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ABSTRACT: In recent years, impedance measurement method by piezoelectric (PZT) wafer active 
sensor (PWAS) has been widely adopted for non-destructive evaluation (NDE). In this method, the 
electrical impedance of a bonded PWAS is used to detect a structural defect. The electro-mechanical 
coupling of PZT materials constructs the original principle of this method. Accordingly, the electrical 
impedance of PWAS can sense any change in the mechanical impedance of the structure. A thermal 
stress on a structure, which was generated by environmental temperature, could change the electrical 
impedance of PWAS. The thermal stress which affects the output impedance of PWAS is also 
developed. A temperature-dependent model, the temperature dependency of PWAS, and structure 
material properties are investigated for a PWAS bonded to an Euler Bernoulli clamped-clamped beam. 
The Rayleigh-Ritz and spectral element methods are studied and, then, verified by 3D finite element 
method (FEM).
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1- Introduction
Impedance-based Structural Health Monitoring (ISHM) 
using PWAS as a sensor and an actuator have widely been 
investigated to find application in nondestructive evaluation 
(NDE) technique during the last few years [1-7]. Giurgiutiu 
and Rogers [1] presented a relation between electrical 
admittance (inverse of impedance) of a PWAS patch and 
structural mechanical impedance. 
A high frequency voltage (in the order of kHz) applied 
to PWAS after it bound to the host structure.  Because a 
small wavelength is needed to detect minor changes in the 
structure, this high-frequency method is appropriate for the 
detection of these types of changes. The size of impedance 
sensors used to directly measure the local dynamic response 
is small [2]. Because of the temperature dependency of 
PWAS and the structure’s material properties, the impedance 
is affected by any change in the environmental temperature. 
Several studies investigated these effects [3-8]. A method 
based on the root mean square deviations (RMSD) to 
compensate the temperature effect has been proposed by 
Park et al. [5]. Bhalla et al. [3] proposed a temperature-
dependent impedance model on a spring-mass-damper 
(SMD) system. The vertical and horizontal shift in PWAS 
impedance due to temperature variation was studied by Koo 
et al. [4]. Despite the importance of the issue, only the effect 
of temperature variation on PWAS and material properties 
of the structure were studied with theoretical investigation 
of transverse vibration modes for a cantilever Euler 
Bernoulli beam. Bastany et al. considered a sensor array and 
statistical metric analysis to compensate the environmental 
changes [6]. Also, a study proposed the combination of 

RMSD damage index and an artificial neural network based 
on RBF to compensate the temperature variation effect [7]. 
Few studies modeled the coupling effect of PWAS and base 
structures in ISHM [1, 8-14].
A model based on the mechanical impedances of a 2-D 
structure and PWAS was proposed by Bhalla and Soh [11]. 
Perairs et al. calculated the PWAS output electrical impedance 
using an equivalent electrical circuit for a Timoshenko 
beam [12]. A continuous model of a beam and PWAS for 
the calculation of the impedance of PWAS was developed 
by Giurgiutiu [9]. FEM is a time-domain method, which 
depends on polynomial functions, which are independent of 
frequency, for finding an approximate solution to a boundary 
value problem. Hence, FEM cannot be a proper method for 
high-frequency wave modes. Thus FEM, especially at high 
frequencies, is significantly inaccurate because wavelengths 
are very short [15]. The spectral element method (SEM) is one 
of the frequency-domain methods, used in high-frequency 
analyses. Several works have reported SEM for modeling 
beams and plates [15]. 
In this paper, a new model with consideration of thermal 
stress is developed for the calculation of PWAS impedance. 
Considering that the ISHM is a high-frequency method, 
the longitudinal vibration of the beam studied in this paper.  
One of the most widely used methods for the compensation 
of temperature in ISHM is cross-correlation (CC) method. 
This method uses frequency shift between baseline data 
and unknown data to compensate temperature effect on 
impedance signal. This method assumes that frequency shifts 
causing temperature variation in all modes of vibration are 
approximately the same. However, proposed thermal model 
show that shift of  transverse mode was more than that of 
longitudinal mode. Therefore, CC method is not suitable for 
temperature compensation. 
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In the present paper, in the first step, a thermal stress model 
for clamped-clamped Euler-Bernoulli beam is investigated. 
Then, the Rayleigh-Ritz method is used to discretize 
dynamic system. Finally, the electrical impedance of PWAS 
is calculated. In section 3 of this paper, SEM is to model 
PWAS on the beam with consideration of thermal stress. 
Then dynamic stiffness matrix calculated by SEM is used to 
compute the global spectral DOFs vector. This global DOFs 
vector was used to compute output impedance of PWAS. In the 
final section, results of SEM and Rayleigh-Ritz methods are 
compared showing that these two models could be used for the 
modeling of thermo-electro-mechanical in ISHM. Finally, the 
SEM result of the electrical impedance of PWAS is compared 
with 3D FEM. 

2- Governing Equations

2- 1- Thermo-induced Beam Model
In Fig. 1 a clamped-clamped beam with PWAS is presented. 
The kinetic and strain energies of the beam can be calculated 
as follows using Euler-Bernoulli theory. Considering u0, v0 

and w0 of clamped-clamped beam displacements along x, y 
and z directions, respectively, we have:

The kinetic energy of the beam (Tb) can be calculated by

For the sake of notational simplicity, the following notations 
for time and spatial derivatives have been used

where
ρb is the density of beam with temperature dependency
Ab represents the cross-section area of the beam 
L denotes the beam’s length

Also, the superscript   shows the dependency of material 
properties to temperature. To study the effect of PWAS, 
structure constants, and thermal stress variations on the 
structural response, the related strain results are used [16]:

Because of the negligible difference between the linear and 
non-linear terms, we have the following equations for the 
strain energy (pb) due to the generated strains:

where
V is the volume of the beam; sxx is stress, and        is Young’s 
modulus with temperature dependency.      
I is the second moment of area. DT=T−T0 where T0 is the 
reference temperature, and T is the temperature distribution 
through the beam, and the parameter ab is the thermal 
expansion coefficient of the beam.
After applying Hamiltonian’s principle, the transverse and 
longitudinal mode shape could be calculated from (5) and (6):

2- 2- Piezoelectric Actuator Model
The constitutive equation for the PWAS under thermal 
loading is given by[16]:

and

where

ϵ1 and s1 are mechanical strain and stress, respectively. E3 

and D3 are the electrical field and electrical displacement, 
respectively. In addition, SE

11 is the mechanical compliance 
of the material measured at zero electric field and varies 
with temperature.  eT

33 represents the dielectric permittivity 
measured at zero mechanical stress and varies with 
temperature.d and e are direct and converse piezoelectric 
effect matrixes and varies with temperature. Consider a 
piezoelectric wafer with length Lp, width bp, and thickness hp, 
undergoing piezoelectric expansion induced by the thickness 
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Fig. 1. Schematic of clamped-clamped beam with attached PWAS
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polarization electric field E3 as shown in Fig. 2. The kinetic 
energy (Tp) and strain energy (pp) of PWAS, which is assumed 
to have a beam shape, can be obtained by:

where
rp, Ap and Vp are density, area, and volume of PWAS, 
respectively.

As shown in Fig. 1, x1 is the distance of PWAS of the first edge 
from the origin and x2 is the distance of PWAS of the last edge 
from the origin. Also, ap is the thermal expansion coefficient of 
PWAS. Using (8), (9), and (14) can be rewritten as:

where e1 is PWAS strain. Replacing
        
                                                           in (15), we have

with

2- 3- Coupling of Beam and Piezoelectric Actuator Models
After modeling kinetic and strain energies of the beam and 
PWAS, these energies must be used to model the coupling of 
the beam and PWAS effect. Thus, the kinetic energy (T) and 
the strain energy (p) of the beam and PWAS are

For the system discretization, Rayleigh-Ritz method is applied:

where ji(x) and yi(x) are i-th transverse and longitudinal modal 
shape, respectively, which must satisfy boundary conditions. 
qi(t) and pi(t) are i-th transverse and longitudinal modal 
function, respectively. Using (21), (22) and (23) we have:

and

Lagrange’s equations without external load are
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Fig. 2. Schematic of PWAS with a polarization direction
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where rj are variables of the strain and kinetic energies.    
Considering rj=qi,pl, the results are as follows:

Two terms  			          and

are constant force and moment, respectively, and behave 
similarly to DC signals. DC signals do not affect impedance, 
thus these terms can be ignored in the calculation of impedance. 
Hence, (27) and (28) can be rewritten as follows:

where M and K are the mass and stiffness matrixes of the 
system, respectively, and N is the force-moment vector created 
by PWAS actuator. For M and K, we have:

where Mbuu and Mbww are the longitudinal and the transverse 
mass matrixes of the beam, respectively. Mpuu and Mpww 
represent the longitudinal and the transverse mass matrixes 
of PWAS, respectively. Kbuu and Kbww are the longitudinal and 
transverse stiffness matrixes of the beam, respectively. Kpuu 
and Kpww denote the longitudinal and the transverse stiffness 
matrixes of PWAS. Nuu is the force vector created by PWAS 
actuator, and Nww is the moment vector created by PWAS 
actuator. These parameters are given by:

Let qp(t), y(x) and j(x) be the functions and shape model 
vectors defined as follow:
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The transform qp(t)=Tg(t) is applied to (29) where g(t) 
is the generalized coordinates of the system and T is the 
modal matrix built up by eigenvectors of the system. By this 
transformation, (29) becomes:

Pre-multiplying (46) by TT, we have

This can be rewritten as:

where matrices M* and K* attained from M*=TTMT and 
K*=TTKT and are called the generalized mass and the 
generalized stiffness matrices, respectively.

If the PWAS is thin enough, then the generated electrical field  
is equal to:

V3(t)=V0eiwt is a harmonic voltage between the top and bottom 
surfaces electrodes. From (50) and (51), it is achieved that

with 

Because, the voltage excitation is harmonic, the generalized 
coordinates are in the form of g(t)=g0eiwt.
Introducing g(t)=g0eiwt to  (52), we obtain:

Also, the modal function vector can be calculated as:

2- 4- Electrical Response of PWAS
Recalling (9) as D3 = d∈1 + eE3 + p3DT, because p3ΔT 
is constant, this term was not considered in impedance 
calculation.

Integration of D3 over the electrodes area Ap yields the total 
charge Q(t):

Inserting (9) in (56) results in:

Substitute  ∈1 for (4)  and set               , we have:

Using Rayleigh Ritz method, we obtain:

Introducing (54) into (58), we get:

The time derivative of the electric charge is the electric 
current, i.e.

Hence,

The impedance, Z, which is defined as the ratio of the voltage 
to current, can be calculated by:

3- Spectral Element Method (SEM)
Lee [15] applied SEM to model a dynamic system for a beam 
with PWAS [15]. In this section, SEM was used to calculate 
PWAS. But, a little change must be made in Lee’s equation. 
First, it is assumed that viscous damping coefficient is zero 
(cb=0,cp=0) in Lee’s equation, in which cb and cp are viscous 
damping coefficients of the beam and PWAS, respectively. 
Therefore only the structural damping of the base beam and 
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PWAS is considered using the complex modulus [9].
Then, the frequency-domain expression of the equations of 
motion is in [15]:

where

Despite the reference [15] which considered f as a constant 
axial tensile force, this work introduce f as an applied thermal 
stress to the beam The boundary conditions are as follow [15]:

The force-displacement relationships give [15]:

The general solutions of (64) are assumed to be

Thus, the eigenvalue problem is given by

where

Because cb=0, cc=0, if a=b=0, ( an element without PWAS) 
or             , then X22≈−X12 and the determinant of the matrix (68)

will be X22(X11+X12)=0. It in turn means X22 =0, (X11+X12)=0 

Therefore, the transverse and the longitudinal vibrations will 

be decoupled and matrix H(w), introduced in [15], will be 
singular. Thus, the general solutions of (55) can be written as:

where k1, k4 are the solutions of X22=0, and k2, k3, k5, k6 are 
the solutions of (X11+X12)=0  Also,

where

and

The spectral nodal degrees-of-freedom (DOFs) of the beam 
is shown in Fig. 3.

Let the spectral nodal DOFs vector be

Applying (71) to the spectral nodal DOFs defined by (75), 
we obtain

where H(w) is the following 6×6 matrix:
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According to Fig. 3, the spectral nodal moment and force are 
given by:

If the spectral nodal DOFs include PWAS, then
                                                                                 else where

and

For the thermal stress induced in structure and PWAS, if 
spectral nodal DOFs contain PWAS, then F=−(EpApap+ 
EbAbab)DT , otherwise F=−(EbAbab)DT. The other equations 

would be similar to those given in [15]. If        , the 

equations introduced in [15] are valid. The spectral elements 
represented by Lee [15] can be assembled to form a global 
system equation as

where Sg(w) is the global dynamic stiffness matrix, dg is the 
global spectral DOFs vector, and fg(w) is the global spectral 
nodal forces vector. After finding dg, the  electrical charge can 
be calculated from (9)

PWAS impedance is obtained from:

4- Numerical Solution And Discussion

4- 1- Ambient Temperature
Several numerical simulations were used to predict PWAS 
impedance during structural identification. Structural vibration 
analysis theory and SEM have been used for numerical 

simulation. Because in this simulation             for SEM, 

(71)-(74) must be used to model PWAS impedance. The 
numerical results have been calculated for the transverse 
and longitudinal frequencies and mode shapes of the beam. 
These frequencies are almost identical with the basic beam 
natural frequencies as predicted by vibration analysis. 
Tables 1 and 2 show Aluminum beam and PWAS constants, 
respectively, at 25°C. Table 3 represents  the Rayleigh-Ritz 
and SEM results related to the first seven natural frequencies 
for the temperature 25°С. These theoretical results have been 
calculated by beam vibration theory A) beam containing 
PWAS, B) without PWAS. SEM (N) show N equivalent 
dynamic point forces for the analysis results.
Table 3 shows the differences between Rayleigh-Ritz and SEM 
results (see column 6 in which Δ% represents the percentage 
of error) and between beam vibration theory and SEM (see 
column 7 in which Δ% denotes the percentage of the related 
error). The natural frequencies obtained by Rayleigh-Ritz 
model are in good agreement with those of calculated  by SEM.
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Property Symbol Value
Length Lb 15cm
Width b 1cm

Thickness hb 5mm
Density rb 2699.99 kg/m3

Complex Young’s 
Module Eb 68.998(1+10-5i)Gpa

Table 1. geometrical and material properties of aluminum 
beam

Table 2. geometrical and material properties of pwas psi 5H4E

Property symbol value
Length Lp 1cm
Width bp 1cm

Thickness hp 0.267mm
Density rp 7749.985 kg/m3

Compliance, in 
plane S

E
11 1.64×10−11 pa−1

In-plane induced-
strain coefficient d31 −320.026×10−12 m/V

Dielectric Constant eT
33 eT

33=3800 e0

Dielectric Constant 
in the air e0 8.85×10−12 F/m

distance of PWAS 
first edge from the 

origin
x1 12cm

distance of PWAS 
end edge from the 

origin
x2 x2 = x1+Lp
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Fig. 4 shows the Rayleigh-Ritz and SEM results for the real 
part of PWAS impedance.
This figure represents that the Rayleigh-Ritz results are close 
to SEM results. Because SEM considers element modeling, 
it results in better data than that of obtained by Rayleigh-Ritz 
method. However, as can be seen in Table 3 and Fig. 4, the 
difference between two methods is very low.

4- 2- Varying Temperature
In this section, the effect of temperature variation, in the range 
of 25°С to 50°С, on the impedance signature of the PWAS 
sensor was investigated. For this propose, two conditions 
were considered. First, only the effect of thermal stress on 
beam was simulated. In the second study, the temperature 
variations of beam and PWAS materials were considered.
The constants of Aluminum and PWAS materials, which 
vary with temperature, were set according to [8]. Fig. 
5 shows the real part of impedance of the beam in 25°С, 

35°С, and 50°С for Rayleigh-Ritz method. Solid lines show 
the effect of sole thermal stress on the impedance of PWAS 
while the dashed line represents impedance variation when 
the two  factors of thermal stress and temperature variation 
of beam and PWAS material are considered. This figure 
shows that the real part of PWAS impedance has been 
moved to left with the increase of temperature. Fig. 6 shows 
the same results for SEM. The numerical data was tabulated 
in Table 4.
According to Fig. 5, when only thermal stress has been 
considered in the model, longitudinal vibration mode has 
a zero shift between 25°С and 50°С (see Equation (7)). 
However, considering the two factors of thermal stress 
and temperature variation of beam and PWAS materials, a 
significant frequency shift observed. 
Thus, for a good modeling on ISHM with the temperature 
effect, not only the thermal stress but also the beam and PWAS 
materials varying with the temperature should be considered.

Table 3. natural frequencies of system obtained by sem (5) and rayleigh-ritz method (a: with pwas, b: without pwas)

Table 4. value of frequency shift obtained by sem (5) results (25°с, 50°с)

Table 5. value of frequency obtained by sem (5) and fem(30889) results (25°с, 50°с)

Vibration mode A) Rayleigh-Ritz 
with PWAS (kHz)

B) Theo-without 
PWAS (kHz) SEM(5) (kHz) Δ% with PWAS Δ% without 

PWAS
1 Transverse 6.2763 6.2643 6.270 0.1005 -0.0909
2 Transverse 10.4 10.3552 10.385 0.1444 -0.2870
3 Transverse 15.536 15.4688 15.515 0.1354 -0.2978
4 longitudinal 16.99 16.9073 16.973 0.1002 -0.3871
5 Transverse 21.685 21.6053 21.636 0.2265 -0.1419
6 Transverse 28.861 28.7644 28.769 0.3198 -0.0160
7 longitudinal 33.723 33.8147 33.710 0.0386 0.3106

Vibration 
modes

25°С SEM(5)
(kHz)

50°С
SEM(5)
(kHz)

50°С
SEM(5) varying  
Temp Material

(kHz)

difference 
column

2, 3
(Hz)

difference 
column

2, 4
(Hz)

1 Transverse 6.270 6.1388 6.0913 -131.2 -178.7
2 Transverse 10.385 10.248 10.169 -137 -216
3 Transverse 15.515 15.374 15255 -141 -260
4 longitudinal 16.973 16.973 16.841 0 -132
5 Transverse 21.636 21.491 21.325 -145 -311
6 Transverse 28.769 28.623 28.401 -146 -368
7 longitudinal 33.710 33.710 33.449 0 -261

Vibration 
modes

25°С SEM(5)
(kHz)

25°С
FEM(30889)

(kHz)
Δ% in 25°С 50°С SEM(5)

(kHz)
50°С

FEM(30889)
(kHz)

Δ% in 25°С

1 Transverse 6.270 6.430 2.4883 6.1388 6.310 0.6339
2 Transverse 10.385 10.47 0.8118 10.248 10.28 -1.0214
3 Transverse 15.515 15.35 1.0749 15.374 15.12 -2.6124
4 longitudinal 16.973 18.02 5.8102 16.973 17.97 5.5481
5 Transverse 21.636 20.96 3.2252 21.491 20.81 -3.9692
6 Transverse 28.769 27.24 5.6131 28.623 27.16 -5.9242
7 longitudinal 33.710 34.14 1.2595 33.710 33.87 0.4724



F. Bakhtiari-Nejad et al., AUT J. Model. Simul., 49(2)(2017)143-152, DOI: 10.22060/miscj.2016.841

151

The effect of sudden changes in temperature from 25°C to 
50°C during the sampling rate for SEM (5) is demonstrated 
in Fig. 6. Depending on when these changes occur during 
sampling rate, it would be a great effect on the impedance. 
Therefore, CC method is not suitable for the compensation 
of temperature. Equations of the model considered with the 
thermal stress were solved numerically using commercial 3D 
FEM. A schematic of 3D FEM is shown in Fig. 7. The number 

of  degrees of freedom for 3D FEM is set 30889. Table 5 shows 
the natural frequencies obtained from SEM and 3D FEM for 
25°С and 50°С. This table shows that natural frequencies of 
SEM (5) and 3D FEM (30889) are  much closer to each other. 
SEM only uses 5 DOFs while FEM uses 30889 DOFs. The 
runtime is very high in FEM. 
Fig. 8 shows the real part of impedance using SEM and 3D 
FEM versus frequency for the temperatures 25°С and 50°С. 
Results show a good agreement between SEM and 3D FEM.

5- Conclusion
In this paper, we studied  the influence of thermal stress on 
the structural response in ISHM with the aim of obtaining 
a good theoretical model which reduces the need for doing 
costly and time-consuming experimental tests. For this 
propose, a coupling of PWAS and beam using Rayleigh-Ritz 
and SEM have  been presented.  This method does not apply 
equal moment and force because of using energy method. 
Also, we found out considering the effect of thermal stress 
with a temperature variation of PWAS material leads to a  
better modeling of temperature effects. Meanwhile, results 
show that thermal stress should be considered in order to 
compensate  the temperature effects in ISHM. One of the 
most widely used methods to compensate  temperature in 
ISHM is cross correlation (CC) method. This method uses 
frequency shift between baseline data and unknown data to 
compensate temperature effect on impedance signal. This 
method assumes that frequency shifts causing temperature 
variation, in all modes of vibration are approximately the 

Fig. 4. Rayleigh-Ritz and SEM (5) results of real impedance of 
PWAS for the cantilever beam (25°C)

Fig. 7. 3D FEM for fully clamped beam in commercial software

Fig. 8.  PWAS real impedance obtained by SEM and FEM  for 
different temperature (25°C and 50°C)

Fig. 5. Real impedance of PWAS obtained by Rayleigh-Ritz for 
different temperatures (25°C, 35°C and 50°C) Solid lines show 

only the thermal stress on the structure and dash line shows 
the two factors of thermal stress and temperature variation of 

beam and PWAS material.

Fig. 6. PWAS real impedance obtained by SEM(5) for different 
temperatures (25°C, 35°C and 50°C) Solid lines show only 
thermal stress on the structure and dash line shows the two 
factors of thermal stress and temperature variation of beam 

and PWAS material.
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same. But using the proposed thermal model, it was shown 
that the transverse mode more shifts than the longitudinal 
mode. Thus, CC could not work very well in general cases 
for the compensation of temperature on impedance signals.
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