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This paper deals with leader-following and leaderless consensus problems of high-order multi-input/
multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncer-
tain external disturbances. The agents may have different dynamics and communicate together under a 
directed graph. A distributed adaptive method is designed for both cases. The structures of the control-
lers simplify their implementation and reduce computational cost.Unknown nonlinearities are estimated 
by a radial basis function neural network (RBFNN). The ultimate boundness of the closed-loop system 
is guaranteed through Lyapunov stability analysis by introducing a suitably driven adaptive rule. Finally, 
the simulation results verify the performance of the proposed control method.
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1- INTRODUCTION
The consensus of multi-agent systems (MASs) 

has been intensively studied in recent years due 
to its potential applications in broad areas such as 
sensor networks, biology systems, rendezvous tasks, 
focking, swarming and mobile robots [1-3]. Multi-
agent systems usually consist of a group of agents 
cooperating to complete certain tasks for the group. 
Therefore, their coordination control protocol is 
designed such that the states of the agents converge 
into a consistent value.

The cooperation of agents with linear dynamics 
has been developed broadly (see, e.g., [1-6] and 
references therein). Since, in many real-world multi-
agent systems, the agents have nonlinear dynamics, 
research on cooperation of nonlinear MASs with 
known dynamics has received much attention 
in recent years [7-17]. However, it is difficult to 
precisely describe a nonlinear system by known 
nonlinear functions. Therefore, the control of systems 
with unknown nonlinear dynamics is a challenging 
task. Furthermore, some methods are required to 
approximate these nonlinearities.

Using neural networks (NNs) capability in the 
approximation of nonlinear functions, recently, some 
works have been dedicated to deal with distributed 
control of unknown multi-agent systems. In [18], 
synchronization problem for a group of uncertain 
Lagrangian systems was studied using an adaptive 
backstepping method under a directed communication 
topology. Hou et al. [19] proposed a decentralized 
robust adaptive control of unknown MASs for 
undirected graphs. Then, the leader following problem 
of these systems was investigated in [20]. In [21], a 
leader following synchronization of unknown single 
input-single output (SISO) nonlinear networked 
systems was established. The dynamics of agents in 
[19-21] were first-order and unknown nonlinearities 
were approximated by NNs. Cooperation of high-
order nonlinear SISO multi-agent systems with 
unknown dynamics was  studied in [22-24]. In [22], 
an NN adaptive protocol for an undirected connected 
graph was considered and in [23,24] the same method 
was employed for consensus tracking under a directed 
graph containing a spanning tree. The work in [25-27] 
addressed a distributed consensus tracking of second-
order unknown nonlinear MASs. In [25], an adaptive 
control for synchronization of MASs under directed 
graphs was considered. In [26], an output feedback 
formation has been proposed for a topology of an 

undirected connected graph using terminal sliding 
mode control method, and in [27] the same method 
was applied for MASs. Peng et al. [28] proposed a 
distributed NN adaptive control method using state 
feedback and then extending to output feedback for 
an undirected connected communication topology.

In summary, all the mentioned works address 
systems with first-order [19-21] and second-order 
dynamics [18,25-27] or SISO systems with higher 
order dynamics [22-24]. Besides, there are a few 
studies that discuss the cooperation of nonlinear 
MIMO agents [18-20,26-28]. Moreover, in these 
studies, input gain (matrix gain) is assumed to be 
unity [19-20,26] or constant [28]. While in practical 
applications, the matrix gain is a nonlinear vector 
function of system’s states and unknown. Therefore, 
the control problem of such systems becomes more 
complicated.

According to the best of the authors’ knowledge, 
there is no work on cooperation of high-order MIMO 
nonlinear MASs with unknown dynamics. On the 
other hand, the study of consensus problems for 
directed graphs is more challenging and more general 
than that of undirected graphs [2]. In this paper, a 
distributed adaptive control method is proposed for 
leaderless and leader following problems of unknown 
high-order MIMO nonlinear MASs under directed 
graphs. Also, the gain matrix of each agent is assumed 
to be unknown. The agents’ dynamics are in affine 
form and subject to uncertain external disturbances. 
The designed control protocol is based on local error 
and utilizes a radial basis function neural network 
(RBFNN) to estimate unknown nonlinearities. 
Compared to the methods proposed to the control of 
unknown single systems which employ two NNs (see, 
e.g. [29-31]), the new distributed NN adaptive control 
is designed with only one NN which simplifies the 
structure of the controller and its implementation. In 
order to cancel out approximation error and external 
disturbances, a distributed robust term is designed in 
the local control of each agent.

Compared with the existing methods applied 
to the consensus of unknown nonlinear MASs, the 
main contributions of this paper are summarized as 
follows: (1) Gain matrix of each agent is assumed 
to be function of states and unknown while in the 
most of the aforementioned methods, the input gain 
(matrix gain) is assumed to be unity [24-31]. (2) The 
considered class for agent dynamics leads to taking  
into account the cooperation of more general class 
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of nonlinear systems. (3) Generally, dynamics of 
agents are assumed to be non-identical. (4) Instead 
of using two separate NNs to approximate the 
unknown dynamics and input gain matrix, only one 
NN is utilized in the proposed method which leads 
to simplifying the structure of the controller and 
reducing computational load. By using Lyapunov 
stability analysis, the stability of the overall system 
is achieved which shows all the signals are uniformly 
ultimately bounded.

The rest of this paper is organized as follows: 
problem statement, including graph theory, and 
the derivation of the error dynamics for consensus 
problem are introduced in section 2. In Section 3, 
first, a controller is designed for the leader-following 
problem. Then, a stability analysis using Lyapunov 
method is presented to guarantee the performance and 
the stability of the designed NN distributed adaptive 
controller. In section 4, the leaderless problem is 
discussed for the networked systems using the similar 
designing procedure of section 3. Simulation results 
are given in section 5. Section 6 concludes the paper.

2- PRELIMINARIES
A. GRAPH THEORY

Let G=(V,E,A) be a directed graph of order n, 
where V={v1,...,vn} is the nonempty set of nodes, E
⊆V×V is the set of edges and A=[aij] is a weighted 
adjacency matrix. eij={vi,vj} is an edge of G and implies 
that node vj can receive information from the node vi. 
The adjacency matrix is defined as aii=0 and aij>0 if 
eji{vj,vi}∈E. A directed path from node j to node i is a 
sequence of distinct edges which starts from node j 
and ends to node i. The set of neighbors of the node 
vi is denoted by Ni={vj∈E:(vj,vi)∈E}. The in-degree 
matrix is defined as D=diag(di) with 

i
ijji N

ad
∈

= ∑  
(i.e. ith row sum of A) [21].The Laplacian matrix of 
a graph is defined as L=D–A. The all row sums of 
the Laplacian matrix are equal to zero. Then, for the 
Laplacian matrix L=[lij], we have lii=di and lij=−aij,i≠j. 
A directed graph is strongly connected if there is a 
directed path from every node to every other node. 
A directed graph contains a spanning tree if there is 
a node which can reach all the other nodes through a 
directed path [21,24].

B. DYNAMICS OF AGENTS
The class of n-th-order MIMO nonlinear systems 

considered for i-th agent, and termed the companion 
form or controllability canonical form [32] is given 

by:

(1)

where 1( ,..., )T m
i i imx x= ∈x  , , m

i i ∈u w   are the 
states, the inputs, and disturbances of the agent, 
respectively. 1( 1) ( 1)

1 1( ,..., ,..., ,..., )mn n T n
i i i im imx x x x− −= ∈x   

and ( )n
i =x ( ) ( )

1( ,..., )n n T m
i imx x ∈ . 

1

m

i
i

n n
=

= ∑  is the state 
vector available for measurement [30] and N is the 
number of agents. ( ) m

i i ∈f x   is unknown continuous 
dynamics. ( ) m m

i i
×∈g x   is called gain matrix which is 

bounded, nonsingular and unknown.

3- LEADER-FOLLOWING PROBLEM
A. PROBLEM FORMULATION

The local tracking error of i-th agent is defined as:

(2)

where 1( ,..., )T m
i i ime e= ∈e  , 0ib ≥ , defined as pinning 

gain [21] and 0ib >  for at least one i. m
d ∈x   is the 

state of leader/reference trajectory that should be 
followed by agents.
Remark 1: In this paper, n

n ∈1   is a vector with each 
entry being 1. n

n ∈0   and nI  are the n-dimensional zero 
and identity matrix, respectively.  ⊗ is the Kronecker 
product. (.)σ  and (.)σ  denotes the minimum and 
maximum singular values of a matrix and .

F denotes 
Frobenius norm of a given matrix. {}.tr  represents the 
trace of a matrix [21].
Remark 2: In this paper, L denotes the Laplacian 
matrix and { }iB diag b= .
Lemma 1 [33]: Let L be irreducible and B have at least 
one diagonal entry 0ib > . Then L B+  is a nonsingular 
M-matrix. Define 1[ ,..., ]T

Nq q q=  
1( ) NL B −= + 1  and 

( )iP diag q= . Then 0P >  and matrix Q defined as:

(3)
is positive definite.

By introducing ( 1)( , ,..., )
TT T n T nm

i i i i
−= ∈E e e e  , the 

error dynamics is defined as:

(4)

where ( )( ,..., )
TT n T nm

i i i= ∈E e e   , 2
1

0
0 0

n
m

I
I− 

= ⊗ 
 

A   and 

1

1

...
T

m m m

n

I
−

 
 =
  

B 0 0


. The overall dynamics,  tracking 
error and error dynamics for the networked system 
are given by:
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(5)

(6)

(7)

where 1( ,..., ) Nm Nm
mdiag ×= ∈g g g  , 1( ,..., )T T T

N=u u u
Nm∈ , 1( ,..., )T T T Nm

N= ∈w w w  , 1( ,..., )T T T Nm
N= ∈f f f 

, 1( ,..., )T T T Nm
N= ∈e e e  , 1( ,..., )T T T Nnm

N= ∈E E E  , d =x  
d N⊗x 1  and M L B= + . Substituting (5) into (6) leads 

to:

(8)
Let 1

mn mnP ×∈  be a positive definite matrix and 
solution to the following Riccati inequality:

(9)
where Q1 is a positive definite matrix.

B. CONTROLLER DESIGN
The multi-agent system (1) is said to achieve 

consensus if for any initial conditions and by some 
appropriate controllers.

(10)

where 0uε > . At the same time, all the closed-loop 
signals are to be kept bounded. In control engineering, 
NNs are usually employed to approximate unmodelled 
functions. For unknown systems with the dynamics 
presented in Eq. (1), the traditional controller based 
on feedback linearization includes two separate NNs 
(see, e.g. [29-31]). In this paper, based on the method 
proposed in [34], a new distributed NN adaptive 
control is designed with only one NN which results 
in the simplifying structure of the controller and 
its implementation. Due to “linear-in-the-weight” 
property and the universal approximation capability 
of any continuous function [35-36], the radial 
basis function neural network (RBFNN) is a good 
candidate for this purpose. Assume that the unknown 
nonlinearities in Eq. (1) are continuous and thus can 
be approximated on a compact set iΩ ∈ by:

(11)
where rin m

i
×∈W   is an ideal weight matrix, rin  denotes the 

number of neurons and  
2

2( ) exp( ) rii i n
i i

i

ζ
φ

σ
−

= − ∈
x

x   

is the activation function with iζ  as the center and 
iσ  as the influence size of the neurons. m

i ∈å   is the 
bounded approximation error. Typically, values of the 
center iζ  and the influence size iσ  are held fixed. The 
ideal weight matrix iW  is unknown. Subsequently, for 

real applications, its approximation, ˆ
iW  is utilized. 

Estimation of Eq. (11) is defined as:

(12)
Considering Eqs. (11) and (12), the overall graph 

nonlinearities and their estimation are written as:
(13)

(14)

with 1
ˆ ˆ ˆ( , ..., )T T Nm

N= ∈f f f  , { } rn Nm
idiag ×= ∈W W 

, 
1( , ..., ) rnT T

Nφ φ= ∈Ö  , ˆ ˆ{ } rn Nm
idiag ×= ∈W W  , rn = 

1

N

r i
i

n
=
∑  and 1( ,..., )T T T Nm

N= ∈å å å  . The local control law 
for every agent is given by:

(15)

where m mn×∈ë   is a feedback gain and coupling 
gain 0β > . 1

0i
−g  is the inverse of a constant 

and symmetric positive definite matrix 0ig . 
1 1ˆ tanh( ( ( )) )T m

si i i i i iP p b dρ= − + ∈u B E   is a robust 
term to counter approximation error and external 
disturbances. Then, taking Eqs. (13) to (15) into 
account, the global control input of the follower 
agents is:

(16)
where NI= ⊗Ë ë, 1( ,..., )T T T Nm

s s sN= ∈u u u  , 1
0
− =G  1

0{ }idiag −g . Adding and subtracting 0G  to the gain 
matrix in error dynamics, Eq. (7) and substituting it 
into Eq. (16) yields to:

(17)

where 0 0{ }idiag=G g  and ˆ= −W W W  is the NN 
weights estimation error.

C. STABILITY ANALYSIS
First, in this subsection, the how of tuning the 

NN weights and the gain of the robust term in a 
distributed manner is shown. Next, stability analysis 
is presented. The following standard assumptions are 
required.
Assumption 1: The uncertain disturbance, iw  and 
the vector of approximation error, iå  are bounded by 
constants iMw  and iMε , i.e. i iMw≤w  and i iMε≤å .
Assumption 2: The state of the leader agent (reference 
trajectory) and its time-derivatives up to order n are 
given and bounded. Especially ( )n

dx  is bounded as 
( )

M
n

d x≤x .
Assumption 3: Unknown ideal NN weight matrix 
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and NN activation functions are bounded by MW≤W  
and M≤ ΦÖ , respectively.

The following adaptive rules are proposed to 
update the parameters ˆ

iW  and , 1,. .,ˆ .i i Nρ = .

(18)

(19)
where 0wk > , 0sk > , 1 0η >  and 2 0η >  are real constants. 
For the total system, the NN parameters’ update rule 
is obtained as:

(20)
Lemma 2 [8]: The Kronecker product has the 
following properties: for matrices 1 2 3, ,C C C  and 4C  of 
appropriate dimensions:

1) 1 2 3 1 3 2 3( )+ ⊗ = ⊗ + ⊗C C C C C C C
2) 2 3 4 1 3 2 4( )( ) ( ) ( )⊗ ⊗ = ⊗1C C C C C C C C

Theorem 1: consider the i-th system (1) with the 
adaptive protocol (15), the updating laws (18-19) 
and Assumptions 1–3. If the communication directed 
graph G is strongly connected and the feedback gain 
and the coupling gain satisfy

(21)

(22)
then, all agents synchronize to the leader and all 
the signals of the closed-loop system are uniformly 
ultimately bounded. maxip  and minλ  are the maximum 
and the minimum eigenvalues of matrices P and Q, 
respectively.
Proof: Consider the following Lyapunov function 
candidate:

(23)

(24)

where ˆ= −ñ ñ ñ , 1( ,..., )T
Nρ ρ=ñ  and 1ˆ ˆ ˆ( ,..., )T

Nρ ρ=ñ . 
The ideal gain, iρ , 1,...,i N= , will be determined during 
the stability analysis. First, the time derivative of 1V  
along the error dynamics (17) is calculated:

(25)

In light of Lemma 1, inequality (9) and applying 
(21), (25) yields:

(26)

Let N N×∈U   be a unitary matrix such that 
1( ,..., )T

q NQ diag λ λ= Λ =U U  and 0,i iλ > ∀ . By 
choosing state transformation ( )mnI= ⊗E U y, where 

1( ,..., )T T T
Ny y=y , one obtains:

(27)

where min 1min( ,..., )Nλ λ λ= . Substituting ( )T
mnI= ⊗y U E 

into (27), one obtains 

(28)

Using property (22), the fact ( ) 1σ =B  and Riccati 
inequality (9), (28) yields:

(29)

Considering (16) and assumptions 2-3 u  is given:

(30)

where 1 M Mc W m= Φ + ñ , 0σ  is the minimum singular 
value of 0G  and tanh(.) 1=  applied to (30). Let 

0max ( ) 0
Nngd

∈
= − >

x
g x G


. Using the definition L=D-A, 

the second property of Lemma 2 and adding time 
derivatives of 2V  and 3V , (30) can be rewritten as:
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(31)

Property of the trace operator { }T Ttr=x y yx , 
, m∀ ∈x y   applied to (31). According to the definition 

of the NN weight estimation error matrix, its 
derivative is ˆ= −W W . By using this derivative to the 
updated law of NN weight (20) and substituting them 
into (31) and employing (22) and (30), one obtains:

(32)

where 4 1 2 1( ) ( ) ( ) Mk c c P A P Nσ σ σ= + , 3 2 ( )k mc m Pσ= +  
1( ) ( )A Pσ σ× , 2 1 2( ( ) ( ) ( )) )Mk P A P cσ σ σ= Φ + , 1k =

1 2 1
max

min

( ) ( )
( )

2i
Q c Pp σ σ

λ
−  and 1

2 0 1( ) ( ) ( )gc d P M Pσ σ σ σ−=  

with 2 2 0.5

1
[ ]

N

M iM iM
i

MN N wx m ε
=

= + + +∑ñ . Since:

 Therefore, by using inequality tanh( ) uy y y k− ≤  
for a given a variable y, 0.2785uk = , choosing 

i i i MM M xρ = + +å w  and replacing ˆi i iρ ρ ρ= − , (32) can 
be rewritten as:

(33)

Replacing the updated law of robust term gain 
(19) and ˆ = −W W W  with (33), we have:

(34)

where 3 3 1( ) ( ) ( )k k P D B Pσ σ σ′ = + +  and 5 2(k η= + 
)umk ñ . Let 4 1 5[ ]Mk W kη=r  and:

(35)

then the following inequality is obtained:

(36)
In order to satisfy 0V ≤ , R  must be positive 

definite and:

(37)

with 
2

6 24 ( )uk mk
σ

= +
r

ñ
R

. Therefore, the overall 
system is ultimately bounded and according to [37, 
Sec. 4.8], it is proved that all the signals are uniformly 
ultimately bounded. Since 0>R  using (22), the 
following inequalities are obtained:

(38)

This completes the proof.

4- LEADERLESS PROBLEM
A. PROBLEM FORMULATION

In the previous section, agents make an agreement 
to follow the desired trajectory. In this section, it is 
shown how all the agents are eventually driven to an 
unprescribed common value.
Lemma 3 [11]: Suppose that L is irreducible. Then, 

0NL =1  and there is a positive vector 1( ,..., )T
Nξ ξ ξ=  

such that 0T Lξ = , 
1

1
N

i
i
ξ

=

=∑ . In addition, there exists 
a positive definite diagonal matrix 1( ,..., )Ndiag ξ ξΞ =  
such that:

(39)

Similar to [11], for a strongly connected network 
with the Laplacian matrix L, the general algebraic 
connectivity is defined by:

(40)

Based on Lemma 2 of [38], we have ˆTx Lx ≥
( )( ) 0Ta L x xΞ > .

The controller design follows the design procedure 
of section 3. Thus, the definition of variables is similar 
to those of section 3. Define the local tracking error of 
i-th agent as:
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(41)

By introducing ( 1)( , ,..., )
TT T n T nm

i i i i
−= ∈E e e e  , the 

error dynamics is defined as:

(42)

The overall tracking error and error dynamics for 
the networked system are described by:

(43)

(44)

B. CONTROLLER DESIGN
The control objective here is to find some 

appropriate controllers such that for any initial 
conditions, an agreement being reached by all agents 
in the controlled network (1) in the sense that:

(45)

where 0uε >  and k=1,…,N. At the same time, all 
closed-loop signals are to be kept bounded. The local 
control law is given by:

(46)
where 1 1ˆ tanh( ( )) )T m

si i i i iP dρ ξ= − + ∈u B E   is the robust 
term. Then, the global control input is:

(47)
Adding and subtracting 0G  to the gain matrix in 

error dynamics, (43), and substituting (47) yields to:

(48)

C. STABILITY ANALYSIS
The following updating rules are proposed for the 

parameters ˆ
iW  and , 1,. .,ˆ .i i Nρ = :

(49)

(50)
For the total system, the NN parameters’ update 

rule is obtained as:

(51)
Theorem 2: Consider the i-th system (1) with the 
adaptive protocol (46), the updating laws (49) and 

(50) and Assumptions 1–3. If the communication 
graph G is a strongly connected digraph and the 
feedback gain and the coupling gain satisfy:

(52)

(53)
then, the consensus objective (45) can be achieved 
and all the signals of the closed-loop system are 
uniformly ultimately bounded. maxξ  is the minimum 
eigenvalues of the matrix Ξ.
Proof: consider the following Lyapunov function 
candidate:

(54)

(55)

The time derivative of 1V  is given by:

(56)

Using Lemma 3, inequality (9) and applying (52), 
yields:

(57)

In light of (40), (57) can be rewritten:

(58)

Using property (53) and Riccati inequality (9), 
(58) yields:

(59)

where max 1min( ,..., )Nξ ξ ξ= . Considering (47), 
assumptions 2-3, definition L=D-A, the second 
property of Lemma 2 and adding time derivatives of 

2V  and 3V , (59) can be rewritten as:
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(60)

By employing (30), property (53) and using the 
property ˆ= −W W  to the updating law of NN weight 
(51) and substituting them into (60), one obtains:

(61)

where 4 1 2 1( ) ( ) ( ) Mk c c A P Nσ σ σ= + Ξ , 3 2k mc= + 

1( ) ( ) ( )m A Pσ σ σΞ × , 1 2 1
1 max

( ) ( )
( )

2 ( )
Q c Pk

a L
σ σ

ξ= − , 2k = 

2 1( ( ) ( ) ( ))M c A Pσ σ σΦ + Ξ  and 1
2 0 1( ) ( ) ( )gc d L Pσ σ σ σ−= Ξ  

with 2 2 0.5

1
[ ]

N

M iM iM
i

MN N wx m ε
=

= + + +∑ñ . Applying 

the similar procedure of section 3 to iρ , replacing 
ˆi i iρ ρ ρ= −  and the updated law of the robust term gain 

(50), one obtains:

(62)

where 3 3 1( ) ( ) ( )k k D Pσ σ σ′ = + Ξ  and 5 2( )uk mkη= + ñ . 
Similar to the proof of Theorem 1, it is finally derived that:

(63)
In order to satisfy 0V ≤ , R must be positive 

definite and:

(64)

with 
2

6 24 ( )uk mk
σ

= +
r

ñ
R

. Therefore, it is proved that 

all the signals are uniformly ultimately bounded. In 
order to satisfying 0>R , the following inequalities 
are derived:

(65)

This completes the proof.

5- SIMULATIONS
Leader-following problem: In this case, the 
consensus protocol given in Theorem 1 is applied to 
a multiple of nonlinear autonomous surface vehicles 
(ASVs) governed by the 3 degrees-of-freedom 

(3DOF) model [39]. The ASVs communicate together 
through a strongly connected directed graph shown 
in Fig. 1. The graph includes 3 agents with a leader 
node connected to agent 1. The i-th ASV dynamics 
are represented by the following equations:

(66)

(67)
where ηi 

3[ , , ]T
i i i ix y ψ= ∈ç   is the position vector in the 

earth-fixed reference frame and vi 
3[ , , ]T

i i i iu v r= ∈í   is 
the velocity vector in the body-fixed reference frame. 

3T
i i= ∈M M   and 3( )i i iψ= ∈R R   denote the inertia 

matrix and the transformations matrix from the body-
fixed to the earth-fixed reference frame,  respectively. 
τi

3[ , , ]T
i ui vi riτ τ τ= ∈ô   represents the generalized control 
input and τdi 

3[ , , ]T
di udi vdi rdiτ τ τ= ∈ô   is environment 

disturbances.The ASVs parameters are given in 
[39]. The Laplacian and adjacency matrices of the 
considered directed graph are defined by:

(68)

The initial conditions of agents are η1(0)=[1,2,π/6]‍T, 
η2(0)=[−1,1,−π/10]‍T , η3(0)=[0,−2,−π/6]‍T and vi=0  for 

i=1,2,3. ηd=
t[ , , ] [0.2 ,3cos( ),arctan( )]

50
T Td

d d d d
d

y
x y t

x
ψ= =ç



  
is the reference trajectory and t denotes time. The 
external disturbances are chosen as:

(69)

The proposed control protocol (15) is compared 
to the sliding mode control (SMC) protocol (70).

(70)

Fig 1. Strongly connected graph of 3 agents and a leader
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with 0sβ >  and 0rk > . The design parameters are set 
as 9β = , 4sβ = , 0.01rk = , the gains of the updating 
laws 1wk = , 0.1sk = , 1 2 1η η= =  and the gain matrix 

0 20.05i I=g . The centers of the applied RBFNN, iζ , 
evenly spaced in [−1,1]×[−1,1]×[−1,1]×[−π,π] with 
spreads 0.825iσ =  and number of neurons at each 
node 16rin =  were utilized. Figs. 2-4 illustrate the 
simulation’s results. The results for the proposed 
method (15) and the SMC (70) are shown by the blue 
lines and black line, respectively. In the figures, NNA 
stands for the proposed NN adaptive controller.

The movements of the ASVs in the plane and 
their heading tracking curve are shown in Fig. 2. Figs. 
3 and 4 show the applied control forces and norms 
of the tracking errors during consensus process of 
the ASVs, respectively. It is seen from Fig. 2 that the 
agents realized the coordinated tracking task. But, 

the fluctuations in the motion of the ASVs using the 
SMC protocol (70) imply that the proposed method 
(15) has a better performance against environment 
disturbances compared to the SMC protocol.In order 
to see the transients and the speed of convergence 
clearly, in Figs. 3 and  4, the results are illustrated for 
10 seconds.
Leaderless problem: The proposed control law in 
(46) is simulated for three non-identical two-link 
robots. The model of a two-link robot is shown in Fig. 
5. The dynamics of ith robot (i=12,3) is described by:

(71)
where 2

1 2[ , ]T
i i iφ φ= ∈q   is the state vector of 

configuration coordinates. τi
2

i ∈ô   is the input vector, 
2 2( )i i
×∈M q   denotes the symmetric and bounded 

positive definite inertia matrix and ( , )i i iC q q  represents 
the symmetric Coriolis matrix and centripetal 

Fig 2. Trajectory tracking in horizontal plane
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Fig 3. Control inputs of ASVs during consensus tracking

torques. ( )i ig q  is the vector of gravitational torques. 
The physical parameters of the robots are taken from 
Table 5.1 of [40].

The Laplacian matrix of the communication 
topology between the robots is defined by:

(72)

Initial conditions of the agents are set to 
1(0) [0.3,0.4]T=q , 2 (0) [0,-0.2]T=q , 3 (0) [0.5,0]T=q

, 1(0) [0.5,0]T=q  and 2 3(0) (0)= =q q 0  . The RBFNN 
parameters are chosen by the similar procedure of 
Leader-following problem. The other parameters are 
set as: 10β = , 0.1wk = , 0.1sk = , 1 2 1η η= =  and the gain 
matrix 0 22i I=g . The results of applying the proposed 

control protocol (46) are illustrated in Fig.s 6-8. 
Synchronization of the robots is shown in Fig. 6. Figs. 
7 and 8 show control inputs and local errors during 
consensus process, respectively. As seen from Fig. 
6, the robots reach consensus on a common value. 
The simulation results illustrate that the estimation 
error and all the closed-loop signals are ultimately 
uniformly bounded.

6- CONCLUSIONS
In this paper, the leader-following and leaderless 

consensus problems of high-order MIMO multi-agent 
systems with nonlinear affine dynamics have been 
studied. In addition to the system dynamics, the gain 
matrix was assumed to be unknown. For both cases, a 
distributed neuro-adaptive method was proposed under 
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Fig 4. Tracking errors during consensus process

Fig 5. A two-link robot

directed graphs. The methods were constructed based 
on the local error. To estimate unknown nonlinearities, 
the RBFNNs were employed. Lyapunov method was 
utilized for stability analysis of the overall system. 
The update laws of unknown parameters of NNs and 
the robust term gain were determined from Lyapunov 
stability analysis. In particular, it was proved that 
the local errors are uniformly ultimately bounded, 
and converge into a neighborhood of the origin. The 
validity of the proposed protocol controls and their 
efficacy against disturbances and estimation error 
were verified through the simulation results.
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Fig 7. Control inputs of the robots

Fig 6. Consensus of joints of the robots
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Fig 8. Local errors during consensus process
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