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ABSTRACT: Supply chain management (SCM) is a subject that has found so much attention among 
different commercial and industrial organizations due to the competing environment of products. 
Therefore, integration of constituent element of this chain is a great deal. This paper proposes a multi 
objective production-allocation and distribution planning problem (PADPP) in a multi echelon supply 
chain network. We consider multi suppliers, manufacturers, distribution centers, customers, raw materials 
and products in the multi-time periods. Three objective functions are minimizing  the total costs of 
supply chain between all echelons, the delivery time of products to customers with decrease flow time 
in the chain, and the lost sales of products in distribution centers. Since the under investigation model is 
proved as a strongly NP-hard problem, we solve it with two meta-heuristics algorithms, namely genetic 
algorithm (GA) and particle swarm optimization (PSO). Also, to justify the performance and efficiency 
of both algorithms, a variable neighborhood search (VNS) is addressed. The design of experiments and 
response surface methodologies (RSM) have been utilized to calibrate the parameters of both algorithms. 
Finally, computational results of the algorithms are assessed on some classified generated problems. 
Statistical tests indicate that proposed GA and PSO algorithms have a better performance in solving 
proposed model  compared to VNS.
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1- Introduction
Supply chain management (SCM) is an integrated structural, 
including material procurement, production, storage, 
distribution, and control of products. A supply chain is defined 
as a network of facilities that provides raw materials. These 
materials have become  intermediate and final products, and 
ultimately, have been distributed among the customers [1]. 
Supply chain (SC)  involves suppliers, manufacturing sites, 
distribution centers, retailers and customers, and consists 
of two processes that are highly integrated with each other, 
(i) production planning and inventory control process that  
deal with production, storage and relationship between 
them, and (ii) logistics and distribution process  that how to 
transportation of products to customers and identifies how they 
are recycled [2]. Therefore, supply chain management (SCM) 
is a collection of ways to integrate  suppliers, manufacturers, 
distribution centers and customer, until, the required of 
products with specified amount, at the appropriate time and 
in certain place be produced and supplied to customers, thus, 
the total costs of chain are minimized and needs of customers 
are meted with high service levels [3]. 
Most supply chain models presented in previous research can 
be grouped into integration of buyer- seller, integration of 
production-distribution planning, integration of production-
inventory planning, and location-allocation models. Three 
stages current in the supply chain  consist of material 
procurement, production, and distribution. Production and 

distribution are the most important tasks and functions in 
supply chain. The core of supply chain management issues 
is related to production and distribution planning [4]. 
Production planning problem in SCM is the decisions to meet 
customers’ needs that manufacturer  produces the products 
ordered, time, and amount of it [5-6]. Distribution planning 
problem in SCM is decisions on  finding a channel to deliver  
products from a manufacturer to a customer [5]. These issues 
are mutually dependent on each other; therefore, they must 
be used simultaneously in an integrated way to minimize the 
costs resulting from chain [5,7,8].
Design and modeling of supply chain networks, such as 
production-distribution planning have been a vast area of 
research in many years. In the following paragraph, research 
work has been reviewed based on mathematical programming 
and solving methodologies.
Fahimnia et al (2013) classified the production-distribution 
planning models into seven categories based on the solution 
techniques used. Williams [10] presented seven heuristic 
methods to minimize production-distribution costs in the 
supply chain. Cohen and Lee [11] developed production-
distribution systems by considering mixed integer, non-
linear programming under stochastic demands and with 
the techniques of economic order quantity to develop a 
global supply chain.  Their Model includes raw materials, 
intermediate and final product plants, distribution centers, 
warehouses and customers in the multi stage. Ӧzdamar and 
Yazgac [12] presented a production-distribution planning 
which includes a factory and its warehouses. They minimize 
total costs of transportation and inventory under production 
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capacity and inventory balance constraints. Lee and Kim 
[5] developed an analytic technique to solve the integrated 
production-distribution planning in SCM. They proposed 
a production-distribution system of the multi plant, multi-
product and multi period by considering the constraints of 
resources. Yan et al. [13] designed a network of suppliers, 
manufacturers, distribution centers and customers with a 
mixed integer programming according to constraints of the 
materials requirements. Yilmaz [14] developed a strategic 
planning problem in three echelon supply chain network, 
including suppliers, manufacturers and distribution centers, in 
order to minimize production, distribution and transportation 
costs. You and Grossman [15] paid to optimize the design and 
supply chain planning by using valid and economic measures 
and uncertain demands. They used a stochastic model for the 
inventory, the expected date of delivery as quantity sizes to 
meet the supply chain   proposed. Panagiotis and Lazaros [16] 
presented an optimal production allocation and distribution in 
supply chain network as a mixed integer programming (MILP) 
model. Their objective is determining the optimal configuration 
of a production-distribution network with operational and 
financial constraints. In this research, operational constraints 
are quality, production and supply restrictions and are related 
to allocation of the production and the work load-balance, 
and financial constraints are production costs, transportation 
costs and duties for the material following within the network 
subject to exchange rates.
There are many studies that fuzzy logic was used to assess 
supply chain problems, which can be pointed to [17-22]. In 
recent work research, Liang [22] proposed a fuzzy multi-
objective production-distribution planning decisions with 
piecewise linear membership function in a supply chain with 
the multi product and multi time. The objective functions  
minimized total costs and total delivery time with considering 
inventory levels, labor levels at each source, available 
machine capacity, forecast demand and available warehouse 
space at each destination and total budget. Razmi et al. 
[23] proposed an integrated framework consisting of two 
stages of evaluating suppliers and allocation of orders. They 
provide a fuzzy TOPSIS model to evaluate suppliers, then  
considered an integer programming model with fuzzy goals 
and constraints for the optimal allocation of order quantities 
assigned to suppliers. Liang [24] examined the application of 
fuzzy sets to manufacturing/distribution planning decisions in 
supply chains. The objective function minimizes the total of 
production costs, including regular and overtime production 
costs, inventory carrying cost, subcontracting cost, and 
backordering cost. A fuzzy mathematical programming 
methodology for solving the MDPD integration problems in 
uncertain environments is considered. Liu and Papageorgiou 
[25] proposed production, distribution and capacity planning 
of global supply chain. They considered three objective costs, 
responsiveness and customer service level simultaneously. 
In this model, the ε-constraint method and lexicographic 
minimax method are used as solution approaches to tackle 
the multi-objective problem.
In the real word, due to the increased size of the problem 
and high time to solve this class of problems,  meta-heuristic 
algorithms were used. In this regard the research done, Gen 
and Syarif [26] proposed a hybrid genetic algorithm (HGA) 
to design a supply chain network with multi-product in the 
multi time period. Their model determines the integration of 
production, distribution and inventory system so that products 
are produced and distributed in appropriate quantities by 
minimizing costs of the system while satisfying all demands 

required. Byung et al. [4] developed a genetic algorithm for 
solving integration of production and distribution planning 
in a supply chain network. Their model is presented in three 
echelons of suppliers, manufacturers and distribution centers, 
and minimizes total costs, including the costs of ordering, 
procurement, inventory, production, and transportation. Kazemi 
et al. [27] presented two scenarios to solve in production-
distribution planning problem (PDPP). In the first scenario, a 
centralized method is employed, and a genetic algorithm (GA) 
is presented for solving PDPP. Here, the crossover is a single 
point in plant-plant-plant. In the second scenario, an agent-
based system is developed for solving PDPP. In this case, three 
GAs are assumed to be the agents of the model.  Jolai et al. 
[28] proposed an integrated production-distribution planning 
which their supply chain network consists of a manufacturer 
with multiple plants, products, distribution centers, retailers 
and customers. In their model, decision maker’s imprecise 
aspiration levels of goals are incorporated into the model using 
a fuzzy goal programming approach. Due to the complexity 
of the considered problem, they proposed three meta-
heuristics to tackle the problem. A simple genetic algorithm 
and a particle swarm optimization (PSO) algorithm with a new 
fitness function and an improved hybrid genetic algorithm are 
developed such that results show the improved hybrid genetic 
algorithm provide better solutions. Ashoka varthanan et al. [29] 
presented a multi-criteria integrated production-distribution 
planning by considering three major objectives, including 
total cost minimization, change in labor level reduction, 
and underutilization minimization for a renowned bearing 
manufacturing industry in India. The total cost minimization 
objective minimizes the regular, overtime, and outsourced 
production costs along with inventory holding, hiring/laying-
off, backorder, and trip-wise distribution costs. This model 
is solved using a novel simulation-based analytic hierarchy 
process (AHP)-discrete particle swarm optimization (DPSO) 
algorithm. The solutions of  the AHP-binary-coded genetic 
algorithm solutions. Vinay and Sridharan [30] presented a 
solution methodology using ant colony optimization (ACO) 
for a distribution-allocation problem. They used a two-stage 
supply chain considering a fixed cost for a transportation 
route. Sarrafha et al., [31] proposed an integrated production-
distribution planning problem for a multi-echelon SCN by 
minimizing the total costs and transfer time. A multi-objective 
evolutionary approach with two Pareto-base meta-heuristic 
algorithms called multi-objective simulated annealing (MOSA) 
and NSGA-II is presented to solve the model. Sarrafha et 
al., [32] developed a multi-periodic structure for an SCND 
by considering a flow shop scheduling model at the factory 
level in order to obtain makespan. A bi-objective mixed-
integer non-linear programming (MINLP) was suggested for 
minimizing the total SC and the average tardiness of products 
to DCs. A new Pareto-based algorithm called multi-objective 
biogeography based optimization (MOBBO) algorithm with 
tuned parameters was presented for solving the problem 
and the proposed algorithm was compared with MOSA and 
NSGA-II algorithms.
In most of these models, products have been produced by 
all of the manufacturers in all the time of period, while some 
manufacturers may not have produced products in the period as 
if production plant and distribution center are established. Also, 
a production capacity can consider producing their products. 
Our research is different from previous suggested models 
and solution methods in the literature. For, the problem’s 
modeling, assignment decisions between the chain’s levels 
have been considered.  In addition to minimizing the supply, 
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the chain’s costs and maximize responsiveness in the chain, 
the delivery time of products in the chain has been minimized. 
This optimization has been done with respect to the problem’s 
constraints and transferring products to the customers at the 
desired time. Also, in order to improve the customer service 
level, minimization of lost product sales in distribution 
centers has been considered as the third objective. 
In this regard, we present an integrated production-allocation-
distribution planning in a form of multi-objective decision 
making problem. We develop a multi-objective for a multi-
level supply chain, including multi supplier, manufacturer, 
distribution center, and customer for multi-product in multi-
time period using Lp metric method. As the  model in large size 
problems strongly NP-hard, we solve the resulted model by 
using both algorithms, namely GA and PSO and the results are 
compared with the performance of basic variable neighborhood 
search (VNS) for some of the generated problems. Moreover, 
the response surface methodology (RSM) has been utilized to 
increase the accuracy of model solutions.
In this paper, a multi level multi product supply chain 
optimization model and solution method are proposed in 
order to minimize the total cost of the chain and also increase 
customer satisfaction and service level by minimizing the 
delivery time of products to customers with decrease flow time 
in chain, and the lost sales of products in distribution centers. 
PSO and GA algorithms have been suggested for solving the 
proposed model and results , has been statistically analyzed. 
The rest of the paper is organized as follows. In the next 
section, problem definition and mathematical formulation are 
presented. In section 3, the proposed multi-objective decision 
making technique will be described. Characteristics of the 
proposed Meta-heuristic algorithms are presented in section 4. 
Validation solutions for both algorithms are done in section 5. 
The details of tuning the parameters are described in section 6. 
Experimental and analysis of results demonstrated on different 
problems of various sizes are presented in section 7. Finally, 
conclusion and direction for future works appear in section 8.

2- Problem definition
A supply chain with some suppliers, manufacturers, 
distribution centers (DCS) and customers is considered in 
this research. In SC of this study, various raw materials are 
supplied from multiple suppliers to multiple manufacturers, 
and various products produced by each manufacturer are 
carried to various distribution centers. Here, a distributor 
can be established as a logistics warehouse for delivering 
finished products from a manufacturer to a customer. Figure 
1 illustrates the proposed supply chain network. 
In the following subsections, assumptions are presented at 
first. Then, indices, parameters, decision variables, objective 
function and constraints are introduced.

2- 1- Assumptions
The assumptions to formulate the problem are as follows:

• We have s suppliers, p manufacturers, d distribution 
centers and c customers.
• Each manufacturer can produce various products and 
can produce all the products ordered within each period.
• Suppliers are assumed to be able to supply raw materials 
in each period.
• A transportation capacity constraint for all echelon is 
considered.
• A production capacity, raw materials and products 
warehouse capacity for manufacturers, and products 
warehouse capacity for DCs are considered.

• Location of suppliers, manufacturers and DCs are fixed.
• The cost of invalidity considers when the shortage of 
products has been from DCs to customers.
• No discount has been considered in the proposed mod

2- 2- Indices
s: index of suppliers (s=1, 2, …, S)
p: index of manufacturers (p=1, 2, …, P)
d: index of distribution centers (d=1, 2, …, D)
c: index of customers (c=1, 2, …, C)
i: index of products (i=1, 2, …, I)
m: index of materials (m=1, 2, …, M)
t: index of periods (t=1, 2, …, T)

2- 3- Parameters
Cs: Fixed cost of establishing the supply center s.
Cp: Fixed cost of establishing the plant for manufacturer p.
Cd: Fixed cost of establishing the DC d.
DEcit: Demand of product i by customer c in period t.
CSMspmt: Supply cost per unit of raw material m from supplier 
s to manufacturer p in period t.
CTMspmt: Transportation cost per unit of raw material m from 
supplier s to manufacturer p in period t.
CPpit: Production cost per unit of product i at manufacturer p 
in period t.
CSEpit: Production preparation cost per unit of product i at 
manufacturer p in period t.
CHpmt: Inventory holding cost per unit of raw material m at 
manufacturer p in period t.
CHpit: Inventory holding cost per unit of product i at 
manufacturer p in period t.
CPpdit: Purchase cost per unit of product i at DC d from 
manufacturer p in period t.
CTpdit: Transportation cost per unit of product i from 
manufacturer p to DC d in period t.
CHdit: Inventory holding cost per unit of product i at DC d in 
period t.
CTdcit: Transportation cost per unit of product i from DC d to 
customer c in period t.
CPTspt: Transportation capacity of raw materials from supplier 
s to manufacturer p in period t.
CPTpdt: Transportation capacity of products from manufacturer 
p to DC d in period t.
CPTdct: Transportation capacity of products from DC d to 
customer c in period t.
CPPpit: Production capacity of product i at manufacturer p in 
period t.
CPDpmt: Inventory capacity of raw material m at manufacturer 
p in period t.
CPDdit: Inventory capacity product i at DC d in period t.
PScit: cost of lost sale of product i to customer c in period t. 
TSMspmt: Transfer time per unit raw material m from supplier s 
to manufacturer p in period t.
TPpit: Production time per unit of product i at manufacturer p 
in period t.
TTpdit: Transfer time per unit of product i from manufacturer 
p to DC d in period t.
TTdcit: Transfer time per unit of product i from DC d to 
customer c in period t.
βmi: Quantity of raw material m consumed in product i.
p`cit: Cost of invalidity from customer c for product i in period t.
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2- 4- Decision Variables
QSMspmt: Quantity of raw material m supplied from supplier s 
to manufacturer p in period t.
QPpit: Production quantity per unit of product i at manufacturer 
p in period t.
QSpdit: Quantity of product i shipped from manufacturer p to 
DC d in period t.
QSdcit: Quantity of product i shipped from DC d to customer 
c in period t.
Ipmt: Inventory level of raw material m at manufacturer p in 
period t.
Ipit: Inventory level of product i at manufacturer p in period t.
Idit: Inventory level of product i at DC d in period t.
QLScit: Quantity last of sale of product i from customer c in 
period t. 2- 5- Formulated problem

The first objective function of the proposed model given in 
Eq. 1 minimizes the total costs in supply chain, including 
fixed costs of establishing the suppliers, manufacturers 
and distribution centers, supply and transportation costs of 
raw materials, production preparation and production to 
manufacturers, inventory holding to manufacturer, purchase 
cost to DCs, transportation cost of products for DCs, inventory 
holding of products for DCs and transportation cost of 
products to customer. The second objective function given in 
Eq. 2 minimizes the delivery time of products for customers. 
The third objective function given in Eq. 3 minimizes the cost 
of last sales products for customers.

Fig. 1. Proposed supply chain network
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S.t.

Constraint 4 indicates that a link between a supplier s and 
a manufacturer p in period t may exist only if supplier s is 
established. Constraint 5 shows that if the manufacturer p 
is established, it can be served by  supplier s in period t. Eq.  
6 indicates that a link between  manufacturer p and a DC d 
in period t may exist only if manufacturer p is established. 
Eq. 7 indicates that if DC d is established, it can be served 
by  manufacturer p in period t. Constraint 8 means that a link 
between a DC d and a customer c in period t may exist only 
if DC d is established. Eq. 9 means that each customer can be 
supplied by exactly one DC. Eqs. 10, 11 and 12 mean that the 
amount of raw material m and product i to be shipped among 
periods are limited by transportation capacities. Eq. 13 shows 
the production capacity per unit product i at manufacturer p 
if product i produced at manufacturer p in period t. Eq. 14 
ensures that the inventory level of raw material m is limited by 
inventory capacity of raw materials at manufacturer p in period 
t. Eqs. 15 and 16 state that inventory level of product i each 
period is limited by inventory capacity for manufacturers and 
DCs, respectively. Constraints 17, 18 are the balance equations 
of raw materials and products for manufacturers; for example 
Eq. 18 shows that inventory of product i in production center p 
is equal to the inventory of that product in the previous period 
plus the production quantity of product i in production center 
p in period t minus amount of product i  transported from 
production center p to DCs in period t. Eq. 19 indicates the 
balance constraint of products for DCs. Eq. 20 indicates the 
quantity of lost sale of product i for DC d in period t that equal 
demand of product i minus the quantity of product i is shipped 
from DC d to customer c in period t. Finally, Eq. 21 and 22 
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ensures the non-negativity and binary of variables. The initial 
states of the inventories are presented in 23.

3- The proposed multi-objective decision making technique
Transforming a multi-objective problem into a single one 
for solving multi-objective optimization problems is one of 
the most used applications methods. To solve PADPP model, 
the compromise programming (CP) method is considered. 
Compromise programming is used to find a solution that 
comes as close as possible to the optimal (ideal) values of 
each objective function [33]. Here closeness is defined by the 
Lp distance metric as follows:

In which z1,z2,...,zk are different and conflicting objective 
functions. zi

*=min(zi), ignoring all other objectives is named 
the ideal value for the ith objective and δi is the weight of 
objective function i determined by DM and k indicates the 
number of investigated objective functions. The x* is called 
a compromise solution if minimizes Lp by considering,

and                   . Different efficient solutions can 
be obtained by considering different values for parameters p 
and δi. However, the most common values are p=1, 2, and ∞ 
that we used p=∞ and δ=[0.5 0.3 0.2] in this research. 
Since the model proposed is strongly NP-hard, two solving 
methodologies, including GA and PSO, are used to solve the 
model in the next section.  

4- Solving methodology
Since a large number of constraints and decision variables 
and also binary variables cause the complexity of problem 
and due to be NP-hard problem that by [26-28] presented; 
and the high computational time to solve the exact problems 
(if not possible), we use two meta-heuristic algorithms, 
namely GA and PSO to solve the model in large sizes. In the 
proposed GA, a new chromosome representation is developed 
in which all members of population feasible chromosome 
are generated. Moreover,, another meta-heuristic algorithm, 
namely particle swarm optimization (PSO), is presented to 
validate the solution obtained by GA. To check the results 
obtained and to evaluate the performance and intelligence of 
both algorithms, a basic variable neighborhood search (VNS) 
algorithm is employed. Also, to obtain better solutions, 
the parameters of both algorithms are calibrated by using 
response surface methodology (RSM). 

4- 1- A GA for PADPP
Genetic algorithm (GA) popularized by Holland [34]. This 
algorithm is particularly suitable for optimization of complex 
problems with unknown search space.  GA begins by creating 
an initial population of chromosomes, then, the fitness of 
each chromosome is determined based on the objective 
function. Selection operator applies to the selection of  parent 
chromosomes, then, crossover operator is used for offspring 
production, subsequently, the mutation operator is considered 
to improve the community. Then, new generations are produced 
and fitness function of each chromosome is determined. 
If stopping criteria is established, the best chromosome is 
considered as the best solution and the algorithm ends. 

4- 1- 1- Chromosome representation
The structure of problem’s chromosomes includes binary 

and integer variables which consist of three parts. The first 
part of chromosome indicates decisions on establishing 
potential suppliers, manufacturers, and distribution centers 
which consist of binary variables. The second part is  a binary 
which includes assignment of the echelon of the chain in each 
period and decisions related to the production of products in 
each time period. The third part of a chromosome is an array 
with a dimension of suppliers, manufacturers, distributers, 
customers, raw materials, products, and time periods. 
The array indicates the amount of supply, production, and 
distribution of materials and products in each time period. An 
example of the mentioned structure is shown in Fig.2.
In the first part, a binary array is established with dimensions 
of suppliers, manufacturers, and distribution centers. In the 
second part, a binary variable with the above-mentioned 
dimensions is considered. In this part, constraints 5, 7, and 9 
are satisfied as follows:
The first link between suppliers and manufacturers in period t  
is established with respect to constraint 4. Then for constraint 
5 satisfaction, each manufacturer must receive material from 
one supplier in each time period. If there is more than one 
available supplier, one random supplier is chosen in each 
period, and the variables related to the selection of the other 
suppliers would equal zero.  
In the third part, the amount related to supply, production, and 
distribution of materials and products of chain’s echelon is 
determined in each period. For example, transferred products 
from the manufacturer to the distribution centers in each time 
period should not be more than distribution center capacity. 
Therefore, after assigning  manufacturers to the distribution 
centers in the period t , products are sent to the distribution 
centers. Until the amount of transferred products exceeds the 
transferring capacity, the exceeded amount is calculated and 
the random product is selected. Then, the calculated amount 
is subtracted from the transferred amount that has been sent 
to the distributer. If the transferred amount of the selected 
product is more than the calculated exceeded the amount, we 
subtract the total exceeded amount of transferred product to the  
distributer.  If the transferred amount of the selected product 
is less than exceeded amount, the value of the transferred 
product is considered to be zero to avoid an unfeasible 
solution. The remaining exceeded amount is calculated and 
the above-mentioned steps are repeated to calculate feasible 
solutions. In order to find feasible solutions and variables, the 
same procedure is implemented. In addition, a penalty policy 
is applied to the objective function, that none of the variables 
received the penalty function as below:
When a chromosome is feasible, the penalty value will 
be selected to zero, and if one of the constraints is not  
satisfactory, it will be considered as a non-zero value. 
According to the general form of constraints as  the penalty 
value of a chromosome is  obtained as follows: [35]:

Where, P(x), M, and g(x) indicate the penalty value of 
chromosome x, a large number, and constraint, respectively. 
When a chromosome is feasible, the penalty value will be 
zero and, otherwise, the penalty value will be multiplied by 
the cost function value. Also, it should be mentioned that, 
we consider normalization policy within penalty function 
framework in order to normalize all constraints. It should 
be noted that when the penalty is selected larger, that  the 
coefficient is considered large; and so, for each type of 
constraint, the average of violation has been considered.
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4- 1- 2- Parent’s selection mechanism
In this paper, parents are selected based on roulette wheel 
method. The selection mechanism in roulette wheel is that  
for each chromosome in population,firstly, its fitness value 
is calculated, subject to the parents will  more fitness value 
are more appropriate to be selected. Thus, the probability of 
selection for each chromosome based on descending order 
chromosomes is calculated in the following [36].

Where, fi and Pi denote its fitness value of chromosome i, and 
its probability of being selected, respectively. The cumulative 
probability of chromosomes i is calculated using the Eq. 18.

Then, for each chromosome in population, a random 
number r between zero and one is generated. If r<F1, the 
first chromosome is selected, otherwise i-th chromosome is 
selected such that                       .

4- 1- 3- Crossover operation
Crossover operator is considered to produce new offspring 
by using composition profile of the two chromosomes in the 
mating pool from the parents who have been selected in the 
selection operator. In this paper, we used a uniform crossover 
to incorporate the elements from parents strings into offspring 
strings [37]. The following steps show the crossover operator 
of this research:

• After parents’ selection, several pairs of chromosomes are 
selected randomly from the mating pool by predetermined 
crossover rate (Pc) and are mixed to produce offspring. 

• Generate a random vector (matrix) that each member 
of this vector (matrix) is a number with one and two (the 
numbers of parents).
• If the genes vector (matrix) contains the number one, 
related genes for the first offspring are selected from the 
first parent, and for the second offspring are selected 
from the second parent. Otherwise, the opposite will be 
applied. The structure performance proposed crossover 
are shown in Fig. 3.

4- 1- 4- Mutation operation
The mutation operator when the movement from present 
population to new population causes to increase the level of 
variation in the population, and this diversity, is based on the 
evaluation and progress in reaching the final solution. Thus, 
to prevent falling off all solution in population into a local 
optimum, mutation performs after a crossover is applied. 
In order to obtain a new offspring by using mutation in this 
paper at least one of the parts of a chromosome is considered. 
Then, regarding the rate of mutation (Pm), the number   
chromosomes to generate offspring are randomly selected. 
More, two genes from one chromosome are selected and 
their positions swap together [38]. Figure 4 illustrates this 
operation.

4- 1- 5- Stopping criteria
If the best answer (best chromosome) over several generations, 
no observed significant difference, could the GA to achieve 
a good response. This criterion is the most application used 
convergence criteria.
In the next subsection, another meta-heuristic algorithm, 
particle swarm optimization (PSO), is developed to verify of 
solutions.

Fig. 2. The proposed chromosome structure
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4- 2- A PSO for PADPP
Particle swarm optimization (PSO) was first introduced by 
Kennedy and Eberhart [39] as an optimization method, and 
it is a significant member of swarm intelligence techniques. 
PSO is a population based search algorithm founded on 
the simulation of the social behavior of birds, bees or a 
school of fishes. The PSO can be easily implemented 
and it is computationally efficient when compared with a 
mathematical algorithm and other heuristic optimization 
techniques. The steps involved in the developed PSO of this 
research are explained in the following subsections.

4- 2- 1- Initialization
In this step, the input parameters of PSO are initialized. 
The parameters are (1) the population size (nPop) that is 
the number of particle at each generation, (2) cognitive 
coefficient (C1) that is the weight of each particle in terms of 
decision making, (3) social coefficient (C2) that is the weight 
of particle in terms of learning, (4) randomly selected value 
(r1, r2) with uniform distribution between zero and one, (5) 
inertia (w) that  controls the momentum of the particle, and 
(6) the number of iteration in each swarm (nIt). 
In the proposed model of this paper, a new type of coding 
process schemes is considered that for PSO are similar to the 
ones described for GA.

4- 2- 2- Main loop of the PSO
In this algorithm, each row of the matrix (equivalent to a 
chromosome in the genetic algorithm) is called a particle. 
These particles are containing variable values. Each particle  
spins with a certain speed on the cost of procedures. Particles 
update its velocity and position based on personal (local) and 
global best value as the relationships 28 and 29:

Indexes i and d show the particle number and index of number 
axis the particle, respectively. Here,      indicates current 
position i in repeat d and axis. Thus,      is the velocity of 
particle i in repeat k. After the algorithm  updates the velocity 
vector of each particle, the calculated velocity adds the 
position or a number of particles. Update the particle velocity 
based on best of the personal value (solution with the lowest 
cost that has been found by a particle) that is named (P-best), 
and best of the global value (solution with the lowest cost in 
the current population) as (g-best) performed. If the cost in 
the best personal solution is less than the cost of the global 
solution, the best personal solution is replaced by the best 
global solution.  Figure 5 shows the contents.

Fig. 3. An example of the uniform crossover

Fig. 4. An example of the mutation operator 
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Fig. 5. Variation and how to determine the next location a 
particle [40]
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4- 2- 3- Stopping criteria
This algorithm is also stopped when there is no observed 
significant difference for several iterations in the current best 
solution. The soloution obtained by GA and PSO are verified 
by a variable neighborhood serach in next section.

5- Solution validation
In order to validate the solution, we use a variable neighborhood 
search (VNS) algorithm to solve the model until an upper 
bound on the solution is obtained and  analyzed the quality 
of the solutions obtained by GA and PSO. This algorithm is 
based on a systematic variation in the nieghborhood structure 
(NS). The pseudo-code of the nieghborhood search algorithm 
is shown in Fig. 6 [41].

Choosing the appropriate parameters for meta-heuristics 
algorithms are effective in the quality of solutions. In next 
section, the design of experiments (DOE) approach is taken 
to tune the parameters of GA and PSO.

6- Tuning the parameters
In this section, in order to calibrate the algorithm parameters, 
the design of experiment (DOE) approach is used. Therefore, 
the response surface methodology (RSM) is used to estimate 
the response function. Response surface methodology is a 
mathematical method for modeling and analyzing of problems 
in which several independent variables affect a dependent 
variable or response and  aims  to optimize the response. The 
first step in RSM is to determine a suitable approximation for 
the true functional relationship or response as follows [42-43]:

Function f is named surface response or function response 
between the response y and x1,x2,...,xk of k quantitative factors. 
The additional er measures the experimental errors. Moreover, 
determine the indicators and factors are evaluated. Then, the 
high and low surface of factors are specified, this means that in 
an initial interval of a factor with  keeping fixed other factors in 
several times, the sensitive range of other factors are obtained 
by try and error. Then, we run the test by considering the number 
of replications  as 2k + 2k + number of intermediate tests (factor 
points + axial points + central points) [44-45] where there are 
k=4 factors for GA and k=5 factors for PSO which each factor 
has three levels of low, medium, and high coded by (-1), (0), 
and (+1), respectively. The levels of parameters and the search 
ranges are shown in Table 1.
The developed algorithms are coded in MATLAB 10.0 (R2010a) 

software environment on a laptop with Intel® Core ™ i5 CPU 
and 4 GB RAM, to estimate the response functions. The PDPP 
with five suppliers, six manufacturers, six DCs, five customers, 
three raw materials, three products, and in the three periods is 
considered for the experiments of RSM. 
Moreover, the type of experimental design is cubic and we 
use central composite designs for the experiments. Therefore, 
the distance α of the axial points from the design center to 
generate a face-centered design is utilized in which a=1. 
Therefore, we choose cube point, since the factor setting 
represents the cube points in the design. 
The design points by the value of all three objectives together 
with the fitness values that are obtained by combined 
objective function are show in Tables 2 and 3 for GA and 
PSO, respectively. 
Moreover, the analyses of variance results are given in 
Tables 4 and 5 that show the suitability of any two regression 
functions and can be used for GA and PSO in RSM. Moreover, 
Eqs. 31 and 32 obtained, and the optimum combinations of 
the parameters having the red values are shown in Figs. 7 and 
8, and also are reported in Table 6 for each algorithm.

In the next section, performances of both algorithms on 
various problems with the tuned parameters are analyzed.  

7- Computational results
In this section, the combined objective function value to 
evaluate and analyze the performances of the solution methods 
for problems with different sizes is considered. Test problems 
have been implemented by the proposed two GA and PSO 
algorithms and basic VNS algorithm in 20 different sizes. Also, 
to decrease uncertainties of the solutions, average three times 
running each problem are considered as the final response. 
The data of parameters are generated from distributions given 
in Table 7.

Fig. 6. A variable neighborhood search procedure [41]
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Solving 
methodology Parameter Range Low (-1) Medium (0) High (+1)

GA

Popsize 50-100 50 75 100
Pc 0.8-0.99 0.8 0.9 0.99
Pm 0.1-0.2 0.1 0.15 0.2

Iteration 50-100 50 75 100

PSO

Swarmsize 50-100 50 75 100
C1 1.25-3 1.25 2 3
C2 1.25-3 1.25 2 3
w 0.5-0.95 0.5 0.7 0.95

Iteration 400-600 400 500 600

Table 1. Levels of the factors for tuning the parameters of both algorithms

Run 
number

GA Parameter GA Implementing
Popsize Pc Pm Iteration Lp-metric with P=∞

1 -1 -1 -1 +1 0.797
2 +1 -1 -1 -1 0.325
3 -1 +1 -1 -1 0.882
4 +1 +1 -1 -1 0.699
5 -1 -1 +1 -1 0.478
6 -1 +1 +1 -1 0.664
7 +1 +1 +1 -1 0.819
8 -1 -1 -1 +1 0.383
9 -1 -1 +1 +1 0.267
10 +1 -1 +1 +1 0.256
11 -1 +1 +1 +1 0.371
12 +1 +1 +1 +1 0.613
13 -1 0 0 0 0.588
14 +1 0 0 0 0.901
15 0 -1 0 0 0.872
16 0 +1 0 0 0.835
17 0 0 -1 0 0.744
18 0 0 +1 0 0.977
19 0 0 0 +1 0.705
20 0 0 0 0 0.829

Table 2. The results obtained by GA implementation
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Run 
number

PSO Parameter PSO Implementing
Swarm 

size C1 C2 w Iteration Lp-metric with P=∞

1 -1 -1 -1 -1 +1 0.8613
2 -1 +1 +1 +1 -1 0.6430
3 -1 0 0 0 0 0.8392
4 +1 -1 -1 +1 +1 0.7886
5 0 0 0 -1 0 0.8358
6 -1 -1 +1 -1 -1 0.8186
7 0 -1 0 0 0 0.8570
8 +1 +1 +1 +1 +1 0.6748
9 0 0 0 0 0 0.8758
10 0 0 0 0 +1 0.8273
11 -1 +1 -1 +1 +1 0.7287
12 0 0 +1 0 0 0.8501
13 -1 -1 +1 +1 +1 0.5295
14 0 +1 0 0 0 0.8234
15 +1 -1 +1 -1 +1 0.7998
16 0 0 -1 0 0 0.8407
17 +1 -1 -1 -1 -1 0.8495
18 -1 -1 -1 +1 -1 0.7555
19 +1 +1 -1 +1 -1 0.7740
20 0 0 0 0 -1 0.8077

Table 3. The results obtained by PSO implementation

Source DF Seq SS Adj SS Adj MS F P-value
Regression 14 3.37183 3.37183 0.240845 2.66 0.043

Linear 4 1.58876 1.58876 0.397190 4.39 0.018
Square 4 0.03487 0.03487 0.008716 0.10 0.982

Interaction 
Residual 6 1.74820 1.74820 0.291367 3.22 0.036

error 13 1.17549 1.17549 0.090422
Lack-of-fit 10 1.17549 1.17549 0.117549 430.99 0.0001
Pure error 3 0 0 0

Total 27 4.54731

Source DF Seq SS Adj SS Adj MS F P-value
Regression 20 0.188858 0.188858 0.009443 7.35 0.002

Linear 5 0.105980 0.105980 0.021196 16.50 0.0001
Square 5 0.056204 0.056204 0.011241 8.75 0.003

Interaction 
Residual 10 0.026674 0.026674 0.002667 2.08 0.143

error 9 0.011559 0.011559 0.001284
Lack-of-fit 6 0.011559 0.011559 0.001926 4.51 0.122
Pure error 3 0 0 0

Total 29 0.200417

Table 4. Analysis of variance for the response of GA

Table 5. Analysis of variance for the response of PSO



A. Kazemi et al., AUT J. Model. Simul., 49(1)(2017)57-74, DOI: 10.22060/miscj.2016.832

68

There, two classes of problems are considered as small size 
and large size. In the small size, to ensure the integrity and 
accuracy of the model, their optimal solutions are obtained 
by using developed mathematical programming in Lingo 11 
software. Table 8 demonstrates an objective function value 
for each problem with various indicators and parameters in 
small size. In the large size, 20 test problems are examined 
that show the results of both GA and PSO algorithms in 
comparison with basic VNS to solve the proposed PDPP 
model. These comparisons are shown in Fig. 9, and Tables 
9 shows computational results which involve combined 
objective function value for the large size. Moreover, to 
show the convergence of both GA and PSO algorithms, the 

diagram of the combined objective function value in certain 
iterations for problem number 7 are shown in Figs. 10 and 11, 
respectively.
Tables 10, 11, and 12 display the amount of transferred 
material from suppliers to the manufacturers, the number of 
transferred products from manufacturers to the distributers, 
and amount of sent products from distributors to the retailers 
for the problem 7. 

Fig. 7. Response optimization diagram for GA parameters

Fig. 8. Response optimization diagram for PSO parameters

Methodology Parameter Optimum value

GA

Pop size 50
Pc 0.8
Pm 0.2

Iteration 100

PSO

Swarm size 50
C1 1.253
C2 3
w 0.95

Iteration 600

Table 6. Optimum parameter levels Table 7. The amounts of parameters for test problems

Parameter Distribution Parameter Distribution

DEcit Norm(400,20) CTdcit Uniform(160,170)

CPpit Uniform(35,45) CTMspmt Uniform(8,12)

CSEpit Uniform(10,20) CPDpit Uniform(30,40)

TSMspmt Uniform(24,48) hour TPpit Uniform(12,48) hour

CPpdit Uniform(125,130) CPTspt Uniform(3500,5500)

CHpit Uniform(10,15) CPTpdt Uniform(3000,6000)

CTpdit Uniform(8,13) CPTdct Uniform(3000,6000)

CHdit Uniform(10,15) TTpdit Uniform(48,96) hour

CSMspmt Uniform(10,20) CPPpit Uniform(45,50)

CPDdit Uniform(40,45) TTdcit Uniform(24,48) hour

CHpmt Uniform(5,10) CPDpmt Uniform(15,25)

PScit Uniform(30,40) bmi Uniform(0.2,0.5)

p`
cit Uniform(10,15) Cs Uniform(350,700)

Cp Uniform(400,800) Cd Uniform(300,600)
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The analysis of variance test (ANOVA) is a parametric test that 
examines the variance of the two communities. Since we are 
dealing with multi-mode, ANOVA was used to test different 
hypotheses [46]. In this research, the one-way analysis of 
variance has been utilized to compare the efficiency of 
proposed GA and PSO to the basic VNS, which was employed 
in Minitab 14 software environment. The significant difference 
between the proposed GA, PSO, and basic VNS, are indicated 
in Table 13 and Figs. 12 and 13. Moreover, t-test efficiency 
of GA and PSO for solving the proposed PDPP model is 
performed which outputs the  results presented in Table 14, 
and Figs. 14 and 15.

8- Conclusion and future work
In this research, a multi-objective linear programming model 
was proposed for production-allocation and distribution 
planning problem in supply chain network. Three objective 
functions including (1) minimizing total costs of chain from 
suppliers to customers, (2) increasing responsiveness to the 
customer with minimizing the delivery time of products, and 

(3) minimizing the cost of last sales products for customers to 
increase the service level. Since the problem was an NP-hard, 
two meta-heuristic algorithms, namely GA and PSO to solve 
the model were developed, where the parameters were tuned 
using the RSM method. A VNS algorithm was used to verify 
the performance and intelligence of the both algorithms. 
Finally, with implementation problems in different sizes, 
the performance of both algorithms is specified and the 
results have been reported. Moreover, statistical tests called 
ANOVA and t for comparison were used. The following can 
be considered in future research:

• Both backorders, as well as lost sales, are considered, in 
case of not being able to fulfill customers’ demands.
• Different multi-objective solution methodologies 
and also the uncertainty of parameters such as costs, 
demands, transportation capacity, inventory capacity and 
production capacity in this problem can be presented as a 
fuzzy model.
• To enhance  the sensitivity analysis and result discussion 
of decision variables regarding the multiple objectives is 

Problem 
number

Problem size Optimal 
solution GA Optimally 

(%) PSO Optimally 
(%)S p d c m i t

1 1 2 2 2 1 1 1 0.647 0.647 100 0.647 100
2 2 2 2 2 2 2 2 0.571 0.571 100 0.571 100
3 2 2 2 3 2 3 2 0.709 0.717 98.9 0.726 97.6

Table 8. The results evaluation of proposed model in small sizes

Table 9. Computational results of solving methodologies in large sizes

Problem 
number s p d c m i t

Objective function value (OFV)
Proposed 

GA
Proposed 

PSO
Proposed 

VNS
Integrated 

OFV
Integrated 

OFV
Integrated 

OFV
1 2 3 2 3 2 3 2 0.5752 0.7634 0.8999
2 3 3 3 3 3 3 3 0.6684 0.6841 0.9201
3 4 5 3 5 3 4 3 0.7332 0.7099 0.9566
4 6 8 6 5 4 4 4 0.5687 0.5961 0.8322
5 7 8 7 8 5 5 6 0.5534 0.6904 0.9112
6 9 10 9 10 7 4 6 0.6107 0.5997 0.9273
7 10 10 8 12 8 9 9 0.6925 0.7250 0.8714
8 12 14 13 11 10 10 9 0.7763 0.7597 0.9322
9 14 15 12 15 10 10 10 0.6528 0.7004 0.9025
10 15 15 13 16 10 12 10 0.7137 0.7433 0.9518
11 17 17 15 15 12 12 12 0.6128 0.6874 0.8892
12 18 19 17 16 12 14 12 0.5478 0.5928 0.9193
13 18 20 20 19 15 15 15 0.6637 0.7022 0.9514
14 20 25 22 20 18 17 18 0.7220 0.7345 0.9349
15 23 28 25 25 20 20 20 0.7314 0.7418 0.9743
16 25 30 28 30 22 25 20 0.5783 0.5644 0.9328
17 30 35 30 32 25 25 24 0.6002 0.6127 0.8548
18 35 38 33 35 27 28 24 0.6738 0.7164 0.9381
19 40 42 35 38 30 30 24 0.5462 0.5661 0.8847
20 45 50 40 42 35 35 24 0.6714 0.6632 0.9011
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QSM (s, p, m, t)
QSM(1 .1.1.1)=112 QSM(3.2.2.1)=  982
QSM (1.1.1.4)=668 QSM(3.2.2.2)=  621
QSM (1.1.2.1)=720 QSM(3.2.3.2)=  741
QSM (1.1.2.2)=202 QSM(3.2.3.3)=  480
QSM(1.1.2.3)=617 QSM(3.2.4.1)=120
QSM(1.1.3.1)=1072 QSM(3.2.4.4)= 565
QSM(1.1.3.2)=1175 QSM(5.4.1.1)=  4331
QSM(1.1.3.3)=512 QSM(5.4.1.3)=  579
QSM(1.1.4.1)=467 QSM(5.4.1.4)= 316
QSM(1.1.4.4)=646 QSM(5.4.2.4)=  517

QSM(2.3.1.1)= 1192 QSM(5.4.3.2)= 678
QSM(2.3.2.2)= 45 QSM(5.4.3.3)=  177

QSM(2.3.3.2)= 1431 QSM(5.4.4.2)=  801
QSM(2.3.3.4)=1372 QSM(5.4.4.3)=  548
QSM(2.3.4.2)= 1529 QSM(5.4.4.4)=  644
QSM(2.3.4.3)= 609 QSM(6.7.1.2)=  536
QSM(2.3.4.4)= 108 QSM(6.7.3.1)=  662
QSM(6.7.2.2)=  563 QSM(6.7.1.4)=  1258
QSM(6.7.3.4)=  624 QSM(6.7.1.2)=  91

QS (d, c, i, t)
QS(1.4.6.4)=253 QS(2.2.1.1)= 591
QS(1.4.2.3)=509 QS(2.2.2.2)= 1168
QS(1.4.1.3)=575 QS(2.2.2.3)= 418
QS(1.4.5.3)=1163 QS(2.2.2.4)= 1117
QS(1.4.6.1)=1179 QS(2.2.3.1)= 1006
QS(1.4.6.2)=695 QS(2.2.3.3)= 888
QS(1.4.5.1)=1080 QS(2.2.4.1)= 330
QS(1.6.4.2)=1381 QS(2.2.4.3)= 170
QS(3.5.1.1)= 527 QS(4.1.1.1)=  875
QS(3.5.1.2)= 557 QS(4.1.1.2)=  1604
QS(3.5.1.4)= 307 QS(4.1.1.4)=  483
QS(3.5.2.2)= 72 QS(4.1.2.2)=  1904

QS(3.5.2.3)=  520 QS(4.1.3.2)=  524
QS(3.5.2.4)= 186 QS(4.1.3.3)=  908
QS(3.5.4.1)=  728 QS(4.1.4.1)= 280
QS(3.5.4.2)=  542 QS(4.1.4.2)=  542
QS(5.6.1.1)=  4331 QS(6.3.2.1)=  1320
QS(5.6.1.3)=  579 QS(6.3.2.2)=  1077
QS(5.6.1.4)= 316 QS(6.3.2.3)=  1234
QS(5.6.2.4)=  517 QS(6.3.2.4)=  1196
QS(5.6.3.2)= 678 QS(6.3.3.1)=  801
QS(5.6.3.3)=  177 QS(6.3.3.2)=  548
QS(5.6.3.4)=  1397 QS(6.3.3.3)=  1417
QS(5.6.4.3)=  100 QS(6.3.3.4)=  543

QS (p, d, i, t)
QS(1.3.1.1)=1464 QS(1.3.2.2)=198
QS(1.3.1.3)=575 QS(1.3.2.4)=419
QS(2.1.1.2)=848 QS(3.3.1.1)= 7176
QS(2.1.1.3)=810 QS(3.3.1.3)=  511
QS(2.1.2.4)= 475 QS(3.3.2.4)=  429
QS(2.1.6.1)= 2447 QS(3.3.3.1)=  1131
QS(2.1.4.2)= 180 QS(3.3.3.3)=  69
QS(3.3.3.4)=  695 QS(4.2.1.3)=  667
QS(3.3.4.2)= 993 QS(4.2.1.4)=  351
QS(3.3.5.3)=  489 QS(4.2.2.4)=  46
QS(4.2.3.1)= 1371 QS(4.2.4.2)= 1415
QS(4.2.3.4)= 1804 QS(4.2.4.3)=  371
QS(5.4.4.2)=  801 QS(5.4.2.2)=  563
QS(5.4.4.3)=  548 QS(5.4.1.2)=  333
QS(5.4.4.4)=  644 QS(5.4.4.1)=  26
QS(5.4.3.3)=  480 QS(5.4.6.1)= 997

Table 10. Amount of transferred material from suppliers to the 
manufacturers for the problem 7

Table 12. Amount of sent products from distributors to the 
retailers for the problem 7

Table 11. Amount of transferred products from manufacturers 
to the distributers for the problem 7

Fig. 9. The performance of the proposed GA and PSO in 
comparison with VNS
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proposed.

Fig. 10. Convergence diagram of GA in number problem 7 

Table 13. Analysis of variance for performance comparisons

Fig. 12. The significant difference of the basic VNS

Fig. 11. Convergence diagram of PSO in number problem 7 

Source df SS MS F-test P-value
Response 2 0.86532 0.43266 122.93 0.000

Error 57 0.20061 0.00352
Total 59 1.06593

Algorithm N Mean StDev SE Mean P-value
GA 20 0.6446 0.0706 0.016

0.134
PSO 20 0.6777 0.0655 0.015

Table 13. Analysis of variance for performance comparisons

Fig. 13. Boxplot of the significant different of response

Fig. 14. Performance of proposed GA and PSO



A. Kazemi et al., AUT J. Model. Simul., 49(1)(2017)57-74, DOI: 10.22060/miscj.2016.832

72

References
[1]  Simchi-Levi, D.; Kaminsky, P. and Simchi-Levi, E.; 

“Designing and managing the supply chain: consepts, 
strategies, and case studies,” Irwin McGraw-Hill, New 
York, 2000.

[2] Boudia, M.; “Coordination of production planning and 
distribution,” 4OR. Vol. 6, No. 1, pp. 93-96, 2008.

[3] Altiparmak, F.; Gen, M.; Lin, L. and Paksoy, T.; 
“A genetic algorithm approach for multi-objective 
optimization of supply chain networks,” Computers & 
Industrial Engineering, Vol. 5, No. 1, pp. 196-215, 2006. 

[4] Park, B.; Choi, H. and Kang, M.; “Integration of production 
and distribution planning using a genetic algorithm in 
supply chain management. In: Melin P, Castillo O, Ramirez 
EG, Kacprzyk J, Pedrycz W, editors. Analysis and design 
of intelligent system using soft computing techniques,” 
Springer, Berlin, pp. 416-426, 2007.

[5] Lee, Y.H. and Kim, S.H.; “Production-Distribution 
planning in supply chain considering capacity constraints,” 
Computers & industrial engineering, Vol. 43, No. 1, pp. 
169-190, 2002.

[6] Pirkul, H. and Jayaraman, V.; “A multi-commodity, 
multi- plant, capacitated facility location problem: 
formulation and efficient heuristic solution,” Computers 
& Operations Research, Vol. 25, No. 10, pp. 869-878, 
1998.

[7] Rizk, N.; Martel, A. and D’Amours, S.; “Multi-item dynamic 
production-distribution planning in process industries 
with divergent finishing stage,” Computers & Operations 
Research, Vol. 33, No. 12, pp. 3600-3623, 2006.

[8] Selim, H.; Araz, C. and Ozkarahan, I.; “Collaborative 
production-distribution planning in a supply chain: a 
fuzzy goal programming approach,” Transportation 
Research Part E: Logistics and Transportation Review, 
Vol. 44, No. 3, pp. 396-419, 2008.

[9] Fahimnia, B.; Zanjirani Frahani, R.; Marian, R. and Luong, 
L.; “A review and critique on integrated production–
distribution planning models and techniques,” Journal of 
Manufacturing Systems, Vol. 32, No. 1, pp. 1-19, 2013.

[10] Williams, J.F.; “Heuristic techniques for simultaneous 
scheduling of production and distribution in multi-
echelon structures: theory and empirical comparisons,” 
Management Science, Vol. 27, No. 3, pp. 336-352, 1981.

[11] Cohen, M.A. and Lee, H.L.; “Recourse deployment 
analysis of global manufacturing and distribution 
networks,” Journal of Manufacturing and Operations 
Management, Vol. 2, No. 1, pp. 81-104, 1989.

[12] Ӧzdamar, L. and Yazgac, T.; “Capacity driven due 
date settings in make-to-order production systems,” 
International Journal of Production Economics, Vol. 49, 
No. 1, pp. 29-44, 1997.

[13] Yan, H.; Yu, Z. and Cheng, T.C.E.; “A strategic model for 
supply chain design with logical constraints: formulation 
and solution,” Computers & Operations Research, Vol. 
30, No. 14, pp. 2135-2155, 2003.

[14] Yilmaz, P. and Catay, B.; “Strategic level three-
stage production-distribution planning with capacity 
expansion,” Computers & Industrial Engineering, Vol. 
51, No. 4, pp. 609-620, 2006. 

[15] You, F. and Grossman, I.E.; “Design of responsive supply 
chain under demand uncertainty,” Computers & Chemical 
Engineering, Vol. 32, No. 12, pp. 3090-3111, 2008.

[16] Tsiakis, P. and Papageorgiou, L.G.; “Optimal production 
allocation and distribution supply chain networks,” 
International Journal of Production Economics, Vol. 111, 
No. 2, pp. 468-483, 2008. 

[17] Petrovic, D.; Roy, R. and Petrovic, R.; “Supply chain 
modelling using fuzzy sets,” International Journal of 
Production Economics, Vol. 59, No. 1, pp. 443-453, 1999.

[18] Chen, Y.W. and Tzeng, G.H.; “Fuzzy multi-objective 
approach to the supply chain model. In: Tzaskalik 
T, Michnik J (eds) Multiple objective and goal 
programming advances in soft computing,” Physica 
Verlang, Heidelberg, pp. 221-234, 2002.

[19] Lin, C.W.R. and Chen, H.Y.S.; “A fuzzy strategic alliance 
selection framework for supply chain partnering under 
limited evaluation resources,” Computers in Industry, 
Vol. 55, No. 2, pp. 159-179, 2004.

Fig. 15. Boxplot of t-test of response



A. Kazemi et al., AUT J. Model. Simul., 49(1)(2017)57-74, DOI: 10.22060/miscj.2016.832

73

[20] Aliev, R.A.; Fazlollahi, B.; Guirimov, B.G. and Aliev, R.R.; 
“Fuzzy-genetic approach to aggregate production-distribution 
planning in supply chain management,” Information 
Sciences, Vol. 177, No. 20, pp. 4241-4255, 2007.

[21] Bilgen, B.; “Application of fuzzy mathematical 
programming approach to the production allocation and 
distribution supply chain network problem,” Expert Systems 
with Applications, Vol. 37, No. 6, pp. 4488-4495. 2010.

[22] Liang, T.F.; “Fuzzy multi-objective production/distribution 
planning decisions with multi-product and multi-time period 
in a supply chain,” Computers & Industrial Engineering, 
Vol. 55, No. 3, pp. 576-694, 2008.

[23] Razmi, J.; Jafari Songhori, M. and Khakbaz, M.H.; 
“An integrated fuzzy group decision making/fuzzy 
linear programming (FGDMLP) framework for supplier 
evaluation and order allocation,” The International 
Journal of Advanced Manufacturing Technology, Vol. 43, 
No. 5, pp. 590-607, 2009.

[24] Liang, T.F.; “Integrated manufacturing/distribution 
planning problem decisions with multiple imprecise 
goals in an uncertain environment,” Quality & Quantity, 
Vol. 46, No. 1, pp. 137-153, 2012.

[25] Liu, S. and Papageorgiou, L.G.; “Multiobjective 
optimization of production, distribution and capacity 
planning of supply chains in the process industry,” 
Omega, Vol. 41, No. 2, pp. 369-382, 2013.  

[26] Gen, M. and Syarif, A.; “Hybrid genetic algorithm for multi-
time period production/distribution planning,” Computers & 
Industrial Engineering, Vol. 48, No. 4, pp. 799-809, 2005.

[27] Kazemi, A.; Fazel Zarandi, M.H. and Moattar Husseini, 
S.M.; “A multi-agent system to solve the production-
distribution planning problem for a supply chain: a genetic 
algorithm approach,” The International Journal of Advanced 
Manufacturing Technology, Vol. 44, No. 1, pp. 180-193, 2009.

[28] Jolai, F.; Razmi, J. and Rostami, N.K.M.; “A fuzzy goal 
programming and meta heuristic algorithms for solving 
integrated production: distribution planning problem,” 
Central European Journal of Operations Research, Vol. 
19, No. 4, pp. 547-569, 2011.

[29] Ashoka Varthanan, P.; Murugan, N.; Mohan Kumar, 
G. and Parameswaran, S.; “Development of simulation-
based AHP-DPSO algorithm for generating multi-criteria 
production-distribution plan,” The International Journal 
of Advanced Manufacturing Technology, Vol. 60, No. 1, 
pp. 373-396, 2012.

[30] Vinay, V.P. and Sridharan, R,; “Taguchi method for 
parameter design in ACO algorithm for distribution–
allocation in a two-stage supply chain,” International 
Journal Advanced Manufacturing Technology, Vol. 64, 
No. 1, pp. 1333-1343, 2013.

[31] Sarrafha, K.; Kazemi, A. and Alinezhad, A.; “A 
multi-objective evolutionary approach for integrated 
production-distribution planning problem in a supply 
chain network,” Journal of Optimization in Industrial 
Engineering, Vol. 14, No. 7, pp. 89-102, 2014.

[32] Sarrafha, K.; Rahmati, S.H.A.; Akhavan Niaki, S.T. and 
Zaretalab, A.; “A bi-objective integrated procurement, 
production, and distribution problem of a multi-echelon supply 
chain network design: A new tuned MOEA,” Computers & 
Operations Research, Vol. 54, No. 1, pp. 35-51, 2015.

[33] Zeleny, M.; “Multiple Criteria Decision Making,” Irwin 
McGraw-Hill, New York, 1982.

[34] Holland, J.H.; “Adaptation in natural and artificial 
systems: An introductory analysis with applications to 
biology,” control and artificial intelligence, Michigan: 
University of Michigan Press, 1975.

[35] Yeniay, O. and Ankare, B.; “Penalty function methods 
for constrained optimization with genetic algorithms,” 
Mathematical and Computational application, Vol. 10, 
No. 1, pp. 45-56, 2005.

[36] Deb, K.; “An Introduction to genetic algorithms,” 
Sadhana, Vol. 24, No. 4, pp. 293-315, 1999.

[37] Bate, S.T. and Jones, B.; “A review of uniform crossover 
designs,” Journal of Statistical Planning and Inference, 
Vol. 138, No. 2, pp. 336-351, 2007.

[38] Gross, D. and Harris, C.M.; “Fundamental of queuing 
theory (3rd ed),” Wiley Interscience, New York, NY, 1998.

[39] Kennedy, J. and Eberhart, R.; “Particle swarm optimization,” 
In: Proceedings of IEEE international conference on neural 
network, IV, Vol. 4, No. 1, pp. 1942-1948, 1995.

[40] Liu, T.C. and Wang, J.C.; “A discrete particle swarm 
optimizer for graphic presentation of GMDH network, 
in proc,” Conferences - IEEE Systems, Man, and 
Cybernetics, Vol. 3, No. 1, pp. 2329-2333, 2005.

[41] Mladenovic, N. and Hansen, P.; “Variable neighborhood 
search,” Computers & Operation research, Vol. 24, No. 
11, pp. 1097-1100, 1997.

[42] Montgomery, D.C.; “Response surface methodology,” 
Wiley, New York, 2004.

[43] Khan, M.M.A.; Romoli, L.; Fiaschi, M.; Dini, G. and 
Sarri, F.; “Multi response optimization of stainless steels 
in a constrained fillet joint configuration using RSM,” 
The International Journal of Advanced Manufacturing 
Technology, Vol. 62, No. 5, pp. 587-603, 2012.

[44] Pasandideh, S.H.R.; Akhavan Niaki, S.T. and Hajipour, V.; 
“A multi-objective facility location model with batch arrivals: 
two parameter-tuned meta-heuristic algorithms,” Journal of 
Intelligent Manufacturing, Vol. 24, No. 2, pp. 331-348, 2013.

[45] Jamili, A.; Shafia, M.A. and Tavakkoli-Moghaddam, R.; 
“A hybrid algorithm based on particle swarm optimization 
and simulated annealing for a periodic job shop scheduling 
problem” The International Journal of Advanced Manufacturing 
Technology, Vol. 54, No. 1, pp. 309-322, 2011.

[46] Montgomery, D.C.; “Design and analysis of experiments 
(6th ed),” Wiley, New York, USA, 2005.

Please cite this article using:

A. Kazemi, K. Sarrafha, M. Oroojeni Mohammad Javad,”A multi-objective integrated production-
allocation and distribution planning problem of a multi-echelon supply chain network: two parameter-
tuned meta-heuristic algorithms”, AUT J. Model. Simul., 49(1)(2017)57-74.
DOI: 10.22060/miscj.2016.832




