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ABSTRACT: This paper proposes a Time Delay nonlinear dynamic model of HIV-1(Human 
Immunodeficiency Virus type 1), introducing the drug consumption efficiencies as the controlling 
input for the model. The paper also represents the fuzzy T-S representation and the corresponding 
Fuzzy T-S controller. The controller parameters are tuned using LMIs (Linear Matrix Inequalities). 
The main focus is on the stabilization problem for the resulting T-S fuzzy system with time-delay. In 
particular, it aims to present delay-dependent design of state feedback stabilizing fuzzy controller for 
the mentioned T-S fuzzy system with state delay. The design of the controller is based on the parallel 
distributed compensation.
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1- Introduction
Mathematical modeling of HIV-1 infection has proven to be 
instrumental for the modern understanding basis of the AIDS 
pathogenesis since it offers the unique means to adequately 
pose hypotheses concerning AIDS dynamics and treatment 
protocols  [1].
On the one hand, fuzzy logic provides a simple and 
straightforward way to decompose the task of modeling and 
control design into a group of local tasks, which tend to be 
easier to handle. Fuzzy logic also provides the mechanism to 
blend these local tasks together to deliver the overall model 
and control design. On the other hand, advances in modern 
control have made available a large number of powerful 
design tools. This is especially true in the case of linear 
control designs. These tools for linear systems range from 
elegant state space optimal control to the more recent robust 
control paradigms. By employing the Takagi-Sugeno fuzzy 
model which utilizes local linear system description for each 
rule, we devise a control methodology to fully take advantage 
of the advances in modern control theory  [2].
 It is well known that time-delays can cause poor performance 
or instability. Therefore, the problem of delay-dependent 
stability and stabilization for T–S fuzzy systems with time-
delays has been received great efforts by many researchers 
in recent years because delay-dependent approaches are 
generally less conservative than delay-independent ones 
when the sizes of time-delays are small  [3]. 
  Great  efforts have been made in modeling HIV-1 and its  
interaction with the host immune system as a dynamic system, 
among which  [4- 19] have seen the dynamics as ordinary 
nonlinear differential equations and estimated the associated 

parameters. The effect of saturation in cell population has been 
investigated in  [20, 21]. The drug consumption coefficients 
are added to the model in  [22 -29] . Drug resistance feature 
of HIV-1 is also addressed in  [30- 32]. An integration of 
HIV-1 related cofactors such as cell apoptosis, population 
saturation, drug consumption and resistance is presented 
in  [33- 35]. Moreover, there has always been a tendency to 
employ rare innovative methods in modeling the dynamics, 
such as the works presented in  [36- 40]. The authors of  [41-
 57] have considered time delay as a part of the model.
  The problem of analyzing   HIV-1 dynamics has been studied 
extensively in the literature. In this regard, the stability 
analysis is investigated in  [13, 14, 22,23, 25 and  27], and a 
variety of control strategies is applied to HIV-1. For instance, 
feedback control in  [5- 6 and  17], nonlinear theory based 
control in  [11- 12 and  26], model predictive control in  [15,  
24], optimal control in  [7, 19 ,28, 29 and  33] and intelligent 
control in  [56 -60] can be noticed.
Model identification and parameter estimation are also 
widely recognized. It is worth mentioning the works carried 
out in  [9 ,10,  16 and  18].
Time delay models have been the target of different controller 
design approaches, such as the ones presented in  [42,  44- 48] .
Although a great deal of  effort has been made in modeling 
HIV-1 and its  interaction with the host immune system as a 
dynamic system, the aforementioned works do not encompass 
the overall challenges that a practical model must consider in 
view of the number of variables included in the model and 
hence the model comprehensiveness and compatibility with 
biologic texts and also the analysis approach and therefore 
rational relation between the model and control system 
theory. Hence, the main motivation of the present work is: 
a)to develop a novel model for HIV-1 dynamics considering 
the time delay as the integral part of most biologic models; 
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b)to introduce control inputs namely drug consumption 
efficiencies to the model which improves the model proposed 
in the  previous works of the authors [61] into a new one by 
considering the undeniable role of drugs in HIV-1 dynamics 
and smoothening the pathway into controller design which 
is equivalent to the treatment of patients, c)to infer a fuzzy 
T-S model out of the novel nonlinear model; and d)to design 
a fuzzy T-S controller for the model. The main focus of 
controller design approach is on the stabilization problem 
for the T-S fuzzy system with time-delay. In particular, it 
aims to present a delay-dependent design of state feedback 
stabilizing fuzzy controller for the T-S fuzzy system with 
the state delay. The design of the controller is based on the 
parallel distributed compensation. 
To be clearer, as a solution to the open problem of HIV-
1 infection chemotherapy from the aspect of health 
improvement and also the side effect reduction, this work 
proposes a dynamic model and a controller (namely drug 
dosage uptake by time) for the model of HIV-1.
In fact, this work aims to resolve the open problem of HIV-
1 infection chemotherapy and  introduce a replacement for 
the present HAART (Highly Active Anti Retroviral Therapy) 
in which the drug adherence is a major concern due to  the 
side effects of such a therapy. A drug regimen which is able 
to control the drug consumption and also the viral load can 
improve the adherence and health of the patient. The paper 
is organized as follows: section  1 describes the model in 
detail; section  2 is a brief overview of the target fuzzy model 
and the corresponding controller. The simulation results are 
presented in section  3, and section  4 concludes the paper. 
Appendix A includes the tables and figures describing the 
model and Appendix B is a brief introduction to Fuzzy rule 
extraction method employed.

2- Model of HIV-1
The equations (1-1) - (1-7) are selected from the nonlinear 
ODE model of HIV-1 published in the  previous work of the 
authors  [61] (it is worth mentioning that the original nonlinear 
model is not repeated in this work for brevity. The readers are 
referred to [61] to access the original 83 nonlinear ODEs). 
The following modifications are added in this work:
First, considering the drug efficiencies μi

RTI,i=PB,CNS,LT 
as the control input added to the model. The efficiencies 
μi

RTI,i=PB,CNS,LT represent the efficiency of RTIs (Reverse 
transcriptase inhibitors) in PB (peripheral blood), CNS 
(central nervous system) and LT (lymphoid tissue) which 
are known to be the three main replication compartments 
of HIV-1. The form of the entrance of drug efficiencies in 
the model is in agreement with  [22 -29]. RTIs are the type 
of drugs preventing the process of reverse transcription; that 
is the process of copying viral genomic RNA into DNA. If 
the reverse transcription does not occur, the virus cannot 
integrate into the host genome and the cell cannot become 
infected. The RTIs can affect the process of changing eclipse 
infected cells into productively infected ones  [62].
Second, considering the drug efficiencies μi

RTI,i=PB,CNS,LT 
as the control input added to the model. The efficiencies   
μi

RTI,i=PB,CNS,LT represent the efficiency of PIs (Protease 
inhibitors) which are known as the type of drugs inhibiting 
the protease enzyme resulting in prevention of functional 
viral particles generation and thus preventing the infection of 
target cells  [62]. The form of the entrance of drug efficiencies 
in the case of PIs is also in agreement with  [22 -29].

The net effect of both types of drugs is the same. They prevent 
the spread of the virus to other host cells, but the cells infected 
before the entrance of drug remain alive and infected. Typical 
drug regimens are a combination of three drugs, two types 
of RTIs and a PI which is taken two or three times a day 
and prevent the therapy failure because of drug resistance. 
This therapy is called HAART. The drug adherence is a major 
concern because of the side effects of such a therapy. A drug 
regimen, which is able to control the drug consumption and 
also the viral load, can improve the adherence and health of 
the patient  [62]. The drug efficiencies (μ) and the control 
inputs (drug dosages (u)) are related as follows as in  [24 ,25]:

It is important to note that the drug concentration and hence the 
ARV (antiretroviral) agent efficiency in CNS (             and        )   
is dependent on its concentration in PB (          and          respectively). 
The type of dependence is variable for various types of 
antiretroviral agents. The precise values are inferable from 
 Table A-1 which indicates the molecular weight, percentage of 
protein binding, the range of plasma (peripheral blood) and CNS 
concentration of antiretroviral agents. The situation is the same 
in lymphoid tissue, the other compartment of HIV-1 infection. 
Figure  1-1 illustrates the median concentration difference 
between lymphoid tissue (lymph nodes (LN)) and that of 
peripheral blood for different kinds of antiretroviral agents.
As mentioned above, the model is originally presented in 
 [61] and seven equations of it are modified in (1-1)-(1-
7). The equations (1-8)  -(1-10) are added to the model as a 
result of the introduction of mentioned inputs to the model 
in this work. The reason is that consumption of PI drugs by 
the patient, results in a fraction of generated viral particles to 
be nonfunctional which is known as noninfectious viral load 
[62]. These particles are taken as three new state variables and 
the dynamics of them is extracted from other equations as it is 
usual in the literature, such as [62]. Accordingly, equations (1-
8) - (1-10) describe the dynamics of Vi

N,i=LT,PB,CNS which are 
in fact the free noninfectious viral load of  three compartments 
of the host body, including PB, LT, and CNS. 
The description of state variables and parameters is summarized 
in Tables A-2,   A-3,   A-4 and   A-5 of Appendix A.
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3- The target fuzzy model and the control strategy  [63]
A brief introduction to fuzzy T-S systems with state time 
delay is represented here. One can construct a T-S model if 
local description of the dynamic system to be controlled is 
available in terms of local linear models:

Where the state vector x(t)∈Rn, the delayed state vector 
x(t−t)∈Rn, the control input u(t)∈Rm, and the matrices 
Ai, Bui and Ati are of appropriate dimensions. The above 
information is then fused with the available IF–THEN rules 
where the  th rule can have the form:
Plant Rule i: IF q1 is mi1 and … and qp is mip THEN

Where x∈Rn and u∈Rm are the state and control input, 
respectively; Ai, Di and Bi are constant real matrices with 
appropriate dimensions; r is the number of plant rules; qj(x) 
and mij(i=1,...,r , j=1,...,p) are respectively the premise variables 
(which are the functions of state variables) and the fuzzy sets.
The design of state feedback stabilizing fuzzy controllers for 
the fuzzy system (2-2) is based on the parallel distributed 
compensation. The aim is to determine the local feedback gains    
Fi such that the closed-loop system is asymptotically stable.
Regulator Rule i: IF qj is mi1 and … and qp is mip THEN

Theorem  2-1 [63]. There exists a fuzzy control law such that 
the closed-loop fuzzy system (2-2) is asymptotically stable 

if there exist matrices Q>0, Ui>0, Vi>0, Wi>0, Si>0 and Yi, 
i=1,2,...,r such that the following LMI’s hold:

For i,k,l=1,2,...,r and       , where

If this is the case, the local feedback gains Fi are given by

The readers are referred to  [63] for the proof of the Theorem.
local linear models of the system are obtained using LOLIMOT 
(Local Linear Model Trees) which is a Matlab toolbox mainly 
used for the identification and inversion of models  [64]. The 
simulation is carried out using local linear models, namely 
fuzzy T-S rules. A brief introduction to LOLIMOT is stated in 
Appendix B.

4- Simulation Results
In order to describe the results, it is necessary to have a brief 
look at the process of HIV-1 infection and its  interaction with 
the host body:
In the earliest stages of infection, after the virus has entered the 
host, we observe the acute phase. The viral load (VPB) grows to 
high levels and immune responses rise. The immune responses 
reduce viral load to the lower levels but fail to clear the virus. 
The target cells count (such as XPB) take a temporary dip 
before returning to normal levels. During this phase, infected 
individuals can experience symptoms typical of viral infections 
in general, such as fever, rash, and fatigue. Once the viral load 
has fallen to lower levels, these symptoms subside, and this 
marks the beginning of the asymptomatic or chronic phase of 
the infection. During this phase, viral load remains relatively 
low and the target cells count remain relatively high. The final 
stage of the infection is the development of AIDS. This is 
characterized by a fall in the target cells count, and a sharp rise 
in viral load. Because the body has a highly reduced target cells 
count, the immune system does not function anymore, and the 
patient dies from a variety of infections that would otherwise 
be cleared. Such infections are called opportunistic infections. 
The duration of the asymptomatic phase of infection is highly 
variable. On average, it takes between 5–10 years. However, 
some patients develop AIDS rapidly after only a few months, 
while so-called LTNPs (long term nonprogressors) do not 
develop any signs of AIDS for as long as 15–20 years after 
infection. Such patients are characterized by very low viral 
loads and high levels of immune responses. The reasons for the 
transition from the asymptomatic phase to the development of 
AIDS are unknown  [62].
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The full dimensional system is a new dynamic model of 86 
ODE equations considering the 83 ones previously stated by 
the authors in  [61] (seven  of which is modified in (1-1) - (1-7))  
plus three new equations stated in (1-8)-(1-10). The stability 
of the model is investigated using state variables being 
locally linearized. The results for variables mostly mentioned 
in literature is depicted in Figure  3-1 which illustrates three 
state variables, including Uninfected monocyte pool count 
(XPB), Infected monocyte pool count (Xi

PB) and the viral 
load (VPB) in peripheral blood as the integral part of most 
dynamic models of HIV-1 or even the whole model as in 
 [6 -11] and the asymptotic nature of them is easily seen. The 
mentioned state variables indicate the so-called LTNP which 
was  described thoroughly above. Keeping the HIV-1 infected 
patients in LTNP is the target of HIV-1 treatment because it is 
obviously desirable that the state of the patient be driven into 
the LTNP, where the patient does not progress to AIDS and 
drug treatment can be stopped [23].
Figure  3-2 illustrates the uncontrolled state variables XPB,  Xi

PB 

and VPB for comparison. It is seen that the open loop system 
states tend to an equilibrium point of AIDS or equivalently 
complete defeat of host body immune system.

5- Results and Future Work
This paper proposes a novel nonlinear model for the 
interaction of HIV-1 with host body. The novelty of the 
model lies in the addition of control inputs, namely drug 
consumption efficiencies and three new state variables 
(equations) into a nonlinear ODE model of HIV-1 dynamics 

which is proposed by the authors previously. The proposed 
model is unprecedented from the aspect of a number of state 
variables and also the biologic parameters it includes. This 
paper is also the pioneering work in adopting the Fuzzy T-S 
modeling and controlling method for such a model. The T-S 
fuzzy model is carried out through the procedure of inferring 
locally linearized models out of the original nonlinear ODE 
model. This is a breakthrough which provides the ability to 
use the Fuzzy T-S theory and numerical facilities it provides 
such as the delay dependent stabilization state feedback 
design based on Lyapunov-krasovskii functional used in 
this paper. This procedure summarizes the stabilization 
problem into LMI’s solution. The stability of the closed loop 
system is proved toward the equilibrium point of LTNP. This 
achievement is comparable to open loop system which tends 
to an equilibrium point of AIDS or equivalently complete 
defeat of host body immune system.
The future work includes an addition of observer to the model 
and controller design in the same way. The method also has 
the capability of being employed to more general models of 
HIV-1 with more dimensions and of course reflecting more 
biologic facts about the virus dynamics. The other pathway 
for future is consideration of physical characteristics of host 
body compartments, such as blood stream dynamics and 
blood-brain barrier properties in modeling HIV-1 employing 
ANSYS. The blood-brain barrier is known to be the main 
barrier for drug penetration into the CNS and hence the main 
reason for the invasion of viral load into PB and AIDS.

Fig.  3-1. controlled XPB, Xi
PB and VPB

Fig.  3-2. uncontrolled XPB, Xi
PB and VPB
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6- Appendix A: Complimentary Tables and figures for 
model description

Fig. A-1.  [65]:median difference of ARV concentration compared to PB  [64] shown for tenofovir disoproxil fumarate-
diphosphate (TDF-DP), emtricitabine–triphosphate (FTC-TP), efavirenz (EFV), atazanavir (ATV), ritonavir(RTV).

Antiretroviral Molecular weight Protein binding % Plasma concentration CNS concentration
Nucleos(t)ide reverse-transcriptase inhibitors

Zidovudine (ZDV) 267.2 34-38 4.5-6.7 μmol/ml 0.12-0.41 μmol/ml
Lamivudine (3TC) 229.3 <36 4.3-8.7 μmol/ml 0.05-1.14 μmol/ml
Stavudine (D4T) 224.2 Negligible 3.3-6.4 μmol/ml 0.2-0.36 μmol/ml
Didanosine (DDI) 236.2 <5 2.12-11 μmol/ml 0.17-0.51 μmol/ml
Abacavir (ABC) 286.3 49 5.2-10.9 μmol/ml 0.5-1.8 μmol/ml

Tenofovir disoproxil –TDF 
(PMPA precursor of TDF)

519.4
289.2

(PMPA)
-(PMPA)

Non-nucleosidic reverse-transcriptase inhibitors
Nevirapine (NVP) 266.3 60 7.5-16.9 μmol/ml 1.3-10.9 μmol/ml
Efavirenz (EFV) 315.7 99.5 9.2-16.6 μmol/ml 0.006-0.09 μmol/ml
Etravirine (ETV) 435 99.9 0,6 μmol/ml

Protease inhibitors
Indinavir (IDV) 613.8 60 12.2-13.0 μmol/ml 0.03-0.66 μmol/ml
Ritonavir (RTV) 721 98-99 10.5-26 μmol/ml Nd-0.32 μmol/ml
Nelfinavir (NFV) 567.8 >99 5.6-8.45 μmol/ml Nd-0.012 μmol/ml
Saquinavir (SQV) 670.9 98 1.84-3.23 μmol/ml Nd-0.008 μmol/ml
Amprenavir (APV) 505.6 90 10.6-19.2 μmol/ml Nd-0.36 μmol/ml
Lopinavir (LPV) 628.8 98-99 67945 ± 4215 μg/l 16.75 ± 8.6 μg/l
Atazanavir (ATV) 704.9 ++(+) 128–6200 ng/ml Nd–40 ng/ml
Fosamprenavir - 

FPV(converted rapidly to 
APV)

585.6 +++

Darunavir (DRV) 548 95 1800–12900 ng/ml 15.9–212.0 ng/ml

Table A-1. Properties of antiretroviral agents  [66].
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 Table A-2 states the description of ODE state variables  [61].

In which the parameters are outlined in   Table A-5

Symbol Description

xj Uninfected monocyte pool count in j (j= Peripheral blood  (PB), Lymphoid tissue (LT) , 
Central nervous system (CNS))

xl
j Infected monocyte pool count in j (j=PB, LT, CNS)

mj Uninfected macrophage pool count in j (j= LT, CNS)
Uninfected macrophage pool count in j (j= LT, CNS)

Qj Naïve CD4+T-cell pool count in j (j=PB, LT)
Ej Uninfected eff      ector CD4+T-cell count in j (j=PB, LT, CNS)
EEl

j Infected (eclipse phase) CD4+T-cell count in j (j=PB, LT, CNS)
Epl

j Productively infected CD4+T-cell count in j (j=PB, LT, CNS)
Mj Uninfected memory CD4+T-cell pool count in j (j=PB, LT, CNS)
MEl

j Infected (eclipse phase) memory CD4+T-cell pool count in j (j=PB, LT, CNS)
Mpl

j Productively infected memory CD4+T-cell pool count in j (j=PB, LT, CNS)
Cj Uninfected CTL count in j (j=PB, LT, CNS)
CEl

j Infected (eclipse phase) CTL count in j (j=PB, LT, CNS)
Cpl

j Productively infected CTL count in j (j=PB, LT, CNS)
Vj Infectious free HIV-1 of j (j=PB, LT, CNS)
VN

j Noninfectious free HIV-1 of j (j=PB, LT, CNS)
I2

j IL-2 of j (j=PB, LT, CNS)
I12

j IL-12 of j (j=PB, LT, CNS)
Ig

j INF-g of j (j=PB, LT, CNS)
Ifdc Delay (FDC function)
l Delay (Lambda function)

jm

Table A-2. Description of ODE state variable  [61].

Table A-5. Parameters of Infectivity coefficient [61].

fv Ratio between viable and non-viable particles within an HIV-1 
population Dimensionless

hvc
(constant) probability per unit time per virion of a successful 
collision with, and attachment to a target cell
overall R5 HIV-1 normalized infectivity in [0,1] on CD4 T 
lymphocytes and monocyte–macrophage cell lineage, respectively Dimensionless

overall X4 HIV-1 normalized infectivity in [0,1] on CD4 T 
lymphocytes and monocyte – macrophage cell lineage, respectively Dimensionless

overall R5X4 HIV-1 normalized infectivity in [0,1] on CD4 T 
lymphocytes and monocyte–macrophage cell lineage, respectively Dimensionless

km,v
infectivity coefficient for virus-to-cell transmission involving 
the monocyte–macrophage cell lineage

VR5 CCR5-using HIV-1 population fraction Dimensionless
Vx4 CXCR4-using HIV-1 population fraction Dimensionless

VR5x4 CCR5 and CXCR4-using HIV-1 population fraction Dimensionless

 

5 5,L M
R RI I

 

4 4,L M
X XI I

 

5 4 5 4,L M
R X R XI I

− −× ×1 1argvol t et cell t

− −× −4 25 10 10

− −× ×1 10.00027 argvol t et cell t
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The parameter description and values are listed in  Table A-3.

Symbol Description Value

aj,cross
Cellular apoptosis rate of                    induced by 

CD4–gp120 cross-linking
am Antigenic stimulation coefficient for T-cells

a12,CTL
Coefficient of the IFN-γ secretion by CTLs 

stimulated by IL-12 1

Cj
Number of mitotic cycles of j(j=Q,M,C) after 

antigenic stimulation [7;8;10]

CVC,j Free virus required to infect a cell j(j=x,m,Q,E,M,C)
Cv̅,m Free HIV-1 phagocytosis rate by macrophages

dj,CTL
Cellular apoptosis rate of                                 induced 

by the CTL cytotoxic activity

dj,tat
Cellular apoptosis rate of

induced by Tat

dj,j’

Cellular apoptosis rate of j induced by gp120 when 
interacting with the infected cell j’

dl Cell death rate due to membrane lysis
dv̅ Free virus death rate
fb,lt Blood volumetric flow rate from PB to LT
f j

ss Fraction of the T-cell pool in j(j=PB,LT)
fv̅ Fraction of viable HIV-1 produced by an infected cell 10-2

f ss
++ Double positive CTL pool fraction in PB and CNS 2.5*10-2

ij
2

IL-2 concentration needs to promote 50% of 
maximum stimulation of j(j=Q,M,C)

nj
Production rate of free HIV-1 by an infected cell

rj
PB Steady-state recruitment rate of

                                            from LT to PB

rj
LT Steady-state recruitment rate of                       from 

PB to LT

rj
CNS Steady-state recruitment rate 

of from PB to CNS

tj
1st Time period of the first mitotic cycle

of after stimulation [3;1;3]days

tv̅,j Time period of the HIV-1 intracellular life cycle in 1 day

Table A-3. Parameters of model (1-1)-(1-10)  [61].

− −× 4 1
[1;5 10 ]day

− −× 8 1
5 10 day

− −× 10 1
2 10 virus cell

− − −× 10 1 1
2 10 ml cell day

= ˆ ˆ( , )j j E M

= ˆˆ ˆ( , , , , )j j y m E C M − − −× 9 1 1
2 10 ml cell day

= ˆ ˆ( , , , , )j j Q E E M M
− − − −× × × ×

− − −×

9 10 4 10
[1 10 ;1 10 ;1 10 ;1 10 ;

4 1 1
1 10 ]ml cell day

− − −× 9 1 1
1 10 ml cell day

′ =

++

++

ˆˆ ˆ([ , ] [ , ];[ , ],[ , ];[ , ];[ , ];
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ];[ , ];[ , ];[ , ];[ , ];[ , ];[ , ];[ , ];

ˆˆ ˆ[ , ];[ , ];[ , ];[ , ];[ , ];
ˆ ˆˆ ˆ ˆ ˆ ˆ[ , ];[ , ];[ , ];[ , ];[ , ];[ , ])

j j E V E E E M E C E m

E V E Q E E E M E m E m E C E

M V M E M M M C M m

M V m M m M M M C Q C

−1
0.5 day

−1
0.24 day

−1
50 l day

− − −× × ×2 1 4
[1.95 10 ;9.8 10 ;5 10 ]

[30;18;30] /U ml

= ˆˆ ˆ( , , , )j j m E M C
− − −1 1 1

[530;1000;850;850]virus ml day cell

=
2 12 5

ˆˆ ˆ( , , , , , , , , , , )
R

j j E E M M C C I I I L U
g

− − − − −× × × × ×

− − − − − − −× × ×

6 6 4 4 5
[5,4 10 ,5 10 ,3,2 10 ,3 10 ,6 10

6 4 4 4 4 3 1
,10 ,5 10 ,10 ,10 ,6 10 ,6 10 ]day

=


( , , )j j x Q C − − − −× × ×2 3 2 1
[3 10 ;9.3 10 ;3 10 ]day

= ˆˆ ˆ( , , , , , , , )j j x y E E M M C C
− − − − −× × × ×

− − − −× × ×

4 5 5 5 5
[2 10 ;9 10 ;4.5 10 ;10 ;1.48 10 ;

6 5 5 1
8 10 ;5 10 ;4.5 10 ]day

=( , , )j j Q M C

The infectivity coefficient in model (1-1) - (1-10) is as follows in  Table A-4:
Table A-4. Infectivity coefficient.

Virus-to-cell infection
Monocyte-Macrophage cells km,v(t)=fvhvc[VR5ĨR5

M(t)+VX4ĨX4
M(t)+VR5X4ĨR5X4

M(t)]
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7- Appendix B: Introduction to LOLIMOT  [64]

The Local Linear Model Trees (LOLIMOT) algorithm is 
based upon Neural-Fuzzy models of Takagi-Sugeno type to 
infer the local linear approximations of a model. During the 
execution of this algorithm, a “divide and conquer strategy” is 
applied to the modeling problem, so that the major problem is 
split into smaller ones. The basic network structure of a local 
linear neuro-fuzzy model is depicted in Figure  B-1. Every 
neuron consists of a local linear model (LLM), and a validity 
function f, which defines the validity of the LLM within the 
input space. The local linear model output is defined by:

With wij as parameters of the neuron i.If the validity functions 
are chosen as normalized Gaussians, then:

Where the membership function m is defined as:

The estimation of the linear equation parameters is done 
through an optimization by the local least squares method. The 
parameter vector for each i=1,...,M, the regression matrix, and 
the weight matrix are respectively:

The weighted least squares solution of the rule conclusion 
parameters is given by:

The local least squares method mentioned to  estimate  the 
rule conclusions is only applicable if the validity functions 
have been estimated first. The number of the validity 
functions and their parameters depicted in Fig. 2 define the 
partitioning of the input space. The functions divide input 
space into rectangle areas while Cij, sij indicate the centers of 
the rectangles, the standard deviations and sij=ks.Dij (ks=1/3 
is proved to be optimal) respectively. The LOLIMOT is an 
incremental tree construction algorithm which divides the 
input space axes into an orthogonal way. By iterations, one 
new local linear model is added to the model. To do that, 
validity functions are calculated and the local linear models 
are adapted with the least squares method. A brief description 
of the LOLIMOT algorithm is as follows:

1. Start with an initial model.
2. Find the worst LLM.
3. Check all possible divisions.
4. Find the best division.
5. Check for convergence.

For more details please refer to  [64].
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