserved in local controllers. In the present study, We find 
circumstances for preserving observation properties in local 
controllers, constructed by supervisor localization procedure 
[15], or constructed by decomposition of the monolithic 
supervisor [11].
This paper is the extended version of the conference paper [20]. 
Here, we study the observation properties in the supervisory 
control of DES using a set algebra approach. Also, local 
observation properties e.g. local normality and local relative 
observability [20], are employed to study the observation 
problem in the distributed supervisory control scheme. 
Control equivalence [15] describes the equivalency between 
the control behavior of local controllers and the monolithic 
supervisor in the plant. Moreover, observation equivalence is 
defined to investigate the effect of observation properties on 
the control behavior. Although the observation equivalence 
has been introduced in [21] for nondeterministic automata, in 
this paper, observation equivalence is defined to describe the 
equivalency between observation properties in decentralized 
(local) controllers and those in the monolithic supervisor. It 
is shown that having identical observation equivalence in 
local controllers and the monolithic supervisor, the control 
equivalence is satisfied if and only if the intersection of 
local event sets belongs or equals to the global observable 
event set. Theoretical results can be employed in industrial 
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applications, such as gas transmission networks and power 
systems [22].
In the rest of the paper, necessary preliminaries are reviewed 
in section 2. In order to redefine the observation properties 
by set algebra approach, some formulations are introduced in 
section 3. Observation properties in distributed supervisory 
control are redefined by a set algebra approach in section 4. 
The observation equivalence is introduced and is compared 
with control equivalence in section 5. In section 6, the 
extended theorem is illustrated by some examples. Finally, 
the concluding remarks are presented  in section 7.

2- Preliminaries
The set of all finite strings over Σ is denoted Σ*. The 
concatenation of two strings s1,s2⊆Σ* is written as s1 s2⊆Σ* 
and s1≤s, where s1 is the prefix of s. ϵ∈Σ* is the empty string, 
and sϵ=ϵs=s does hold. A DES is introduced by an automaton 
G=(Q,Σ,δ,q0,Qm) in which Q is a finite set of states, with q0∈Q 
as the initial state and Qm⊆Q being the desired (marked) 
states. Σ is a finite set of events, and finally δ is a transition 
mapping δ:Q×Σ→Q∶ δ(q,σ)=q`. L(G)≔{s∈Σ*│δ(q0,s)!} is 
the closed behavior of G and Lm (G)≔{s∈L(G)│δ(q0,s)∈Qm} 
is the marked behavior of G.
The natural projection is a mapping P:Σ*→Σ0

* where 
(1)  P(ϵ):=ϵ ,(2) for s∈Σ*,σ∈Σ ,P(sσ):=P(s)P(σ), and (3) 
P(σ):=σ if σ∈Σ0 and P(σ):=ϵ if σ∉Σ0. The effect of P on 
the string s∈Σ* is to erase the events in s that do not belong 
to the observable event set Σ0. The natural projection P 
can be extended and denoted by P:Pwr(Σ*)→Pwr(Σ0

*). 
For any X⊆Σ*, P(X)≔{P(s)│s∈X}. The inverse image 
function of P is denoted by P-1:Pwr(Σ0

*)→Pwr(Σ*) and 
P-1(X)≔{s∈Σ*│P(s)∈X}. The synchronous product of 
languages L1⊆Σ1

* and L2⊆Σ2
* is defined by L1∥L2=P1

-

1(L1)∩P2
-1(L2)⊆Σ*, where Pi:Σ*→Σi

*,i=1,2 for the union 
Σ=Σ1∪Σ2 [9,23].
In the supervisory control context, all events in Σ are 
partitioned as a set of controllable events Σc and a set of 
uncontrollable events Σuc, where Σ=Σc⨃Σuc. A control pattern 
is γ, where Σuc⊆γ⊆Σ and the set of all control patterns is 
denoted by Γ={γ∈2Σ│γ⊇Σuc}. A supervisor for G is a map 
V:L(G)→Γ, where V(s) represents the set of enabled events 
after the occurrence of the string s∈L(G). Namely, a supervisor 
only disables the controllable events. A pair (G,V) is written 
as V/G and called “G that is under supervision of V”. The 
closed loop language L(V/G) is defined by: (1) ϵ∈L(V/G) (2) 
sσ∈L(V/G) iff  s∈L(V/G), σ∈V(s), and sσ∈L(G). The marked 
strings of V/G is defined as Lm(V/G)=L(V/G)∩Lm(G). The 
closed loop system is non-blocking if                           
                 is the set of all prefixes of traces in Lm(V/G). 
A language K⊆Σ* is controllable with respect to (w.r.t.) 
L(G) and Σuc, if K̅Σuc∩L(G)⊆K̅. The set of all controllable 
sublanguages E w.r.t. L(G) and Σuc is denoted by 
C(E)={K⊆E│K̅Σuc∩L(G)⊆K̅}, that is nonempty and closed 
under union. For every specification language E, there exists 
a supremal controllable sublanguage of E w.r.t. L(G) and Σuc.

3- Observation Properties
In order to handle the lack of enough observation of the plant, 
some observation properties have been defined. Observability 
describes that the natural projection P preserves at least the 
information required to decide consistently the question of 
continuing membership in K̅ after the occurrence of an event σ 

and to decide membership in K when membership in K̅∩Lm(G) 
is known. K⊆Σ* is (G,P)-observable if for s,s`∈Σ* such that 
P(s)=P(s`) the following conditions are satisfied [16]:
(i) (∀σ∈Σ)  sσ∈K̅  ,s`∈K̅,s` σ∈L(G)⟹s` σ∈K̅,
(ii) s∈K ,s`∈K̅∩Lm(G)⟹s`∈K.
Normality is another property which is stronger than 
observability [16]. K is (Lm(G),P)-normal if P-1P(K)∩Lm 
(G)=K. Also, K̅ is (L(G),P)-normal if P-1P(K̅)∩L(G)=K̅. 
Normality is the strong property and may not hold in practice. 
Another property defined is called relative observability 
[17]. Relative observability is stronger than observability 
and weaker than normality; it imposes no constraint on 
the disablement of unobservable controllable events. Let 
K⊆C⊆Lm(G). K is relatively observable w.r.t. C̅,G and P 
(C̅-observable) if for every pair of strings s,s`∈Σ* such that 
P(s)=P(s`), the following two conditions hold:
(i`) (∀σ∈Σ)  sσ∈K̅  ,s`∈C̅,s` σ∈L(G)⟹s` σ∈K̅,
(ii`) s∈K,s`∈C̅∩Lm(G)⟹s`∈K.
In Proposition 1, relative observability is written by a set  
algebra in two relationships. 
Proposition 1: K is relatively observable w.r.t. C̅,G and P if 
and only if P(s)=P(s`) for every pair of strings s,s`∈Σ* and the 
following two conditions hold:
P-1 PK̅∩C̅Σ∩L(G)⊂K̅,                                                           (1)
P-1 PK∩C̅∩Lm(G)=K.                                                           (2)
Proof: (If ) AssumeP(s)=P(s`). We can write
(∀σ∈Σ) sσ∈K̅ ,s`∈C̅,s` σ∈L(G)⟹s` σ∈C̅Σ.
Also,
P(s)=P(s`)⟹P(sσ)=P(s` σ)⟹s` σ∈P-1 PK̅.
Thus, 
⟹s` σ∈P-1 PK̅∩C̅Σ∩L(G).
From (1) we conclude that s` σ∈K̅ and (i`) is proved.
From (2) we write
s∈K,s`∈C̅∩Lm(G) ,P(s)=P(s`)⟹s`∈P-1 PK,
	 ⟹s`∈P-1 PK∩C̅∩Lm(G),
	 ⟹s`∈K,
and (ii`) is proved.
(Only if) From (i`) we write
(∀σ∈Σ)sσ∈K̅ ,s`∈C̅, s` σ∈L(G)⟹s` σ∈K̅,
	 ⟹P(sσ)∈PK̅⟹P(s` σ)∈PK̅,
 ⟹s` σ∈P-1 PK̅.
Then,
s`σ∈P-1PK̅ ,s`∈C̅, s`σ∈L(G)⟹s`σ∈K̅,
	 ⟹P-1PK̅∩C̅Σ∩L(G)⊆K̅.
Also,
ϵ∉C̅Σ, ϵ∈K̅ ⟹P-1PK̅∩C̅Σ∩L(G)⊂K̅
From (ii`), we can write,
s∈K,s`∈C̅∩Lm(G)⟹s`∈K,
⟹P(s)∈PK⟹P(s`)∈PK,
⟹s`∈P-1PK.
Thus,
s`∈P-1PK ,s`∈C̅,s`∈Lm(G)⟹s`∈K,
⟹P-1PK∩C̅∩Lm(G)⊆K.                                                      (3)
Moreover,
K⊆P-1PK ,K⊆Lm(G) ,K⊆C̅,
⟹K⊆P-1PK∩C̅∩Lm(G).                                                      (4)
From (3) and (4), we have P-1PK∩C̅∩Lm(G)=K.
If C̅=K̅, then the definition of relative observability turns into  
that of  observability property as:
P-1PK̅∩K̅Σ∩L(G)⊂K̅,                                                          (5)
P-1PK∩K̅∩Lm(G)=K.                                                           (6)
If C̅=L(G), then definition of relative observability appears  

( ) ( )/ G / G .=mL V L V
( )/ GmL V
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in the following two relationships:
P-1PK̅∩L(G)Σ∩L(G)⊂K̅,                                                     (7)
P-1PK∩Lm(G)=K.                                                                 (8)
Equation (8) guarantees that  K is (Lm(G),P)-normal. Since 
ϵ∉L(G)Σ, L(G)Σ∩L(G) consists of all strings in L(G) except 
for ϵ. Thus, the relative observability may not lead to the 
normality of K̅ w.r.t. (L(G),P) in general.
Although Propositions 2 to 5 were proved in [17]; we prove 
them again in the appendix by a set algebra approach. 
Proposition 2: If K⊆C is C̅-observable, then K is also 
observable.
Proposition 3: If K⊆C is (Lm(G),P)-normal and K̅ is (L(G),P)-
normal, then K is C̅-observable. 
Proposition 4: Let Ki⊆C ,i∈I, be C̅-observable. Then 
K=⋃i{Ki│i∈I}  is also C̅-observable.
Proposition 5: Relative observability is not closed under 
intersection. 
Properties such as decomposability and strong decomposability 
(conormality) have been proposed to solve distributed 
supervisory control problem with a global specification. It 
means that the monolithic supervisor can be decomposed to 
more than one local supervisor if the local versions of K (i.e. 
P1(K) and P2(K)) contain enough information to reconstruct 
the global supervisor [11]. 
Such circumstances are too strict and may not be satisfied in 
practice. Therefore, control equivalency has been defined as 
another property [15]. The set of controllers Ki which satisfies  
the following two properties, are control equivalent to K w.r.t. G,
Lm(G)∩[⋂iPi

-1Ki]=K,                                                           (9)          
L(G)∩[⋂iPi

-1K̅i]=K̅.                                                            (10)
Informally, the synchronization of local controllers with the 
plant is equivalent to that of the monolithic supervisor.

4- Observation Problem In Distributed Supervisory 
Control
We employ the proposed method in [9] to investigate the 
observation properties in decentralized supervisory control 
(Fig.1). In general case, ⋃i≠j(Σi∩Σj)⊆Σ0, but for simplicity, 
assume that Σ1∩Σ2⊆Σ0⊆Σ1∪Σ2, and the natural projections 
are defined as follows,
Pi:(Σ1∪Σ2)*⟶Σi

* ,
Pi

-1:Pwr(Σi
*)⟶Pwr((Σ1∪Σ2)*), i=0,1,2

Qi: Σi
*⟶(Σi∩Σ0)* ,

Qi
-1:Pwr((Σi∩Σ0)*)⟶Pwr(Σi

*), i=1,2
Ri: Σ0

*⟶(Σi∩Σ0)* ,  
Ri

-1:Pwr((Σi∩Σ0)*)⟶Pwr(Σ0
*), i=1,2

T: Σ0
*⟶(Σ1∩Σ2)* , T-1:Pwr((Σ1∩Σ2)*)⟶Pwr(Σ0

*).
It has been proved that if  Σ1∩Σ2⊆Σ0, then P0(K1∥K2)=Q1 
(K1)∥Q2(K2)=R1

-1 Q1(K1)∩R2
-1Q2(K2) [9]. Thus, we defined 

local observation properties in a distributed supervisory 
control [20].

4- 1- Local Normality
Normality is a observation property of a language, related to 
another language and a projection channel. 
Based on normality definition, the supervisor K is (Lm(G),P)-
normal, if synchronization of P(K) and Lm(G) is  equal to that 
of K. We introduced a similar property for the decentralized 
(distributed) supervisory control.
In a decentralized supervisor, say Ki, the natural projection Qi 
is defined as Qi: Σi

*⟶(Σi∩Σ0)* and Qi(Ki) is the image of Ki. 
If Qi(Ki) and Lm(G) is synchronized and the resulted language 

is equal to Ki, then Ki is normal. Although, Ki is defined in 
Σi

*, Lm(G) is defined in Σ*. Thus, their reference sets must be 
the same.
Definition 1 (Local Normality)[20]: Let Ki be a language 
for i=1,2 and Pi: Σ*⟶Σi

*,Qi: Σi
*⟶(Σi∩Σ0)*, i=1,2 and 

Qi(s)=Qi(s`). Ki is called (Lm(G),Pi
-1 ,Qi )-normal, if

Pi
-1Ki∩Lm(G)=Pi

-1Qi
-1QiKi∩Lm(G).

Also, K̅i is called (L(G),Pi
-1,Qi)-Normal, if:

Pi
-1K̅i∩L(G)=Pi

-1Qi
-1QiK̅i∩L(G).

Comparing to the local normality, we call the normality global 
normality. In the following theorem, circumstances in which 
local and global normalities are  equivalent are investigated. 
Theorem 1: Let Ki’s be control equivalent to K w.r.t. G 
and observable events set be Σ0, such that Σ1∩Σ2⊆Σ0, 
Pi:(Σ1∪Σ2)*⟶Σi

*,i=0,1,2, and Qj: Σj
*⟶(Σj∩Σ0)*,j=1,2. Then 

local normality implies global normality and vice versa.
Proof: (If) Let K1, K2 be two local normal languages. Then,
P1

-1K1∩Lm(G)=P1
-1Q1

-1Q1K1∩Lm(G),
P2

-1K2∩Lm(G)=P2
-1Q2

-1Q2K2∩Lm(G).
Assume K1, K2 are control equivalent to K w.r.t. G. Thus, 
K=P1

-1K1∩P2
-1K2∩Lm(G),

We can write,
K=P1

-1Q1
-1Q1K1∩P2

-1Q2
-1Q2K2∩Lm(G).

From Fig. 1 we have
Pi

-1Qi
-1=P0

-1Ri
-1  ,i=1,2

and
K=P0

-1R1
-1Q1K1∩P0

-1R2
-1Q2K2∩Lm(G).

From the properties of natural projection [9], we have P0
-1(R1

-1 

Q1K1∩R2
-1Q2K2)=P0

-1R1
-1Q1K1∩P0

-1R2
-1Q2K2 and P0K=R1

-1 

Q1K1∩R2
-1Q2K2. Thus, K=P0

-1P0(K)∩Lm(G). It means that K 
is (Lm(G), P0)-global normal language. With the same analysis 
scenario, it can be proved that K̅ is (L(G),P0)-global normal if 
both K̅i’s are (L(G),Pi

-1 ,Qi)-local normal.
(Only if) Let K=P0

-1P0(K)∩Lm(G) and the unobservable 
events set be (Σ1∪Σ2)\Σ0. We assert that P1

-1K1∩Lm(G)=P1
-1 

Q1
-1Q1K1∩Lm(G) and P2

-1K2∩Lm(G)=P2
-1Q2

-1Q2K2∩Lm(G). 
Assume P1

-1K1∩Lm(G)≠P1
-1Q1

-1Q1K1∩Lm(G) or P2
-1 

K2∩Lm(G)≠P2
-1Q2

-1Q2K2∩Lm(G).  Then,
P1

-1Q1
-1Q1K1∩P2

-1Q2
-1Q2K2∩Lm(G)⊈P1

-1K1∩P2
-1K2∩Lm(G)

⟹P0
-1R1

-1Q1K1∩P0
-1R2

-1Q2K2∩Lm(G)⊈K
⟹P0

-1(R1
-1Q1K1∩R2

-1Q2K2 )∩L_m (G)⊈K
⟹P0

-1P0(K)∩Lm(G)⊈K.
However, K=P0

-1P0(K)∩Lm(G). Thus, by contradiction the 
claim is proved.
It is obvious the normality of a language is a strict condition. 
Hence, relative observability is more achievable than 
normality in practice. 

Fig. 1. Natural Projections when Σ1∩Σ2⊆Σ0
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4- 2- Local Relative Observability
Local relative observability was defined in [20] in the 
case of unobservable controllable events in decentralized 
supervisory control. This property makes a larger language 
than the supremal  normal counterpart.  
Definition 2 (Local Relative Observability)[20]: Let Ki be 
a language for i=1,2 and K̅i⊆C̅i⊆PiL(G). Also, Pi: Σ*⟶Σi

*,   
Qi: Σi

*⟶(Σi∩Σ0)* and Qi(s)=Qi(s`). Ki is locally relatively 
observable w.r.t. (C̅i, G, Pi

-1 ,Qi) if 
(i``)(∀σ∈Σi) sσ∈K̅i ,s`∈C̅i, Pi

-1(s`σ)∈L(G)⟹s`σ∈K̅i

(ii``) s∈Ki, s`∈C̅i, Pi
-1(s`)∈Lm(G)⟹s`∈Ki.

According to Proposition 1, it is easy to show that the statements 
(i``) and (ii``) can be written as follows, respectively.
Pi

-1Qi
-1QiK̅i∩Pi

-1C̅i Σ∩L(G)⊂Pi
-1K̅i∩L(G),                         (11)

Pi
-1Qi

-1QiKi∩Pi
-1C̅i∩Lm(G)=Pi

-1Ki∩Lm(G).                           (12)
Proposition 6: Ki is locally relatively observable w.r.t. (C̅i, G, 
Pi

-1 ,Qi) if and only if Qi(s)=Qi(s`) and (11), (12) hold.
Proof: This proposition is proved in the appendix.
Comparing to the local relative observability, we rename the 
relative observability global relative observability.
In the following proposition, some circumstances in which 
local and global relative observability are equivalent will be  
investigated.
Proposition 7: Let Ki’s be control equivalent to K w.r.t. 
G, and observable event set be Σ0, which Σ1∩Σ2⊆Σ0 and 
Pi:(Σ1∪Σ2)*⟶Σi

* ,i=0,1,2, Qj:Σj
*⟶(Σj∩Σ0)*, j=1,2. Then local 

relative observability guarantees global relative observability, 
and global relative observability guarantees that at least one 
of the local controllers is locally relatively observable and the 
other is local normal.
Proof: This proposition is proved in the appendix.
If C̅i=K̅i, then local relative observability property turns into 
local observability property. Thus, it is sufficient to replace C̅i 
by K̅i in the local relative observability definition.

5- Observation-equivalent Versus Control  Equivalent
Previously, we showed that if all the shared events between 
local controllers (which are control equivalent to the 
monolithic supervisor w.r.t. the plant) are observable, then they 
have observation properties similar to those of the monolithic 
supervisor. For example, if K1, K2 are local controllers, and K 
is relatively observable w.r.t. (C̅,G,P0), then K1, K2 are locally 
relatively observable w.r.t. (C̅i, G, Pi

-1, Qi) ,i=1,2 in the partial 
observation case. We prove that this property has an essential 
role to keep the local controllers control equivalent to the 
monolithic supervisor w.r.t. the plant.
Definition 3 (Observation-equivalent): Let K be a monolithic 
supervisor and Ki’s be local controllers with Pi:Σ*⟶Σi

*  
,i=0,1,2 and Qj:Σj

*⟶(Σj∩Σ0)* ,j=1,2. Ki’s are observation 
equivalent to K w.r.t. G, if the following statement is satisfied. 
“∀i ,C̅i⊇K̅i, if Ki is locally relatively observable w.r.t. (C̅i,G, 
Pi

-1 ,Qi), then ∃C̅⊇K̅ such that K is global relative observable 
w.r.t. (C̅,G,P0).”
However, the control equivalency of a set of local controllers 
to the monolithic supervisor is guaranteed in full observation 
case; the observation equivalence of local controllers to the 
monolithic supervisor may be violated if the observation 
of local controllers is restricted to observe some events 
which are not significant for a consistent decision making. 
Hence, we investigate circumstances in which observation 
equivalence leads to the control equivalence. 
In the following theorem, we prove that control equivalency 

of local controllers to the monolithic supervisor is satisfied if 
and only if Σ1∩Σ2⊆Σ0.
Theorem 2: Let Ki’s be observation-equivalent to K w.r.t. 
G, and observable events set be Σ0, where Pi:(Σ1∪Σ2)*⟶Σi

*  
,i=0,1,2, and Qj:Σj

*⟶(Σj∩Σ0)*, j=1,2. Then, Ki’s are control 
equivalent to K w.r.t. G if and only if  Σ1∩Σ2⊆Σ0.
Proof: (If) The proof is similar to that of Proposition 7.
(Only if) Assume that Σ0⊆Σ1∩Σ2. Then, P1

-1Q1
-1=P2

-1Q2
-1=P0

-1,  
P0K⊆Q1K1∩Q2K2 , and P1

-1C̅1, P2
-1C̅2 be in conflict. We can 

write,
P1

-1K1∩P2
-1K2∩Lm(G)=P1

-1Q1
-1Q1K1∩P2

-1Q2
-1Q2K2∩(P1

-1 

C̅ 1∩P 2
-1C̅ 2)∩L m(G)=P 0

-1(Q 1K 1∩Q 2K 2)∩(P 1
-1C̅ 1∩P 2

-1 

C̅2)∩Lm(G).
Define C≔P1

-1C1∩P2
-1C2. Then, C̅⊆P1

-1C̅1∩P2
-1C̅2. Thus, 

P 0
-1(P 0K)∩C̅∩L(G)⊆P 0

-1(Q 1K 1∩Q 2K 2)∩P 1
-1C̅ 1∩P 2

-1 

C̅2)∩L(G)⟹K⊆P1
-1K1∩P2

-1K2∩Lm(G). It means that K1 
and K2 may be synchronously in conflict. By contradiction 
Σ1∩Σ2⊆Σ0.
In Proposition 7, if K1 is locally observable w.r.t. (G, P1

-1 ,Q1) 
(respectively K2 is local observable w.r.t.(G,P2

-1) ,Q2)) then 
C̅1=K̅1 (respectively C̅2=K̅2). Therefore, (C̅`≔P1

-1C̅1∩P2
-1 

C̅2∩L(G)=P1
-1 K̅1∩P2

-1C̅2∩L(G) and K̅⊆C̅`. Namely, K is 
globally relatively observable w.r.t. (C̅`,G,P0). Moreover, if 
K1 is locally normal w.r.t. (G,P1

-1,Q1) then C̅``≔P1
-1C̅1∩P2

-1 

C̅2∩L(G)=P2
-1C̅2∩L(G) and K̅⊆C̅``. Namely, K is globally 

relatively observable w.r.t. (C̅``,G,P0).

6- Examples
In this section, we consider four examples to illustrate the 
extended theorem in the previous sections. 
Example 1: Consider the plant G and the recognizer of 
the supervisor K given in Fig. 2. Assume that the set of all 
possible events is Σ={10,13,14}, the controllable events sets 
are Σ1,c=Σ2,c={13}, the observable events sets are Σ10={13,14} 
and Σ20={13}, and the natural projections are as follows,
Pi:Σ*⟶Σi

* ,i=0,1,2, Qj: Σj
*⟶Σj0

* ,j=1,2
The local controllers which are control equivalent to the 
supervisor w.r.t. G are shown in Fig.3. The monolithic 
supervisor and local controllers are constructed by TCT 
software [25]. Synchronization of local controllers with the 
plant is the same as that of the monolithic supervisor, shown 
in Fig. 2 (b). Fig. 4 shows the recognizer of the monolithic 
supervisor with partial observation. K is globally relatively 
observable w.r.t. (C̅,G,P0), where C̅={10,1014,101413,14,1
413,1414}⊆L(G). Fig. 5 shows local controller 1 with full 
observation and local controller 2 with partial observation. 
Also, the synchronization of local controllers (Fig.5) and the 
plant is control equivalent to the monolithic supervisor with a 
partial observation (Fig. 4).
Therefore, when event {10} is not observable for the monolithic 
supervisor, it can be unobservable for local controller 2, 
whereas control equivalency between local controllers and 

(a) (b)

Fig. 2. (a)  Plant G (b) Recognizer of the supervisor K
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(b)(a)

(a) (b)

Fig. 3. Local controllers with full observation, (a)  Local 
controller1 with full observation  Σ1={13,14} , (b) Local 

controller 2 with full observation Σ2={10,13}

Fig. 8. Local relative observable controller for M1

Fig. 9. Local normal controllers for M2 and TU

Fig. 10. Schematic of a guide way

Fig. 11. Discrete-event model of vehicles V1,V2

Fig. 12. Recognizer of the supremal normal supervisor (K)

Fig. 13. Recognizer of the reduced supremal normal supervisor

Fig. 4. Recognizer of the monolithic supervisor  K with partial 
observation, Σ0={13,14}

Fig. 5.  Local controllers with partial observation Σ0={13,14} 
, (a) Local controller1 with full observation Σ10={13,14} , (b) 

Local controller2 with partial observation Σ20={13}

Fig. 6. Transfer Line

Fig. 7. Reduced supremal  relative observable supervisor Fig. 14. Local normal controller for V1
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the monolithic supervisor w.r.t. G is preserved. This raises 
the concept of observation equivalency. It means that, if local 
controller 2, that is shown in Fig.5 (b), has conflict with the 
other local controller, then their synchronization with the 
plant is not control equivalent to the monolithic supervisor 
(shown in Fig. 4) w.r.t. G.
Example 2 (Supremal relative observable supervisor for 
Transfer Line): Industrial Transfer Line is a simple model of 
industrial systems and consists of two machines M1, M2 and 
a test unit (TU), such that they are linked by buffers B1 and B2 
with the capacity of three and one slots, respectively (Fig. 6). 
If a work piece accepted by TU, it is released from the system; 
if it is rejected, then it is returned to B1 for reprocessing by 
M2. The control logic is based on protection B1 and B2 
against underflow and overflow [24]. Controllable events 
are odd-numbered and the unobservable event is {1}. Fig.7 
shows the reduced supremal  relative observable supervisor 
synthesized by TCT software [25]. Local controller for the 
component M1 is shown in Fig. 8 and for M2 and TU in Fig. 
9. The local controller of M1 is locally relatively observable 
and the local controllers of M2 and TU are locally normal. If 
event {1} is unobservable for local controller of M1, then it 
becomes self-looped at all states of the local controller (it is 
not shown). The local controllers of M2 and TU are locally 
normal because event {1} is self-looped at all states as shown 
Fig. 9. It means that event {1} does not affect local controllers 
of M2 and TU, even they are under full observation or under 
partial observation.
It can be interpreted that event {1} does not belong to local 
controllers of M2 and TU. Therefore, the global relative 
observability of the monolithic supervisor leads to the local 
relative observability of local controller M1 and leads to local 
normality of local controllers M2 and TU.
Example 3(Supremal normal supervisor for a Guide way)
On a typical guide way, stations A and B are connected by a 
one-way track from A to B, as shown in Fig. 10. The track 
consists of four sections, with stoplights which are shown 
with (*) and with detectors which are shown by (!), installed 
at various section junctions [23].
Two vehicles V1 and V2 use the guide way simultaneously. 
Vi ,i=1,2,  may be at state 0 (at A), state j (while travelling in 
section j=1,….,4), or state 5 (at B). The discrete-event models 
of Vi ,i=1,2 are shown in Fig. 11.
The plant to be controlled is G=sync(V1,V2). In order to prevent 
collision, control of the stoplights must ensure that V1 and V2 
never travel on the same section of the track, simultaneously. 
In this example, unobservable events are {13,23}. Fig. 12 
shows the recognizer of the supremal normal supervisor, and 
Fig.13 shows the recognizer of the reduced supervisor in which 
unobservable events {13,23} are not shown, i.e. they are self-
looped at all states in the reduced supervisor.
Events {13,23} belong to null space of an arbitrary natural 
projection P as follows,
P:Σ*→Σ0

* ,Σ0=Σ−{13,23}
The local normal controllers for components V1 and V2, 
are shown in Fig. 14 and Fig. 15. They are locally normal; 
because local controllers do not  regard the  events {13,23}. 
Therefore, the global normality leads to local normality 
and vice versa.
Example 4 (Supervisory control synthesis for balancing the 
pressure of parallel gas trunk lines)
The main sector of a long-distance gas transmission system 

is a gas trunk line. A gas trunk line is a pipeline which is 
designed for natural gas transmission from production to 
market areas. It is similar to trunk of a tree in which the gas 
processing plants deliver the natural gas through several 
roots, and consumers receive the gas from some branches. 
Natural gas is pressurized so that it travels through a pipeline 
to transport the flow of gas. To keep the minimum pressure 
for flowing natural gas through each pipeline, compression 
of the natural gas occurs periodically along the pipe. This is 
accomplished by compressor stations, placed according to 
the land topography along the pipeline. Natural gas pipelines 
include a great number of valves along their entire length. 
They are divided into two categories: 1. Line Break Valves 
(LBV’s), usually open and allow natural gas to flow freely, 
but they can be used to stop gas flow along a section of 
pipe. There are many reasons why a pipeline may need to 
restrict gas flow in certain circumstances, namely  emergency 
shutdown and maintenance. 2. Control Valves placed on 
connection pipes between two trunk lines. They are called 
connection valves each of which connects two trunk lines 
through a certain connection line.
Since the consumption of natural gas shall be distributed 
across the trunk lines, several branches from a trunk line are 
taken to provide the consumption. Hence, the pressure of 
each trunk line may fluctuate by gas consumption throughout 
a trunk line. In order to balance the pressure of two or more 
parallel gas trunk lines, each connection valve between a pair 
of trunk lines segments can be set to open (Figs. 16, 17, 18). 
The supervisory control problem for a discrete-event system 
is formulated by modeling the plant and its control logic 
(specification) as finite automata [24].
The discrete-event modeling of parallel gas trunk lines, 
description of specifications, supervisor synthesis and state 
reduction of the supervisor is carried out in TCT software [25].
We construct a DES model for each pair of parallel gas trunk 
lines and  associated connection valves as follows,
PVij= Sync(Pi, Pj, Vi) (18, 66)  Blocked_events = None 
Pi, Pj and Vi are DES models of each pair of parallel gas 
trunk lines and the connection valve which is placed on the 
connection pipe between the two trunk lines (Fig. 19). PVij 

has 18 states and 66 transitions. Each pair of parallel trunk 
lines has the same structure with different events. 
The control logic for opening and closing the valve is designed 
as several “If-Then” rules in Table 1, and the corresponding 
DES model is shown in Fig. 20. It is provided by a designer for 
balancing the pressure of two parallel gas trunk lines 1 and 2.
The continuous time dynamics of the pressures in a segment of 
trunk lines 1 and 2, influenced by open/close actuations of the 
connection valve (Fig. 16) is shown in Fig. 21. The minimum 

Fig. 15. Local normal controller for V2
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and the maximum permissible pressures are assumed to be 50 
bar and 60 bar, respectively for each trunk line. Dashed lines 
show the variations of pressures in one segment of trunk lines 
1 and 2, influenced by inlet and outlet gas flows (Fig. 21). 
This simulation is carried out by state flow toolbox in Matlab. 
In the case of three parallel gas trunk lines, we obtain two 
other control logics, structurally the same as E1 with different 
events for the other two pairs of parallel trunk lines (2,3) and 
(1,3). Each decentralized supervisor can be synthesized using 
supcon procedure as follows,
SUPij = Supcon (PVij, Ei)  (34,95)
Each decentralized supervisor has 34 states and 95 transitions. 
We can show that SUP12, SUP23 and SUP13 are synchronously 
non-conflicting. Now, assume that events {11,21} are 

Fig. 19. DES model for each trunk line and the connection 
valve, i=1,2,3

(a) Trunk Lines (Pi), (b) Connection Valve (Vi)

Fig. 16. Schematic diagram of a supervisory control for two 
parallel gas trunk lines

Fig. 17. Schematic diagram of a Monolithic (centralized) 
supervisory control for three parallel gas trunk lines

Fig. 20. DES model of the specification for balancing the 
pressure of two parallel gas trunk lines, E1

Table 1. Specifications  as “If-Then” rules

Fig. 18. Schematic diagram of decentralized supervisory 
control for three parallel gas trunk lines

(a)

(b)

Rule 
no. If Then

1

The connection valve is closed- ev 
.13, and the pressure of trunk line 

1 is Low- ev.14 (High- ev.12), 
and the pressure of trunk line 2 is 

High- ev.22 (Low- ev.24)

Open the connection 
valve (ev.11)

2

The connection valve is open- 
ev.11 and the pressure of trunk 
line 1 returns to the permissible 

range (from min.)- ev.140

Close the connection 
valve (ev.13)

3

The connection valve is open- 
ev.11 and the pressure of trunk 
line 1 returns to the permissible 

range (from max.)- ev.120

Close the connection 
valve (ev.13)

4

The connection valve is open- 
ev.11 and the pressure of trunk 
line 2 returns to the permissible 

range (from min.)- ev.240

Close the connection 
valve (ev.13)

5

The connection valve is open- 
ev.11 and the pressure of trunk 
line 2 returns to the permissible 

range (from max.)- ev.220

Close the connection 
valve (ev.13)
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unobservable. Two supremal relative observable supervisors 
ROSUP12 and ROSUP23 can be synthesized using supconrobs 
procedure as follows,
ROSUP12= Supconrobs(PV12, E1, Null[11]) (65, 181)
ROSUP23= Supconrobs(PV23, E2, Null[21]) (65, 181)
Moreover,
SUP13 = Supcon(PV13, E3)  (34,95)
SUP13 is synthesized based on full observation of PV13.
The desired behavior (specification) of three parallel gas 
trunk lines can be obtained as follows,
E= Meet(E1, E2, E3)  (512, 6528)
Assume controllable events {11,21} are unobservable. The 
supremal relative observable monolithic supervisor can be 
synthesized by supconrobs procedure as follows,
ROSUP= Supconrobs(PLANT, E, Null[11,21]) (1648, 7272)
ROSUP is the relative observable supervisor with 1648 states 
and 7272 transitions. 
On the other hand, the conjunctive behavior of ROSUP12, 

ROSUP23 and SUP13, can be obtained as follows,
SROSUP12= Selfloop (ROSUP12, [32, 34, 320, 340, 21, 23, 
31, 33])  (65,367)
SROSUP23= Selfloop(ROSUP23, [12, 14, 120, 140, 11, 13, 
31, 33])  (65,367)
SSUP13= Selfloop(SUP23, [12, 14, 120, 140, 11, 13, 21, 23])   
(34,367)
DSUP = Meet(SROSUP12, SROSUP23, SSUP13) (1648, 7272)
We can check the identity of DSUP and ROSUP by isomorph 
procedure.
true = Isomorph(DSUP, ROSUP; identity)
Since unobservable events {11,21} are not the shared events, 
local relative observability of decentralized supervisors leads 
to global relative observability of the monolithic supervisor 
(ROSUP).
In this example, we clarified that local observation properties 
lead to the global ones, if the shared events are observable. 
We know that decentralized supervisory controllers may 
be in conflict with each other because each decentralized 
supervisor observes the plant partially. The extended theory 
in this paper implies that, if the shared events of decentralized 
supervisors are observable, then unobservable events, in a 
relative observable supervisor, do not cause the conflict in 
the plant. In this example {11, 21} are unshared events.

7- CONCLUSIONS
In this paper, a method was introduced to analyze  the 
observation properties such as relative observability, in a 
set algebra approach . Moreover, the observation properties 
in distributed supervisory control were investigated. We 
proved that with having local controllers and the monolithic 
supervisor, the partial observation properties are preserved 
from the global supervisor to the local controllers if and 
only if the intersection of local event sets is a subset of or 
equal to the global observable event set. Furthermore, the 
concept of control equivalency was extended for observation 
problem. Observation equivalence describes the equivalency 
of observations in the local controllers and the monolithic 
supervisor in order to have equivalency between control 
behavior in the monolithic and distributed supervisory control 
of the plant. It was proved that with having equivalency 
between local controllers and the monolithic supervisor, the 
control equivalency is satisfied if and only if the intersection 
of local event sets is a subset of or equal to the globally 

observable event set. The extended theory was illustrated by 
four examples.

Appendix 1
In this appendix, we prove some propositions mentioned in 
this  paper.
Proof of Proposition 2: We have
P-1PK̅∩C̅Σ∩L(G)⊂K̅,
P-1PK∩C̅∩Lm(G)=K.
Then,
P-1PK̅∩C̅Σ∩L(G)∩K̅Σ⊂K̅∩K̅Σ,
P-1PK∩C̅∩Lm(G)∩K̅=K∩K̅.
On the other hand,
K̅⊆C̅ 	⟹	K̅Σ⊆C̅Σ.
Thus, 
P-1PK̅∩K̅Σ∩L(G)⊂K̅,
P-1PK∩K̅∩Lm(G)=K.
Therefore, K is observable.
Proof of Proposition 3: We have 
P-1PK̅∩L(G)=K̅,

a. Variations in pressure of trunk line 1, influenced by open/
close actuations in the connection valve

b. Variations in pressure of trunk line 2, influenced by open/
close actuations in the connection valve

c. Open/close actuations of the connection valve, influenced by 
the commands of the supervisor
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P-1PK∩Lm(G)=K.
Then, 
P-1PK̅∩L(G)∩C̅Σ=K̅∩C̅Σ, 
P-1PK∩Lm(G)∩C̅=K∩C̅.
Also K⊆K̅⊆C̅ and K̅∩C̅Σ⊂K̅. Thus,
P-1PK̅∩L(G)∩C̅Σ⊂K̅,
P-1PK∩Lm(G)∩C̅=K.

Proof of Proposition 4: Assume that
P-1PK̅i∩C̅Σ∩L(G)⊂K̅i,
P-1PKi∩C̅∩Lm(G)=Ki.
We can write 
⋃i{P-1PK̅i∩C̅Σ∩L(G)}⊂⋃iK̅i ,
⋃i{P-1PKi∩C̅∩Lm(G)}=⋃iKi .
Thus, 
⋃i{P-1PK̅i}∩C̅Σ∩L(G)⊂⋃iK̅i ,
⋃i{P-1PKi}∩C̅∩Lm(G)=⋃iKi .
From the properties of natural projection [9], it holds that
P-1P(⋃i{K̅i})∩C̅Σ∩L(G)⊂⋃iK̅i ,
P-1P(⋃i{Ki})∩C̅∩Lm(G)=⋃iKi .
Therefore,
P-1PK̅∩C̅Σ∩L(G)⊂K̅,
P-1PK∩C̅∩Lm(G)=K.
 
Proof of Proposition 5: Assume that
P-1PK̅i∩C̅Σ∩L(G)⊂K̅i,
P-1PKi∩C̅∩Lm(G)=Ki.
Then, 
⋂i{P-1PK̅i∩C̅Σ∩L(G)}⊂⋂iK̅i ,
⋂i{P-1PKi∩C̅∩Lm(G)}=⋂iKi .
From the properties of natural projection [9], 
⋂i{P-1PKi}∩C̅∩Lm(G)⊆P-1P{⋂iKi}∩C̅∩Lm(G).
Thus, 
⋂iKi⊆P-1P{⋂iKi}∩C̅∩Lm(G).
Let K=⋂iKi . We can write K⊆P-1P{K}∩C̅∩Lm(G).
Therefore, the closeness of relative observability, under 
intersection, is not guaranteed.
 
Proof of Proposition 6: (If) Assume Q_i (s)=Q_i (s^’) and 
(11), (12) do hold.  We can write,
(∀σ∈Σi) sσ∈K̅i ,s`∈C̅i,Pi

-1(s`σ)∈L(G)⟹s`σ∈C̅i Σi.
Also,
Qi(s)=Qi(s`)⟹Qi(sσ)=Qi(s`σ)⟹s`σ∈Qi

-1Qi K̅i

⟹Pi
-1(s`σ)∈Pi

-1Qi
-1Qi K̅i∩Pi

-1C̅i Σ∩L(G).
From (11), we can write
⟹Pi

-1(s`σ)∈Pi
-1K̅i∩L(G)⟹s`σ∈K̅i∩Pi L(G)

⟹s`σ∈K̅i.
Thus, (i``) is proved.
From (12), we can write,

s∈Ki,s`∈C̅i,Pi
-1(s`)∈Lm(G)⟹Pi

-1(s`)∈Pi
-1C̅i.

Also,
Qi(s)=Qi(s`)⟹s`∈Qi

-1QiK̅i⟹Pi
-1(s`)∈Pi

-1Qi
-1QiK̅i

⟹Pi
-1(s`)∈Pi

-1Qi
-1Qi Ki∩Pi

-1C̅i∩Lm(G).
From (12), we can write,
⟹Pi

-1(s`)∈Pi
-1Ki∩Lm(G)

⟹s`∈Ki∩Pi Lm(G)
⟹s`∈Ki.
Thus, (ii``) is proved.
(Only if) Assume Qi(s)=Qi(s`) and (i``) hold. we can write
sσ∈K̅i ,s`∈C̅i, Pi

-1(s` σ)∈L(G)⟹s` σ∈K̅i

⟹Qi(sσ)∈QiK̅i ,s`∈C̅i, Pi
-1(s` σ)∈L(G)⟹s` σ∈K̅i

⟹Qi(s`σ)∈QiK̅i ,s`∈C̅i, Pi
-1(s` σ)∈L(G)⟹s` σ∈K̅i

⟹s`σ∈Qi
-1QiK̅i ,s`∈C̅i,Pi

-1(s`σ)∈L(G)⟹s`σ∈K̅i

⟹Pi
-1(s`σ)∈Pi

-1Qi
-1QiK̅i ,Pi

-1(s`σ)∈Pi
-1C̅iΣ, Pi

-1(s`σ)∈L(G) 
⟹s`σ∈K̅i ⟹Pi

-1(s`σ)∈Pi
-1K̅i,Pi

-1(s`σ)∈L(G)
⟹Pi

-1Qi
-1QiK̅i∩Pi

-1C̅iΣ∩L(G)⊆Pi
-1K̅i∩L(G).

On the other hand,
ϵ∉Pi

-1C̅i Σ,ϵ∈Pi
-1K̅i 	⟹

Pi
-1Qi

-1QiK̅i∩Pi
-1C̅iΣ∩L(G)⊂Pi

-1K̅i∩L(G).
Moreover, (i``) holds. Then,
s∈Ki,s`∈C̅i,Pi

-1(s`)∈Lm(G)⟹s`∈Ki

⟹Qi(s)∈Qi Ki ,s`∈C̅i,Pi
-1(s`)∈Lm(G)⟹s`∈Ki

⟹Qi(s`)∈QiKi,s`∈C̅i,Pi
-1(s`)∈Lm(G)⟹s`∈Ki

⟹s`∈Qi
-1Qi Ki ,s`∈C̅i,Pi

-1(s`)∈Lm(G)⟹s`∈Ki

⟹Pi
-1(s`)∈Pi

-1Qi
-1QiKi ,Pi

-1(s`)∈Pi
-1C̅i,Pi

-1(s`)∈Lm(G) 
⟹s`∈Ki⟹Pi

-1(s`)∈Pi
-1Ki,Pi

-1(s`)∈Lm(G)
⟹Pi

-1Qi
-1QiKi∩Pi

-1C̅i∩Lm(G)⊆Pi
-1Ki∩Lm(G).

Moreover, Pi
-1Ki⊆Pi

-1C̅i and Pi
-1Ki⊆Pi

-1Qi
-1QiKi hold. Thus, Pi

-

1Ki∩Lm(G)⊆Pi
-1Qi

-1QiKi∩Pi
-1C̅i∩Lm(G).

Therefore, we can write
Pi

-1Qi
-1QiKi∩Pi

-1C̅i∩Lm(G)=Pi
-1Ki∩Lm(G).

 
Proof of Proposition 7: (If) Let K1, K2 be two locally relatively 
observable languages. We can write,
P1

-1Q1
-1Q1K̅1∩P1

-1C̅1Σ∩L(G)⊂P1
-1K̅1∩L(G),

P2
-1Q2

-1Q2K̅2∩P2
-1C̅2Σ∩L(G)⊂P2

-1K̅2∩L(G).
We have K1, K2 which are control equivalent to K w.r.t.G. 
Thus,
K̅=P1

-1K̅1∩P2
-1K̅2∩L(G),

⟹P1
-1Q1

-1Q1K̅1∩P2
-1Q2

-1Q2K̅2∩(P1
-1)C̅1∩P2

-1C̅2)Σ∩L(G)⊂K̅.
By defining C̅∶=P1

-1C̅1∩P2
-1C̅2∩L(G), we have K̅⊆C̅⊆L(G), 

and P0
-1R1

-1Q1K̅1∩P0
-1R2

-1Q2K̅2∩C̅Σ∩L(G)⊂P0
-1R1

-1 Q1K̅1∩ 
P0

-1 R2
-1Q2K̅2∩(P1

-1C̅1∩P2
-1C̅2)Σ∩L(G). Thus, P0

-1(P0K̅)∩C̅Σ 
∩L(G)⊂K̅.
Similarly, it can be proved that K=P0

-1(P0K)∩C̅∩Lm(G). 
Therefore, K is (C̅,G,P0)-global relative observable.
(Only if) Let P0

-1(P0K̅)∩C̅Σ∩L(G)⊂K̅ ,K̅⊆C̅⊆L(G), and 
unobservable events set be (Σ1∪Σ2)\Σ0. Assume K is global 
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relativey observable. Thus, 
P0

-1(P0K̅)∩C̅Σ∩L(G)⊂K̅
⟹P0

-1(R1
-1Q1K̅1∩R2

-1Q2K̅2)∩C̅Σ∩L(G)⊂K̅
⟹P0

-1R1
-1Q1K̅1∩P0

-1R2
-1Q2K̅2∩C̅Σ∩L(G)⊂K̅.

We claim that there exists K̅1⊆C̅1, where P1
-1Q1

-1Q1 K̅1∩P1
-1 

C̅1Σ∩L(G)⊂P1
-1K̅1∩L(G) and K̅2⊆C̅2, where P2

-1Q2
-1Q2K̅2∩P2

-1 
C̅2Σ∩L(G)⊂P2

-1 K̅2∩L(G) (or P2
-1Q2

-1Q2 K̅2∩L(G)=P2
-1 

K̅2∩L(G)). Otherwise,
P1

-1K̅1∩L(G)⊆P1
-1 Q1

-1Q1K̅1∩P1
-1C̅1Σ∩L(G),                     (13)

or
P2

-1K̅2∩L(G)⊆P2
-1Q2

-1Q2K̅2∩P2
-1C̅2Σ∩L(G).                       (14)

If both (13), (14) are satisfied, then K̅=P1
-1K̅1∩P2

-1 
K̅2∩L(G)⊆P0

-1P0K̅∩C̅Σ∩L(G); But P0
-1P0K̅∩C̅Σ∩L(G)⊂K̅. 

If only one of the two relationships (13) or (14) holds, then 
Q1

-1Q1=Q2
-1Q2=1. It means that the projection channels 

Qi  ,i=1,2  allow passing all the events from their reference 
events set. By contradiction, there should be P1

-1Q1
-1 

Q1K̅1∩P1
-1C̅1Σ∩L(G)⊂P1

-1K̅1∩L(G) and P2
-1 Q2

-1 Q2K̅2∩P2
-1 

C̅2Σ∩L(G)⊂P2
-1K̅2∩L(G). Furthermore, it is easy to prove 

that if one of the local controllers is locally relatively 
observable and the other one is locally normal, then K is 
globally relatively observable. The following relationships 
can be proved, similarly.
P1

-1K1∩Lm(G)=P1
-1Q1

-1Q1K1∩P1
-1C̅1∩Lm(G),

P2
-1K2∩Lm(G)=P2

-1Q2
-1Q2K2∩P2

-1C̅2∩Lm(G).

Appendix 2
A quick review of TCT commands is presented.
DES3=supcon(DES1, DES2) for a controlled generator 
DES1, forms a trim recognizer for the supremal controllable 
sublanguage of the marked (“legal”) language generated 
by DES2 to create DES3. This structure provides a proper 
supervisor for DES1. 
DES = sync(DES1,DES2,: : : ,DESk)
is the (reachable) synchronous product of DES1,DES2,: : : 
,DESk.
DAT3= condat(DES1, DES2) returns control data DAT3 for 
the supervisor DES2 of the controlled system DES1. If DES2 
represents a controllable language (with respect to DES1),as 
when DES2 has been previously computed with supcon, then 
condat will display the events that are disabled at each state of 
DES2. In general, condat can be used to test whether a given 
language DES2 is controllable: just check that the disabled 
events tabled by condat are themselves controllable (have 
odd-numbered labels). 
DES3=supreduce(DES1, DES2, DAT2) is a reduced 
supervisor for plant DES1 which is control-equivalent to 
DES2, where DES2 and control data DAT2 were previously 
computed using supcon and condat. Also, returned is an 
estimated lower bound slb for the state size of a strictly state-
minimal reduced supervisor. DES3 is strictly minimal if its 
reported state size equals the slb.
{LOC1,LOC2,...,LOCm} = localize(PLANT,{PLANT1,… 
,PLANTm},SUPER)is the set of localizations of SUPER 
to the m independent components PLANT1,...,PLANTm 
of PLANT. Independence means that the alphabets 

of PLANT1,...,PLANTm must be pair wise disjoint. 
Optionally, correctness of localization is verified and 
reported as ControlEqu(...). Localize is mainly for use when 
SUPER is a decentralized supervisor with authority over 
PLANT1,...,PLANTm, and PLANT is their synchronous 
product.
DES2=project(DES1, NULL/IMAGE EVENTS) is a 
generator of the projected closed and marked languages of 
DES1, under the natural projection specified by the listed 
Null or Image events.
True/False= isomorph(DES1, DES2) tests whether DES1 
and DES2 are identical up to renumbering of states; if so, 
their state correspondence is displayed.
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