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ABSTRACT: This paper concerns the problem of output consensus in nonlinear non-minimum phase 
systems. The main contribution of the paper is to guarantee achieving consensus in the presence of 
unstable zero dynamics. To achieve this goal, an output redefinition method is proposed. The new 
outputs of agents are functions of original outputs and internal states and defined such that the dynamics 
of agents are minimum phase. However, since the main objective is to achieve consensus on original 
outputs of agents, the consensus invariant set in the new coordinate of the agents dynamics should be 
defined such that if the new states of the agents converge to this invariant set, the output consensus in 
original system is achieved. On the other words, achieving consensus in minimum phase system with 
redefined output is equivalent to output consensus in original system. After defining the proper invariant 
set, a consensus protocol is designed to guarantee that the redefined outputs and the internal states to this 
set. Theoretical results are mathematically proved based on Lyapunov criterion. Numerical examples are 
employed to show the effectiveness of the proposed approach.
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1- Introduction
Cooperative control of multi-agent systems has received lots 
of attentions in the past few years. Some examples of multi-
agent systems applications are robotics [1,2], unmanned 
aerial vehicles [3], autonomous underwater vehicles [4], and 
space systems [5].
Control problems such as sensor fusion [6,7], formation control 
in multi-robot systems [8-13], rendezvous for unmanned 
vehicles [14], and synchronization [15-19] are some of the 
problems that have arisen in multi-agent systems research 
area. One of the challenging problems in this area of research 
is the consensus which means agreement of agents on a certain 
quantity of interest [20-23].
In the past few years consensus control of multi-agent 
systems has been studied over various classes of agents 
dynamics. For the first time, consensus control of agents with 
single-integrator models was studied in [20,21]. Since then, 
several methods for achieving consensus among agents with 
more complex models such as double-integrators [22-25], 
and  general linear dynamics [26,27], have been proposed. 
In many real applications, the dynamics of agents are 
nonlinear, and linearization of agents dynamics will affect 
the performance and the region of convergence. Therefore, 
some studies have been devoted to the control of multi-agent 
systems with different types of nonlinear models.
The consensus problem over various classes of nonlinear 
dynamics have been investigated in the literature. For 
instance, consensus control of multi-agent systems with 
first-order nonlinear models were studied in [28-31]. The 
consensus problem in second-order nonlinear multi-agent 
systems were investigated in [32-37]. In [38], a control 
scheme for achieving consensus in a multi-agent system in 

which the dynamics of the agents were nonlinear with relative 
degree two and stable internal dynamics was proposed. A 
technique for output synchronization has been studied in [39] 
for a group of agents with nonlinear dynamics by using the 
feedback linearization approach and based on the asymptotic 
stability assumption of the agents zero dynamics. Finally, 
in [40-42], consensus control of multi-agent systems with 
Lagrangian dynamics of agents were studied.
All of the above mentioned methods for solving consensus 
problems are generally based on dynamics inversion. In 
other words, they have considered nonlinear systems without 
internal dynamics or systems with stable internal dynamics. 
However, there are many systems which are non-minimum 
phase, i.e., poses unstable zero dynamics, (e.g. flexible 
manipulators, satellites with flexible panels, etc). In such 
systems, if the instability of internal dynamics is not considered 
in controller design, the internal states of the systems would 
grow unboundedly. Therefore, since the inverse dynamics of 
a non-minimum phase system is unstable, dynamics inversion 
based methods cannot be applied to multi-agent systems with 
non-minimum phase dynamics of agents. To the best of the 
authors’ knowledge, the problem of consensus control for a 
leaderless multi-agent systems with nonlinear non-minimum 
phase dynamics is still open to study.
Control of non-minimum phase systems is a challenging problem 
which has been studied in literature extensively [43-48]. In such 
systems, perfect reference tracking cannot be achieved due to 
the limitations which are caused by unstable zero dynamics. 
Recently, the performance limitations of non-minimum phase 
systems have been studied in [48], and new classifications for 
non-minimum phase systems based on value of minimum norm 
of the regulation error is proposed. 
To deal with non-minimum phase systems problem, several 
methods are proposed such as output regulation [49,50], 
sliding mode [51]-[53], output redefinition [54,55] etc.
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Output Redefinition is one of the most common methods that 
is presented to solve the tracking problem in non-minimum 
phase system [54]. The main ideas of this method are:

• define a new output such that the zero dynamics with 
respect to this redefined output are stable (e.g. the system 
with the modified output is minimum phase,
• define a modified desired trajectory such that if the 
new output tracks the new desired trajectory, the original 
output tracks the original desired trajectory, as well.

In [55], a new method for output redefinition is proposed. In 
this method, the possible relative degrees for systems with 
new output is determined. Some conditions are considered 
to guarantee the minimum phase property of the system with 
redefined outputs.
In this paper, based on the idea of the output redefinition 
method, a consensus strategy is proposed to achieve output 
consensus in nonlinear non-minimum phase multi-agent 
systems. In this method, a structure for redefining a new 
output is presented such that the zero dynamics of the agents 
are exponentially stable with respect to this output. Since, 
there is no desired trajectory to be modified, based on this 
definition, a new consensus invariant set is proposed for the 
states of the agents to converge such that the output consensus 
for the original outputs of the agents is achieved, which is the 
main objective of control design.
The following notations are considered throughout the paper.   
R is the set of real numbers. R+ denotes the set of positive real 
numbers 1 is a vector with all elements equal to 1, In denotes 
an nₓn identity matrix,     stands for the Kronecker product, 
and ||.|| indicates the 2-norm. Moreover, lmin(M) and lmax(M) 
denote the minimum and maximum eigenvalues of the matrix 
M, respectively.
The rest of the paper is organized as follows. Some 
preliminaries are presented in Section 2. In Sections 3 and 
4, agents model definition and the main result for output 
consensus problem for nonlinear non-minimum phase multi-
agent systems are investigated, respectively. A numerical 
example is presented in Section 5, and Section 6 concludes 
the paper.

2- Preliminaries
2- 1- GRAPH THERORY
The interconnection among agents is modelled using 
an undirected graph G described by a node (agent) set 
V={1,2,...,N} and an edge set e⊆vₓv which (i,j)∈e if there 
exists an edge between the ith and jth nodes. The neighbouring 
set of the   node can be defined as Ni⊂V which j∈Ni if (i,j)∈e. 
In the graph, a path between two nodes is a sequence of edges 
connecting these two nodes. Moreover, a connected graph is 
a graph in which there exists a path between each two distinct 
nodes. The Laplacian matrix associated with the graph can be 
defined as L=[lij]NₓN where lij= lji=-1,i≠j if (i,j)∈e while lij=0 

otherwise, and             . It is known that for an undirected 
graph, the Laplacian matrix is symmetric. It can be said that 
for a connected graph, the Laplacian matrix is positive semi-
definite with a simple zero eigenvalue.

2- 2- Non-Minimum Phase Systems
Let us consider the following  -order nonlinear systems [45]:

in which			         where y∈R is the output,   
z∈R(n-r) denotes the internal states vector, and                             stands 
for the internal dynamics.
Definition 1: In (1), let u is selected such that y and all of 
its derivatives stay identically at zero. In this condition, the 
internal dynamics of the system are called its zero dynamics 
described as follows [45]:

Definition 2: If the zero dynamics of a nonlinear system 
are unstable, the nonlinear system is called non-minimum 
phase [45].

3- Problem Formulation
Consider a group of  agents with identical nonlinear non-
minimum phase dynamics as follows:

where yi, zi, and ui∈R are the output, internal state, and 
the input of the ith agent, respectively. Moreover, f and g 
are continuous nonlinear functions. It is assumed that the 
dynamics of the agents are non-minimum phase. This means 
that the zero dynamics of agents defined by the following 
equation, is unstable.

The objective is to find ui such that the consensus among 
outputs of the agents, yi,i∈{1,2,...,N}, is achieved, i.e. 

Therefore, the consensus 
invariant set can be defined by the following set:

It can be seen that if the outputs of the agents converge to M1      
output consensus is obtained.
Before presenting the main results, the following assumptions 
are considered:
Assumption 1: Nonlinear functions f and g are Lipschitz with 
respect to their arguments:

where			        are Lipschitz constants for 
every             and                     .
Assumption 2: There exists a nonlinear Lipschitz function 
j(zi) (with Lipschitz constant h1) such that j(0)=0 and the 
nonlinear system

is exponentially stable. We assume that

It should be noted that since nonlinear functions g(.,.) and j(.)  
are Lipschitz, and considering (8), it can be concluded that g1    
is also a Lipschitz function as follows:

It is also assumed that               .
More details on defining new output can be found in [54] and [55].
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Assumption 3: The states of the agents, i.e. both output and 
internal state, are available for transmission among the 
neighbouring agents.
Remark 1: It should be noted that by considering local Lipschitz 
conditions, our analysis will be the same as it for global 
Lipschitz conditions; however, in this condition, the results are 
valid locally.

4- Control Design 
In this section, a control protocol based on the output redefinition 
is proposed. In this method, we first redefine a new output 
for agents (a new set of coordinates for describing the agents 
dynamics) such that the system with respect to this redefined 
output is minimum phase and then we define a new consensus 
invariant set such that if the modified outputs converge to the 
new invariant set, the original outputs would also converge to 
the original consensus invariant set, M1 , as well.
First, Let us define the modified outputs of the agents as follows:

where j(zi) is a nonlinear Lipschitz function which satisfies 
Assumption 2. It can be easily seen that               qualifies as 
a new set of coordinates for the dynamics of the agents. Then, 
in the new coordinates, the dynamics of the agents can be 
rewritten as:

We claim that the new system (11) with the redefined output 
yinew is minimum phase. To prove this, the stability of the zero 
dynamics of the new system should be investigated. The zero 
dynamics of the system (11) can be obtained as follows:

Using Assumption 2, it can be concluded that the zero dynamics 
of the new system are exponentially stable. Therefore, the new 
system with the redefined output is minimum phase.
The main objective of this paper is to achieve consensus 
among the original outputs of the agents, yi,i=1,...,N , i.e. 
the original outputs of the agents converge to the consensus 
invariant set M1. Therefore, we should redefine the consensus 
invariant set in the new coordinates such that if the states of 
the new system converge to the redefined set, the original 
outputs converge to M1, as well. In this condition, it can be 
concluded that the proposed approach guarantees achieving 
output consensus in the multi-agent system with non-minimum 
phase dynamics of the agents.
Consider the following invariant set in the new coordinates:

Using the definition of M1 and yinew, it can be seen that M1=M2. 
Let us define M3 as follows:

It can be easily verified that M3⊂M2 and since M1≡M2, it can 
be concluded that M3⊂M1. Therefore, if the states of the new 
system (11) converge to M3, the original outputs of the agents 
will also converge to M1, and hence the output consensus will 
be achieved.
For simplicity, we consider the control signal as follows:

Considering (11) and (15), the model of the agents in the new 
coordinates can be obtained as

The control signal is designed as follows:

where k is a positive constant. The main results of this paper 
are summarized in Theorem 1.
Theorem 1: Consider a group of N agents with uniform and 
nonlinear non-minimum phase dynamics (3). Suppose that 
the communication graph among the agents is undirected and 
connected, and Assumptions 1, 2 and 3 hold. Then, the control 
signal proposed in (15) and (17) asymptotically solves the output 
consensus problem of the agents if the following condition hold:

where
Proof:
According to the definition of Laplacian matrix, we have

where lij is the (i,j)th element of the Laplacian matrix. The 
closed loop dynamics of the agents can be obtained by 
substituting (17) into (16) and considering (19) as follows:

Considering (8), the internal dynamics of the system (20) can 
be rewritten as

The consensus error for the redefined output and the error of 
internal state for the ith agent are defined as follows:

where
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Considering this definitions, it can be concluded that if
and                                     then the states of the system 
(11) converge to . Now, by using (20), (21), and (22) and 
considering             , the error dynamics can be obtained as 
follows:

To study the asymptotic stability of (24), the following Lyapunov 
candidate function is used:

Now, taking the time derivative of  V  along the error trajectories 
of (24) yields in

Now, by adding  f(s+j(q),q) and g1(s,q) to and subtracting 
them from the right-hand-side of (25), and after some 
manipulation, one can get

where s and q are defined in (23). Using the definition of ei  
and ei in (22), it can be verified that                and 	  . 
Therefore, it can be concluded that

Since two terms
and                                                 are independent of the summation 

variable i. Considering (26) and (27), one can obtain

Assumption 1 and the Lipschitz conditions (6) and (9) yield in

where      is defined in Theorem 1. Therefore, by using (28) 
and (29), it can be concluded that:

Considering the definition of the Laplacian matrix, one can get

where L is the Laplacian matrix, and
In this condition, substituting (31) into (30) results in

It is assumed that the communication graph of the network is 
connected. Therefore, the Laplacian matrix L has exactly one 
zero eigenvalue and the other eigenvalues are positive real 
numbers denoted by l2≤...≤lN. Moreover, the right and left 
eigenvectors corresponding to the zero eigenvalue are
and       , respectively [46]. There exists a unitary matrix F    
such that                                                     , where the first 
column of F is  	     . Now, consider the following definition:

Since the left eigenvector associated with the zero eigenvalue 
of the Laplacian matrix is         , it can be verified that
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By using the definition (33), (35) can be restated as follows:

Considering that L is a diagonal matrix containing the 
eigenvalues of the Laplacian matrix and by using (34), the 
following inequality can be concluded from (36):

where                                  . Since G is a diagonal positive 
definite matrix, it can be concluded that

Now, substituting (38) into (37) results in

Since F is a unitary matrix, it can be verified that 
||w||=||Fe||=||e||. Moreover, based on the definitions of w, one 
can say that ||z||=||w||, implying that ||z||2=||e||2, and therefore

In this condition, substituting (40) into (39) yields in

One can restate (41) as the following form:

where

Now, let us investigate the sign of     . Considering (42), (43), 
and (44), it can be concluded that if we select control gain k 
such that Q is positive definite,    would be negative definite, 
and therefore the consensus errors of the redefined output 
and internal state converge to zero asymptotically. Hence, 
the states of redefined system (11) converge to M3. It can be 
verified that condition (18) guarantees that Q is a positive 
definite matrix. On the other hand, since M3⊂M2 and M1≡M2, 
one can conclude that the original outputs of the agents 

converge to M1 and therefore, output consensus is achieved. 
This completes the proof. 

5- Simulation
In this section, two examples are considered to show the 
effectiveness of the proposed approach.
Example 1: Consider a group of four agents described by the 
following nonlinear non-minimum phase dynamics:

It is assumed that the communication graph is as shown in Fig. 
1. Therefore, the minimum eigenvalue of the Laplacian matrix 
is 2. Moreover, the Lipschitz constants can be calculated as 
g1=2, g2=0.5, g3=1 and g4=1. To redefine the output, j(zi)=−2zi is 
selected. It can be verified that using yinew=yi+2zi, the redefined 
system is minimum phase. In this condition, to satisfy (18), 
the controller gain is set to k=5. Now, let us define the  agent 
coupling error with respect to neighbouring agents as follows:

where ni denotes the number of the neighbours of ith agent. 
The original outputs and the coupling errors of the agents 
are depicted in Fig. 2 and Fig. 3, respectively and as shown 
in these figures, the outputs of the agents converge to a 
common value and also the coupling errors converge to zero, 
confirming that output consensus is achieved. The internal 
states of the agents are shown in Fig. 4. It can be seen that, 
the internal states of the agents are bounded. Furthermore, the 
control signal of each agent is depicted in Fig. 5, which are 
also bounded.

Example 2: In this example, we consider a network of four 
disturbed forced Van der Pol oscillators which have a wide 
range of applications in various areas such as physics, 
biological systems, social networks, engineering, etc. [47]. 
The dynamical model of each oscillator is

Based on Definition 2, the zero dynamics of the agents can 
be obtained as          which are not asymptotically stable. 
Thus, they are non-minimum phase. The communication 
topology of the multi-agent is as the previous example. 
We consider j(zi)=−1.5zi for output redefinition. Based on 
the results of Theorem 1, the controller gain is set to k=2. 
It should be noted that the nonlinear terms in the dynamics 
of the agents are locally Lipschitz. Therefore, the results of 
Theorem 4.2 are valid locally. The main outputs of the agents 
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MAS network.
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and the consensus coupling errors are depicted in Fig. 6 and 
Fig. 7, respectively. It can be seen that the outputs consensus 
is achieved, and as shown in Fig. 8, the internal states of the 
agents are bounded. Furthermore, the control signal of each 
agent is given in Fig. 9.

6- Conclusion
A new consensus strategy for a network of agents with 
nonlinear and non-minimum phase dynamics based on output 
redefinition was proposed in this paper. In this method, an 
output redefinition was done such that the new system is 
minimum phase with respect to the redefined output. Then, 

Fig. 2. The outputs of the agents in Example 1. Fig. 5. The inputs of the agents in Example 1.

Fig. 5. The inputs of the agents in Example 1.Fig. 3. The coupling errors of the agents in Example 1.

Fig. 4. The internal states of the agents in Example 1. Fig 6. The outputs of the agents in Example 2.
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we defined a new consensus invariant set such that if the 
states of the redefined system converge to this set, the original 
outputs converge to original consensus invariant set, as well. 
Therefore, the proposed strategy guaranteed achieving output 
consensus in the network of agents with nonlinear non-
minimum phase dynamics.
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