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ABSTRACT: In practice, manufacturing systems are never perfect and may have low quality outputs. 
Therefore, different decisions such as reprocessing, sale at lower prices or diminishing are made according 
to industry and market. This paper investigates the importance of supply chain coordination through 
developing two models in centralized decision-making for an imperfect quality manufacturing system 
with probabilistic defect rate. Moreover, two types of errors in inspection process are considered: Type 
I error (classifying perfect products as defective ones) and Type II error (classifying defective products 
as perfect ones). Moreover, a cost function for investment on products quality as well as selling price is 
considered. The algorithms to find the optimal solution for both models are suggested. Numerical results 
show that even by less consumer prices; more profit, more satisfied customer, and improved quality can 
be achieved through coordination in supply chain.
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1- Introduction
Nowadays, due to more specialized roles, competition 
extension and more demanding customers, companies in a 
supply chain (SC) have no choice but coordination in decision 
making to satisfy the needs of customers more efficiently and 
stay ahead of competitors. The effectiveness of coordination 
in a supply chain could be studied in two areas: reducing 
costs (increasing profits) of supply chain and improving the 
services provided. Thus, the concept of coordination in supply 
chains are one of the areas that researchers are interested in. 
Decision-making in SCs can be done in two ways: centralized 
and decentralized. Ideally, decision-making in a supply chain 
is done by a decision maker that has full access to information 
for all members. This is possible when the entire chain is 
under the control of one decision maker or that the benefits 
from this integration are divided fairly between the members. 
This type of coordination is known as centralized. However, 
usually each member only has access to its own information 
and tends to maximize its own profit. These cases in which 
the members are making decisions independently are known 
as decentralized systems. [1]
Inventory management in SCs also was an isolated activity 
done by only one of the actors for many years. After Goyal [2], 
a number of studies are formed in recent years that focused 
on coordinating the inventory replenishment decisions 
between the units to maximize the entire SC’s benefit. In 
order to achieve coordinated inventory replenishment, 
researchers usually focus on minimizing total system cost. 
These classes of problems are known as joint economic lot 
sizing (JELS) problems or integrated production-inventory 
models. These problems are subsets of coordinated models 
and are usually useful in the cases in which suppliers are in 
a long-term relationship with their customers. These long-

term relationships are very common in automotive industry. 
In these cases, SC members are encouraged to corporate 
together in order to reduce the entire system’s cost. 
On the other hand, in the cases SC members make the 
inventory replenishment decisions independently, vendor 
usually suffers more costs because the buyer specifies the 
amount of order just based on its own costs. However, if the 
buyer increases its order quantity, vendor’s costs reduce. If 
the vendor be able to compensate the buyer to order more, 
it can reduce the total cost of the system and achieve the 
optimal solution [3]. Decision variables of these problems 
in the simplest case are the buyer’s order lot size and the 
number of shipments in a production period. By adding 
more assumptions to the basic model, decision variables may 
increase. 

1- 1- Literature Review
One of the first models to determine the joint economic lot 
size in a coordinated SC is provided by Goyal in 1976; that is 
a system consisting of a vendor and a buyer [3]. In this paper, 
the supplier is only the vendor of products, and inventory 
replenishment rate is infinite. Moreover, the products sent 
from supplier to buyer are in equal sized shipments. Later, by 
considering the production rate for the vendor, Goyal in 1988, 
proposed a new model [4]. In the literature, these simple 
single-vendor single-buyer models have been developed in 
two dimensions:

• Depth: models that have more stages at SC or more 
actors on each stage.
• Scope: models with considering more assumptions such 
as the quality of products, learning in production, etc.
A classification made by Glock in his review paper is as 
follows:
• Basic models: including two-level and multi-level 
models with the assumptions of basic model.Corresponding author, E-mail: sajadieh@aut.ac.ir
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• Developed models according to some assumption such 
as random demand or lead time, investment in order to 
reduce the delay in delivery or setup costs, imperfect 
quality of products, products decay, learning in production 
and etc. [3]

One of the first papers considering the imperfect quality in the 
integrated production-inventory model is Huang [5]. Affisco 
et al. also considered the fraction of perfect products as a 
function of quality improvement investment [6]. Moreover, 
Goyal et al. studied a system that in its process of production, 
both perfect and poor quality products are produced. Buyer 
sells defective items at a price lower than the price of the 
normal items. The amount of defect production is considered 
as a random variable in this model, while inspection is not 
incorporated [7]. Later, Liu and Cetinkaya, amended the 
investment function introduced by Affisco [8]. Lin then 
developed the problem by adding the errors in the inspection 
of products. He incorporated two types of errors with specific 
rate for inspection. Moreover, the rate of defective products is 
assumed to be random variable with specific distribution [9].
Hsu and Hsu expanded Lin’s model for items with imperfect 
quality and inspection errors [10]. Then, Lin suggested an 
integrated production-inventory model with lacking quality 
for the random demand and adjustable lead time, with 
backlogging demand [11]. Li and Chen proposed a model 
that optimizes the number of shipments, in which the buyer 
returns the defective product to the vendor [12]. Chuang et al. 
introduced a model in which the investment factor on quality 
and delays in payments is evaluated [13]. 
Ahmadi Rad et al. combined the pricing of the product 
delivered to the buyer in a joint economic lot sizing problem 
with imperfect quality products [14]. Hsu and Hsu then added 
the assumption of demand backlog to their previous paper 
[15]. Khan et al. investigated the impact of learning in quality 
of production on integrated production-inventory model with 
defective quality and inspection with errors [16]. 
In the table below we review the main assumptions of models 
considering the quality factor in JELS literature as well as our 
two models.
Table 1 shows that the models considering defective products 
have been developed in different areas in the literature 
including inspection operations, errors in inspection and 
investment on production quality to reduce defect rates. As can 
be seen, the models considering the probabilistic defect rate, 
has not considered the option of investment in quality and/
or price-dependent demand. However, in reality, companies 
may invest to improve the quality of their finished products. 
Moreover, customer demands are usually correlated to the 
selling price. Considering these two assumptions makes the 
models more realistic and applicable. That is out motivation 
to develop a general model incorporating four mentioned 
assumptions simultaneously, i.e. the quality of products with 
random defective rate, inspection operations with two-type 
random errors, investment on production quality, and the 
impact of price on demand.
The rest of this paper is organized as follows. In Section 
2, the modeling assumptions and notation are provided. 
The mathematical development of the model is introduced 
in Section 3. We develop solution approaches for both 
coordinated and independent decision-making models in 
Section 4. Section 5 uses numerical examples and sensitivity 
analysis to compare the models. Conclusions and further 
research directions are presented in Section 6.

2- Problem Definition
A model of JELS problem with regard to errors in the 
inspection process was proposed by Khan et al, in 2011 [17] 
that Hsu wrote a note on it in 2012 [18]. In 2012 Hsu and Hsu 
developed that problem to an integrated production-inventory 
model for a SC with a vendor and a buyer. Our research is 
based on this model [10].

2- 1- Assumptions
The main assumptions of the problem are as follows:

• A two-stage supply chain composed of a vendor 
(manufacturer) and a buyer (retailer) is considered.
• One product type is produced and its demand depends 
on the final price.
• System output consists of two categories: perfect and 
defective. The production rate of defective products is a 
random variable.
• Defective average rate decreases by investment on 
quality. A logarithmic investment function model is used 
for this purpose.
• Given that the rate of defective products follows uniform 
distribution, with investment on quality, the range of this 
uniform distribution tightens.
• A 100% inspection of buyer is along with errors type I 
and type II that both are of uniform distribution.
• After each inspection period, the defective products 
are returned to the vendor, and the vendor sells them at a 

Defect rate Inspection
Investment 
in quality

Demand

[3] Probabilistic Without error -
Deterministic 

and fixed

[4]
Deterministic 

variable
- yes

Deterministic 
and fixed

[5] Probabilistic - -
Deterministic 

and fixed

[7] Probabilistic
Deterministic 
error type I 
and type II

-
Deterministic 

and fixed

[8] Probabilistic
Probabilistic 
error type I 
and type II

-
Deterministic 

and fixed

[9] Probabilistic Without error -
Probabilistic 
with variable 

lead time

[11]
Deterministic 

variable
Without error yes

Deterministic 
and fixed

[12] Deterministic Without error -
Price-

dependent

[13] Probabilistic
Probabilistic 
error type I 
and type II

-
Deterministic 

and fixed

1st 
proposed 

model

Probabilistic 
variable

Probabilistic 
error type I 
and type II

yes
Deterministic 

and fixed

2nd  
proposed 

model

Probabilistic 
variable

Probabilistic 
error type I 
and type II

yes
Price-

dependent

Table 1. Review of the models with imperfect quality.
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lower price in a secondary market. This statement is true 
about the defective product that has been sold instead of a 
non-defective product to customers and has been returned 
to the buyer by them.

2- 2- Notation
The notation used through the paper are as follows:

Indices
b: This index specifies the parameters and functions related 
to the buyer.
v: This index specifies the parameters and functions related 
to the vendor. 
j: This index determines the functions of the whole system, 
as a joint system.

Parameters
P: Annual production rate of vendor
x: Annual inspection rate of buyer
S: Production set up costs for a manufacturing period of vendor
F: Fixed costs per shipment for buyer
e1: Error type I (recognition of a perfect product as defective one)
f(e1): Error type I probability distribution function, with 
mean   
e2: Error type II (recognition of a defective product as perfect one)
f(e2): Error type II probability distribution function, with 
mean
cj: Inspection cost of each unit
cw: The cost of producing one unit of a defective product for 
vendor
cab: The cost of selling a defective product unit instead of perfect 
product for the buyer
cav: The cost of selling a defective product unit instead of perfect 
product for the vendor
ca: The cost of selling a defective product unit instead of 
perfect product for the system, ca=cab+ cav

cr: Cost of recognizing a perfect product unit as defective product
hv: Annual holding cost of an item by the vendor
hb: Annual holding cost of an item by the buyer
Decision variables
Q: Size of shipments to the buyer
n: Total number of shipments sent in a production cycle time
D: Annual demand rate
g: Probability of producing a defective product
f(g): Distribution function of g with mean q/2, where q is of 
the potential decision variable, g~U[0,q]
T: The time interval between two consecutive shipments

3- Mathematical Modelling
In this section, we first assume constant demand. Then a new 
model is proposed assuming price-dependent demand.

3- 1- Buyer’s costs
Each time products arrive to the buyer as size of Q, a full 
inspection is carried out. A fraction of each shipment is 
assigned to defective products; g that follows a distribution 
function f(g). During the inspection, the inspector may detect 
a perfect product as defective with the probability of e1. 
He may also detect a defective product as perfect with the 

probability of e2. All products detected defective by buyer 
and also the defective products returned from the market 
to the buyer, returns to the vendor at the end of inspection 
process in a shipment, and vendor pays back the entire money 
buyer paid for them. Thus, any defective product imposes a 
cost of cw to the vendor, i.e. the difference between the cost 
of producing one unit of output and the final price for selling 
defective product in the secondary market. Moreover, each 
unit of defective products returned from the market imposes 
the cost of cav to the vendor and cab to the buyer, which 
includes the loss of trade credit costs. Figure 1 shows the 
inventory level of the buyer.

The number of defective items detected in each lot, and 
the number of products returned by customers in any lot 
are B1=Q(1-g)e1+Qg(1-e2) and B2=Qge2, respectively. Time 
required to inspect every shipment is also t1=Q/x. For each 
returned product from market, there must be a perfect 
product to be replaced.  The buyer is then facing two types of 
demand; a common demand and a replacement demand. So 
the effective demand rate will be D`=D+B2/T, where

The inventory holding cost for one period of shipment 
delivery is:

Thus, buyer’s cost per production period is as follows:

To obtain the expected total cost of the buyer, we have: 
ETCb=E(Cb)/E(Tc). As the production period is a random 
variable, Tc=nT, by replacing the expected values of the 
random variables in Equation (3), we get Equation (4).

3- 2- Vendor’s costs
The behavior of inventory at the vendor is according to Figure 2.
As can be seen, vendor responds to buyer demand by 
producing in time period T1. We use Figure 3 to calculate the 
cost of producing and holding products:

[ ]1 / 2; 0,∼a ae U

[ ]2/ 2; 0,∼β βe U

Fig. 1. The buyer’s inventory level.
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In Figure 3, the trapezoid represents the cumulative inventory 
of manufactured products and the shaded area represents the 
amount of inventory decreased over time in a production period. 
Thus, inventory holding cost of the vendor in a production period 
is calculated using the following expression;

Other costs of vendor are production set up costs, cost of 
producing each unit of a perfect product, and costs of producing 
defective products. The total cost of vendor during a production 
period is then:

Therefore, to calculate the total annual cost of the vendor, we have:

3- 3- Cost of the system in the coordinated case
In coordinated case, objective function is equal to the total 
costs of vendor and buyer, as well as the investment in 
quality. According to the investment function introduced in 
[8], a=ln(q0)/d and b=1/d. Thus, the objective function is: 

The model for coordinated case is then as follows:

s.t.

n positive integer
Total cost of buyer is then obtained from the following equation:

Fig. 2. The vendor’s inventory.
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Fig. 3 Cumulative behavior of the vendor’s inventory.
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Total cost of vendor is also obtained from the following equation:

The total system cost is then as follows:

As q=2-2DT/(Q(1-a/2)), it can be rewritten as:

s.t.

n positive integer

3- 4- The price-dependent demand model 
In this case, inventory and cost function are same as the first 
model. However, the objective function here is total system 
benefit.  In this model, final demand has a linear relationship 
with consumer price (D=l-mp) where l and m are the parameters 
and p represents the consumer price. Given these changes, the 
vendor benefit function is:

Where, cD is the vendor income from selling products to the 
buyer and ETCv is same as Equation (7). 
The buyer profit function can also be obtained as: 

where cD is the cost of buying product from vendor and ETCb 

is also the same as Equation (4). Moreover, pD is the buyer 
income of selling products to consumers. As D is a function 
of p, it can be placed by p=l/m-D/m in Equation (20):
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The system benefit function is:

Thus, the mathematical model for coordinated case is as follows:

s.t.

n positive integer
Considering another model for the second problem, the 
vendor benefit function is:

Also, in this model buyer’s profit function is:

By replacement of p=l/m-D/m in Equation (28), the function 
will be:

For simplicity, instead of obtaining the value of p, we specify the 
value of D. The profit function of the whole system is achieved 
as follows:

Thus, another mathematical form of the second model is:

( )( )
( )( )

2

= − + − −

− − × =

+ − − ×

j b

v

v b

D l
ETP D ETC

m m
ETC ia ib ln q

ETP ETP ia ib ln q

(22)

(23)

(24)
(25)
(26)

( , ,= jMax z ETP n q Q

00 ≤ ≤q q
0  ≤ ≤D l

0≥Q

(

2

1 / 2

1 / 2 2 2

1 / 2 2

1
1

2 2

+ −
−

+ +
−

= −
− +

−

−
− +

 
 
 
 
  
 
 
 
 

         

a
a β

a

β

a

w
w

av
r

v

av

v

S c Q D
c

nT T
D c Q

c
T

ETP cD
D

c

Q n n Q
h

PT

(27)

(28)
2

1
2

2 1
21

2

1
2

2 21 2 1
2 2

+ +
= − − −

−

+ − −
−

−
+ + −

− −

 
 
 

   
    

        
  

  
  
             

β β
a

a
β

a

β
β β

a a

i ab ab
b

b

F c Q c Q c D
ETP pD

T

QD Q

x xT

h

DQ DT Q DT

x

(

2

2

2

2 1
2

2 1
21

2

1
2

2 21 2 1
2 2

+

+ −

−

+ − −

−

−
+ + −

− −

+

= − + − −

  
  
  

  
  

  
  
  
  

  

β
β

a

a
β

a

β
β β

a a

i ab
ab

b

b

F c c Q
c D

T

QD Q

x xT

DQ DT Q DT

x

D l
ETP D cD

m m

h

(29)

(

2

2

1
2 2

1
2

1
21

2 2
2 1

2

1
2

2 2 21 1
2 2

1
1

2 2

2 2
1

+ −

−

− −

+ − + +

−

= − + − − +
−

− − + −
− −

− +
− + − −

− + × −
−

 
 
 

   
   
   

  
  

  
    
    
    

        

a β

a

a
β

β β

a

a

a β β
a a

w
j w

a
r a

i
v

b

DT
D Q

Q
x xT

D l S c Q D
ETP D c

m m nT T

D c Q D
c c

T

Q n n Q F c Q
h

PT T

h

DT
ia ib ln

Q
2

 
 
    
  

a

(30)

( )

( )
( )( )0

 , , ,

1 / 2 0

1 / 2 1 / 2 0

0  

, 0

    

. .
=

− − ≤

− − − ≤

≤ ≤

≥

a

a

jMax z ETP n T Q D

DT Q

Q q DT

D l

Q T

n positive integer

s t
(31)

(32)

(33)

(34)

(35)



M. Barzegar Astanjin and M. S. Sajadieh, AUT J. Model. Simul., 49(1)(2017)43-56, DOI: 10.22060/miscj.2016.835

49

4- Solution Method
In this section, we provide solution approaches for coordinated 
and independent decision-making for both proposed models.

4- 1- The coordinated case of first model 
As n is a discrete variable, we first find upper bound and 
lower bound for its possible values. Then, in each of algorithm 
iteration for fixed value of n, we optimize the objective function 
in terms of Q and q. For simplicity, we define the following 
new functions: 

The objective function can then be paraphrased as:
However, considering the specific values for n and q, we have:

For the specified value of  n and q, the minimum happens in the 
root of first derivative of function:

By substituting Q* in the objective function, the it can be stated 
in terms of n and q:

At first, we consider n to be continuous. For any fixed values 
of q, we find its optimal value. Due to the bounded nature 
of q, upper bounds and lower bounds can be found for n. 
Minimization of Equation (41) is equivalent to the minimization 
of the following equation:

where

and

It should be mentioned that, as   
, P is always greater than or equal to zero, but G`s sign cannot 
be determined. First and second derivatives of D with respect 
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Now with respect to the sign of G, we have: 
1- G<0: In this case, D respect to n is ascending and the 
minimum is placed at the least possible value for n; i.e. 1.
2- G>0:  In this case, the minimum happens in the root of the 
first derivative of the D with respect to n; i.e.
However, to find the upper bound and lower bound of n, we 
use the following equation as an approximation:

To calculate the minimum and maximum of Y(q), we have:

We conclude that the mentioned function is descending in 
the range of possible values for q. According to the specified 
minimum and maximum of function in the numerator of the 
fractions and the denominator, we have:

So we have:

To solve the problem for each specified n, the first and 
second derivatives of the function compared to T and Q are 
calculated. Therefore, we have:

So the total cost is concave respect to T and Q. Moreover, as the 
constraints are linear, the problem is a convex programming. 
To solve the problem, primal-dual interior point method was 
used. We introduce the algorithm as follows:

Solution algorithm
Step 0: Calculate nmin, nmax from Equations (49) and (50), 
respectively. Set k to 1 and nk to nmin. 
Step 1: For the specified nk, find the optimal values for Tk 
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and Qk, using Equation (40) and employing primal-dual 
interior point method, considering q=q0, and T0=Q0(1-q0/2)
(1-a/2)/D as starting point. Save the optimum values obtained 
(nk,Q*

k,T*
k,ETCj). 

Step 2: Set k=k+1. 
Step 3: If                  go to step 1, otherwise go to Step 4. 
Step 4: Find the minimum of ETCj(nk,Q*

k,T*
k) for all values 

of k, and report (nk,Q*
k,T*

k) as the optimal values of decision 
variables.

4- 2- The independent decision-making case of first model
In this case, first buyer determines the optimal quantity of 
order, and then the vendor obtains the optimal number of 
shipments. Therefore, due to the lack of coordination between 
vendor and buyer, vendor does not investment on the quality. 

Optimizing the buyer’s cost
First, considering fixed q, we must optimize the cost of the 
buyer with respect to Q. According to the definition of Y(q) 
in Equation (36) and cost function, we have:  

So:

The minimum of cost function occurs in the root of the first 
derivative;
Optimizing the vendor’s cost function

The vendor cost function is: 

First and second derivatives are as follows:

The minimum of function occurs in the root of the first 
derivative:

As the root of the first derivative may not be integer; we 
calculate ETCv(n) function for the nearest integer values.

4- 3- The price-dependent model in the coordinated case
First, for the specified values of n we evaluate the behavior of 
total profit function. Thus, we calculate the first and second 
derivatives of cost function with respect to T, Q and D. Then, 
to examine the function behavior, we calculate                          ,   
                        and                    .    So, we have: 

As the above function is negative, the benefit function of 
system is concave with respect to T, Q and D. As in most 
papers and empirical studies, inspected type I and type II 
errors are usually less than 5 and 20 percent, respectively 
(see for instance: [19]); we have                            , and so
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For the possibility of 
the problem we need to assume that the inspection rate is 
greater than the effective rate of demand. With regard to the 
establishment of the conditions                  and 
, the function is concave, because:

The assumption of                  is reasonable, as in the 
literature and in practice, in numerical examples the ratio x/D 
is far greater than of 3.5. Also in some papers (such as [5]), 
inspection rate is assumed to be infinite. The assumption of

   is also reasonable as the maximum defective 
rate accepted in standard tables ANSI / ASQ Z1.4-2008 is 15 
percent. Also according to [20], the most defective rate accepted 
for retailers and buyers is 6.5 percent. Therefore, the assumption 
of the defective rate in the range of 0 to 30%, is reasonable. So, 
by considering the above assumptions, the objective function 
is concave with respect to T, Q and D. Considering these three 
variables as constant, we examine the behavior of the function 
with respect to n.

According to the second derivative’s sign, the objective function 
is concave with respect to n. The objective function of problem 
is consequently concave with respect to T, Q and D. Also, we 
show that the objective function is concave with respect to n. 
However, the constraints are not convex. 
If the latter constraint was also convex, we could have a convex 
programming problem for any fixed value of n and resolve 
it using algorithms such as the primary-dual interior point. 
According to concave objective function with respect to n, its 
optimal value can be found searching from the lowest possible 
value, i.e. 1 until the optimal value of the objective function in 
term of T, Q and D faced with decline. Due to the fact that the 
second constraint is not convex, the following rule helps us: 
To maximize a concave function with several constraints, the 
local optimum is the global optimum (if this point satisfies all 
the constraints) or the global optimum is located exactly on the 
constraint border. 
Thus, for any value of n, once the maximum of objective function 
is found with exact algorithms; regardless of constraints, if the 
answer satisfies the second constraint, the solution is the optimal 
for the specified value of n. Otherwise; to find the optimal 
solution we should search the answer on the border of second 

constraint. The answer cannot be on limit values of               , 
because products that are sold at a price of zero and also products 
that there is no demand for them, would not be cost-effective. To 
find the answer, we insert the second constraint to the objective 
function, i.e.                                                    . So we have: 

According to the following equation, the function is concave, 
and by using primary-dual interior point the global maximum 
could be found.

Thus, the solution algorithm can be summarized as follows:

Solution algorithm
Step zero: Set k to 1 and nk to 1. 
Step 1: Calculate the initial point D0=l/2 using Equation 
(22), Q0 by replacement of q= q0 from Equation (40), and

.Using primal-dual 
interior point method, find the optimal values for Tk and Qk for 
function   ETPj according to Equation (30) with regard to sign 
constraints and beginning point of T0, Q0 and D0. If obtained 
answer satisfies the constraints (33) and (34), save four variable 
values as well as the objective,                                          and go 
to Step 3. Otherwise, go to Step 2. 
Step 2: Using primal-dual interior point method, find the 
optimal values of Tk and Qk using Equation (60). Then replace 
the answers obtained for T*

k and Q*
k in relation D=Q(1-q0/2)

(1-a/2)/T. Save four variable values and the objective 
(nk,Q*

k,T*
k, D*

k,ETPj).
Step 3: If             and

, the 
final answer will be ETPj(nk-1,Q*

k-1,T*
k-1, D*

k-1) and go to Step 
4. Otherwise, set k=k+1 and nk= nk-1+1  and go to Step 1.
Step 4: If the final answer ETPj is negative, it would not be 
cost-effective. Otherwise, report the answer as the output and 
the algorithm stops.
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4- 4- The independent decision-making case of the price-
dependent demand model
In this case because of the lack of coordination between 
vendor and buyer, the vendor does not invest on quality. First, 
we obtain the optimal values of D, T and Q.

The Buyer’s profit optimization
In the absence of investment on quality, the following equation 
is obtained by replacement of
in Equation (29): 

Based on the following equation, the function is concave and 
its global maximum can be found with primary-dual interior 
point method.

To find the starting point of the interior point algorithm, we 
use DT/(1-a/2)(1-q0/2) instead of Q. By substituting the above 
expression in Equation (29), we have:

By calculating the first and second partial derivatives, we have:

As Equation (66) is negative, we obtain the root of (65) by 
considering D=D0=l/2 as the optimal value of T for the specified 
demand rate.  So we use it as T0.

To calculate Q0, we substitute the values obtained for D0 and 
T0 in DT/(1-a/2)(1-q0/2).

Vendor’s profit optimization 
The only variable that the vendor should optimize is n. The 
following equation represents vendor cost function:
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We first assume n is continuous and calculate the first and 
second derivatives of the function with respect to n.

According to Equation (69), first derivative’s root is the global 
maximum. If the root is not integer, we calculate its nearest 
integer values.

5- Numerical Study And Sensitivity Analysis
Using the standard data in the literature, some numerical 
studies are made. In the table below, the input parameters are 
extracted from the literature.

5- 1- First model numerical example
The results of solving the example are presented in Table 3 for 
coordinated and independent decision making cases, as well 
as independent decision-making with investment on quality. 
The value obtained for the investment on quality and the 
defect rate in coordinated case are considered as the amount 
of investment and the defect rate in the case of independent 
decision-making.

The results show the importance of coordination, as even with 
investment on quality in the third case, costs not only have 
not decreased, but also have been increased. Thus, investing 
in quality does not necessarily lead to reduced costs, while 
the coordination of decision making leads to effectiveness of 
such policies.

5- 2- First model sensitivity analysis
In this section, the sensitivity analysis of proposed model for 
average defect rate before investment is studied, keeping the 
rest of parameters fixed. For this purpose, we need to define  

,which represents the ratio of cost 
reduction in coordinated case compared to independent 
decision-making case. In the above equation, TCI represents the 
total cost of system in the independent decision-making case, 
with investment in quality. Also, TCJ represents the total cost 
of the system in the coordinated case. It should be noted that 
to compare two cases, we use the optimal value of investment 
in quality and the defect rate of the coordinated case in the 
independent decision-making case. Table 4 represents the 
results of different values for two levels of q0.

We can conclude that:
•	As shown in Figure 4, by increasing q0, the importance of 

coordination is increased. 
•	Increasing q0 has a little incremental effect on Q* and q* in 

independent case, while it has a decremental effect on the 
values of Q* in the coordinated state.

•	Increasing q0 has an incremental effect on n* in the coordinated 
state, but has no effect on the independent case. 

5- 3- Second model numerical example
Using the price dependent demand function introduced by 
[21] and the parameters in Table 5, we optimize all decision 
variables in the second model. 
The result of solving this example is shown in Table 6.

*2 *

2 * *

2

2 3 *

2 2

2
0

∂ −
= − +

∂

∂
→ = − <

∂

 
 
 

v
v

v

ETP S Q Q
h

n n T PT

ETP S

n n T

(69)

(70)
*

*2 *
*

*2 2

=
−

+
 
 
 

v

S
n

Q Q
T h

PT

Parameter value
D 5000
P 6000
x 175200
S 50000
F 50
q0 0.1
a 0.05
b 0.05
ci 0.5
cw 10
cab 50
cav 20
cr 100
hv 2
hb 20
d 5×10-4

Table 2. Parameters of the numerical example.

Coordinated 
case

Independent 
decisions 

case

Independent 
decisions with 

investment case
Q* 2151.02 167.86 160.41
n* 5 5 4
q* 0.00551 q0=0.1 0.00551

Total 
cost 64114.38 343671.65 419646.29

Table 3. Results of the first model numerical example.

1 /= −I J IPI TC TC TC

q0=0.05 q0=0.25
Independent Cooperated Independent Cooperated

Q* 160.41 2151.02 160.45 1402.19
n* 4 5 4 11
q* 0.00552 0.00609

Total 
cost 419646.72 64114.38 49779.10 419710.94

PI1 0.881 0.847

Table 4. some results of first model sensitivity analysis.
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Unlike the previous example, the objective function has 
been improved in the third case, i.e. it confirms the fact 
that even without centralized coordination we can take 
advantage of improvement in quality. Another finding is 
that we can achieve more profit with even less selling price 
under coordination in SC. In fact, with coordination, we gain 
more profits, more satisfied customer and improved quality. 
Moreover, the defect rate will decrease, and we can keep our 
brand reputation safe.

5- 4- Second model sensitivity analysis
For the second model we define 
,where TPI and TPJ represent total system cost in the third 
case and in the coordinated case, respectively. Table 7 
shows the results for the different values of parameter m in 
the second model. 
According to the values of Table 6, PI2 is equal to 0.38 for 
m=25. So, we can conclude that:

•	By increasing m, the importance of coordination 
increases as the profit of the system increases with high 
speed. Figure 5 shows the effect of changing the value of 
parameter m on PI2.

•	Increasing in m has little increasing effect on q*, but it has 
a decremental effect on the values of Q* and D*.

6- Conclusion And Directions For Future Research
This paper investigates the importance of coordination in supply 
chains through developing two models in centralized decision 
making for a manufacturing system with imperfect quality. As 
one of the most important goals of coordination is improving 
quality, we also considered a cost function for investment on 
products quality. Moreover, it is assumed that the selling price to 
the final consumer affects the demand rate. We find the optimal 
solution for both independent and coordinated cases.
Numerical results show that coordination is more beneficial 
if the defective rate is high. Moreover, it can be concluded 
that even by less consumer price, we can achieve more profit 
through coordination in supply chains. In fact, we gain more 
profits, more satisfied customer, and also improved quality. 
The defect rate will also decrease, and we can keep our brand 
reputation safe. 
To study more realistic and practical cases, following subjects 
can be suggested for future researches:

• Incorporating the investment on the production set up 
cost reduction.
• Considering budget constraints or limited warehouse 
space.
• Developing the model to extended SCs with more stages 
and members.
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